blob: 93743f3d6cfc3f8a18ab75ac0f5332e10d9bc206 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMutex.h"
#include "SkOpCoincidence.h"
#include "SkOpContour.h"
#include "SkPath.h"
#include "SkPathOpsDebug.h"
#include "SkString.h"
class SkCoincidentSpans;
#if DEBUG_VALIDATE
extern bool FLAGS_runFail;
#endif
#if DEBUG_SORT
int SkPathOpsDebug::gSortCountDefault = SK_MaxS32;
int SkPathOpsDebug::gSortCount;
#endif
#if DEBUG_ACTIVE_OP
const char* SkPathOpsDebug::kPathOpStr[] = {"diff", "sect", "union", "xor"};
#endif
#if defined SK_DEBUG || !FORCE_RELEASE
const char* SkPathOpsDebug::kLVerbStr[] = {"", "line", "quad", "cubic"};
int SkPathOpsDebug::gContourID = 0;
int SkPathOpsDebug::gSegmentID = 0;
bool SkPathOpsDebug::ChaseContains(const SkTDArray<SkOpSpanBase* >& chaseArray,
const SkOpSpanBase* span) {
for (int index = 0; index < chaseArray.count(); ++index) {
const SkOpSpanBase* entry = chaseArray[index];
if (entry == span) {
return true;
}
}
return false;
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
enum GlitchType {
kAddCorruptCoin_Glitch,
kAddExpandedCoin_Glitch,
kAddExpandedFail_Glitch,
kAddIfMissingCoin_Glitch,
kAddMissingCoin_Glitch,
kAddMissingExtend_Glitch,
kAddOrOverlap_Glitch,
kCollapsedCoin_Glitch,
kCollapsedDone_Glitch,
kCollapsedOppValue_Glitch,
kCollapsedSpan_Glitch,
kCollapsedWindValue_Glitch,
kDeletedCoin_Glitch,
kExpandCoin_Glitch,
kMarkCoinEnd_Glitch,
kMarkCoinInsert_Glitch,
kMarkCoinMissing_Glitch,
kMarkCoinStart_Glitch,
kMergeContained_Glitch,
kMissingCoin_Glitch,
kMissingDone_Glitch,
kMissingIntersection_Glitch,
kMoveMultiple_Glitch,
kMoveNearbyClearAll_Glitch,
kMoveNearbyClearAll2_Glitch,
kMoveNearbyMerge_Glitch,
kMoveNearbyMergeFinal_Glitch,
kMoveNearbyRelease_Glitch,
kMoveNearbyReleaseFinal_Glitch,
kReleasedSpan_Glitch,
kUnaligned_Glitch,
kUnalignedHead_Glitch,
kUnalignedTail_Glitch,
};
static const int kGlitchType_Count = kUnalignedTail_Glitch + 1;
struct SpanGlitch {
const char* fStage;
const SkOpSpanBase* fBase;
const SkOpSpanBase* fSuspect;
const SkOpSegment* fSegment;
const SkOpSegment* fOppSegment;
const SkOpPtT* fCoinSpan;
const SkOpPtT* fEndSpan;
const SkOpPtT* fOppSpan;
const SkOpPtT* fOppEndSpan;
double fStartT;
double fEndT;
double fOppStartT;
double fOppEndT;
SkPoint fPt;
GlitchType fType;
};
struct SkPathOpsDebug::GlitchLog {
SpanGlitch* recordCommon(GlitchType type, const char* stage) {
SpanGlitch* glitch = fGlitches.push();
glitch->fStage = stage;
glitch->fBase = nullptr;
glitch->fSuspect = nullptr;
glitch->fSegment = nullptr;
glitch->fOppSegment = nullptr;
glitch->fCoinSpan = nullptr;
glitch->fEndSpan = nullptr;
glitch->fOppSpan = nullptr;
glitch->fOppEndSpan = nullptr;
glitch->fStartT = SK_ScalarNaN;
glitch->fEndT = SK_ScalarNaN;
glitch->fOppStartT = SK_ScalarNaN;
glitch->fOppEndT = SK_ScalarNaN;
glitch->fPt = { SK_ScalarNaN, SK_ScalarNaN };
glitch->fType = type;
return glitch;
}
void record(GlitchType type, const char* stage, const SkOpSpanBase* base,
const SkOpSpanBase* suspect = NULL) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fBase = base;
glitch->fSuspect = suspect;
}
void record(GlitchType type, const char* stage, const SkOpSpanBase* base,
const SkOpPtT* ptT) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fBase = base;
glitch->fCoinSpan = ptT;
}
void record(GlitchType type, const char* stage, const SkCoincidentSpans* coin,
const SkCoincidentSpans* opp = NULL) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fCoinSpan = coin->coinPtTStart();
glitch->fEndSpan = coin->coinPtTEnd();
if (opp) {
glitch->fOppSpan = opp->coinPtTStart();
glitch->fOppEndSpan = opp->coinPtTEnd();
}
}
void record(GlitchType type, const char* stage, const SkOpSpanBase* base,
const SkOpSegment* seg, double t, SkPoint pt) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fBase = base;
glitch->fSegment = seg;
glitch->fStartT = t;
glitch->fPt = pt;
}
void record(GlitchType type, const char* stage, const SkOpSpanBase* base, double t,
SkPoint pt) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fBase = base;
glitch->fStartT = t;
glitch->fPt = pt;
}
void record(GlitchType type, const char* stage, const SkCoincidentSpans* coin,
const SkOpPtT* coinSpan, const SkOpPtT* endSpan) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fCoinSpan = coin->coinPtTStart();
glitch->fEndSpan = coin->coinPtTEnd();
glitch->fEndSpan = endSpan;
glitch->fOppSpan = coinSpan;
glitch->fOppEndSpan = endSpan;
}
void record(GlitchType type, const char* stage, const SkCoincidentSpans* coin,
const SkOpSpanBase* base) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fBase = base;
glitch->fCoinSpan = coin->coinPtTStart();
glitch->fEndSpan = coin->coinPtTEnd();
}
void record(GlitchType type, const char* stage, const SkOpPtT* ptTS, const SkOpPtT* ptTE,
const SkOpPtT* oPtTS, const SkOpPtT* oPtTE) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fCoinSpan = ptTS;
glitch->fEndSpan = ptTE;
glitch->fOppSpan = oPtTS;
glitch->fOppEndSpan = oPtTE;
}
void record(GlitchType type, const char* stage, const SkOpSegment* seg, double startT,
double endT, const SkOpSegment* oppSeg, double oppStartT, double oppEndT) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fSegment = seg;
glitch->fStartT = startT;
glitch->fEndT = endT;
glitch->fOppSegment = oppSeg;
glitch->fOppStartT = oppStartT;
glitch->fOppEndT = oppEndT;
}
void record(GlitchType type, const char* stage, const SkOpSegment* seg,
const SkOpSpan* span) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fSegment = seg;
glitch->fBase = span;
}
void record(GlitchType type, const char* stage, double t, const SkOpSpanBase* span) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fStartT = t;
glitch->fBase = span;
}
void record(GlitchType type, const char* stage, const SkOpSegment* seg) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fSegment = seg;
}
void record(GlitchType type, const char* stage, const SkCoincidentSpans* coin,
const SkOpPtT* ptT) {
SpanGlitch* glitch = recordCommon(type, stage);
glitch->fCoinSpan = coin->coinPtTStart();
glitch->fEndSpan = ptT;
}
SkTDArray<SpanGlitch> fGlitches;
};
#endif
void SkPathOpsDebug::ShowActiveSpans(SkOpContourHead* contourList) {
#if DEBUG_ACTIVE_SPANS
SkOpContour* contour = contourList;
do {
contour->debugShowActiveSpans();
} while ((contour = contour->next()));
#endif
}
#if DEBUG_COINCIDENCE
void SkPathOpsDebug::CheckHealth(SkOpContourHead* contourList, const char* id) {
contourList->globalState()->debugSetCheckHealth(true);
#if DEBUG_COINCIDENCE_VERBOSE
GlitchLog glitches;
const SkOpContour* contour = contourList;
const SkOpCoincidence* coincidence = contour->globalState()->coincidence();
coincidence->debugCheckValid(id, &glitches); // don't call validate; spans may be inconsistent
do {
contour->debugCheckHealth(id, &glitches);
contour->debugMissingCoincidence(id, &glitches);
} while ((contour = contour->next()));
coincidence->debugRemoveCollapsed(id, &glitches);
coincidence->debugAddMissing(id, &glitches);
coincidence->debugExpand(id, &glitches);
coincidence->debugAddExpanded(id, &glitches);
coincidence->debugMark(id, &glitches);
coincidence->debugReorder(id, &glitches);
unsigned mask = 0;
for (int index = 0; index < glitches.fGlitches.count(); ++index) {
const SpanGlitch& glitch = glitches.fGlitches[index];
mask |= 1 << glitch.fType;
}
for (int index = 0; index < kGlitchType_Count; ++index) {
SkDebugf(mask & (1 << index) ? "x" : "-");
}
SkDebugf(" %s\n", id);
for (int index = 0; index < glitches.fGlitches.count(); ++index) {
const SpanGlitch& glitch = glitches.fGlitches[index];
SkDebugf("%02d: ", index);
if (glitch.fBase) {
SkDebugf(" base=%d", glitch.fBase->debugID());
}
if (glitch.fSuspect) {
SkDebugf(" base=%d", glitch.fSuspect->debugID());
}
if (glitch.fSegment) {
SkDebugf(" segment=%d", glitch.fSegment->debugID());
}
if (glitch.fCoinSpan) {
SkDebugf(" coinSpan=%d", glitch.fCoinSpan->debugID());
}
if (glitch.fEndSpan) {
SkDebugf(" endSpan=%d", glitch.fEndSpan->debugID());
}
if (glitch.fOppSpan) {
SkDebugf(" oppSpan=%d", glitch.fOppSpan->debugID());
}
if (glitch.fOppEndSpan) {
SkDebugf(" oppEndSpan=%d", glitch.fOppEndSpan->debugID());
}
if (!SkScalarIsNaN(glitch.fStartT)) {
SkDebugf(" startT=%g", glitch.fStartT);
}
if (!SkScalarIsNaN(glitch.fEndT)) {
SkDebugf(" endT=%g", glitch.fEndT);
}
if (glitch.fOppSegment) {
SkDebugf(" segment=%d", glitch.fOppSegment->debugID());
}
if (!SkScalarIsNaN(glitch.fOppStartT)) {
SkDebugf(" oppStartT=%g", glitch.fOppStartT);
}
if (!SkScalarIsNaN(glitch.fOppEndT)) {
SkDebugf(" oppEndT=%g", glitch.fOppEndT);
}
if (!SkScalarIsNaN(glitch.fPt.fX) || !SkScalarIsNaN(glitch.fPt.fY)) {
SkDebugf(" pt=%g,%g", glitch.fPt.fX, glitch.fPt.fY);
}
switch (glitch.fType) {
case kAddCorruptCoin_Glitch: SkDebugf(" AddCorruptCoin"); break;
case kAddExpandedCoin_Glitch: SkDebugf(" AddExpandedCoin"); break;
case kAddExpandedFail_Glitch: SkDebugf(" AddExpandedFail"); break;
case kAddIfMissingCoin_Glitch: SkDebugf(" AddIfMissingCoin"); break;
case kAddMissingCoin_Glitch: SkDebugf(" AddMissingCoin"); break;
case kAddMissingExtend_Glitch: SkDebugf(" AddMissingExtend"); break;
case kAddOrOverlap_Glitch: SkDebugf(" AAddOrOverlap"); break;
case kCollapsedCoin_Glitch: SkDebugf(" CollapsedCoin"); break;
case kCollapsedDone_Glitch: SkDebugf(" CollapsedDone"); break;
case kCollapsedOppValue_Glitch: SkDebugf(" CollapsedOppValue"); break;
case kCollapsedSpan_Glitch: SkDebugf(" CollapsedSpan"); break;
case kCollapsedWindValue_Glitch: SkDebugf(" CollapsedWindValue"); break;
case kDeletedCoin_Glitch: SkDebugf(" DeletedCoin"); break;
case kExpandCoin_Glitch: SkDebugf(" ExpandCoin"); break;
case kMarkCoinEnd_Glitch: SkDebugf(" MarkCoinEnd"); break;
case kMarkCoinInsert_Glitch: SkDebugf(" MarkCoinInsert"); break;
case kMarkCoinMissing_Glitch: SkDebugf(" MarkCoinMissing"); break;
case kMarkCoinStart_Glitch: SkDebugf(" MarkCoinStart"); break;
case kMergeContained_Glitch: SkDebugf(" MergeContained"); break;
case kMissingCoin_Glitch: SkDebugf(" MissingCoin"); break;
case kMissingDone_Glitch: SkDebugf(" MissingDone"); break;
case kMissingIntersection_Glitch: SkDebugf(" MissingIntersection"); break;
case kMoveMultiple_Glitch: SkDebugf(" MoveMultiple"); break;
case kMoveNearbyClearAll_Glitch: SkDebugf(" MoveNearbyClearAll"); break;
case kMoveNearbyClearAll2_Glitch: SkDebugf(" MoveNearbyClearAll2"); break;
case kMoveNearbyMerge_Glitch: SkDebugf(" MoveNearbyMerge"); break;
case kMoveNearbyMergeFinal_Glitch: SkDebugf(" MoveNearbyMergeFinal"); break;
case kMoveNearbyRelease_Glitch: SkDebugf(" MoveNearbyRelease"); break;
case kMoveNearbyReleaseFinal_Glitch: SkDebugf(" MoveNearbyReleaseFinal"); break;
case kReleasedSpan_Glitch: SkDebugf(" ReleasedSpan"); break;
case kUnaligned_Glitch: SkDebugf(" Unaligned"); break;
case kUnalignedHead_Glitch: SkDebugf(" UnalignedHead"); break;
case kUnalignedTail_Glitch: SkDebugf(" UnalignedTail"); break;
default: SkASSERT(0);
}
SkDebugf("\n");
}
contourList->globalState()->debugSetCheckHealth(false);
#if DEBUG_ACTIVE_SPANS
SkDebugf("active after %s:\n", id);
ShowActiveSpans(contourList);
#endif
#endif
}
#endif
#if defined SK_DEBUG || !FORCE_RELEASE
void SkPathOpsDebug::MathematicaIze(char* str, size_t bufferLen) {
size_t len = strlen(str);
bool num = false;
for (size_t idx = 0; idx < len; ++idx) {
if (num && str[idx] == 'e') {
if (len + 2 >= bufferLen) {
return;
}
memmove(&str[idx + 2], &str[idx + 1], len - idx);
str[idx] = '*';
str[idx + 1] = '^';
++len;
}
num = str[idx] >= '0' && str[idx] <= '9';
}
}
bool SkPathOpsDebug::ValidWind(int wind) {
return wind > SK_MinS32 + 0xFFFF && wind < SK_MaxS32 - 0xFFFF;
}
void SkPathOpsDebug::WindingPrintf(int wind) {
if (wind == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", wind);
}
}
#endif // defined SK_DEBUG || !FORCE_RELEASE
#if DEBUG_SHOW_TEST_NAME
void* SkPathOpsDebug::CreateNameStr() { return new char[DEBUG_FILENAME_STRING_LENGTH]; }
void SkPathOpsDebug::DeleteNameStr(void* v) { delete[] reinterpret_cast<char*>(v); }
void SkPathOpsDebug::BumpTestName(char* test) {
char* num = test + strlen(test);
while (num[-1] >= '0' && num[-1] <= '9') {
--num;
}
if (num[0] == '\0') {
return;
}
int dec = atoi(num);
if (dec == 0) {
return;
}
++dec;
SK_SNPRINTF(num, DEBUG_FILENAME_STRING_LENGTH - (num - test), "%d", dec);
}
#endif
static void show_function_header(const char* functionName) {
SkDebugf("\nstatic void %s(skiatest::Reporter* reporter, const char* filename) {\n", functionName);
if (strcmp("skphealth_com76", functionName) == 0) {
SkDebugf("found it\n");
}
}
static const char* gOpStrs[] = {
"kDifference_SkPathOp",
"kIntersect_SkPathOp",
"kUnion_SkPathOp",
"kXOR_PathOp",
"kReverseDifference_SkPathOp",
};
const char* SkPathOpsDebug::OpStr(SkPathOp op) {
return gOpStrs[op];
}
static void show_op(SkPathOp op, const char* pathOne, const char* pathTwo) {
SkDebugf(" testPathOp(reporter, %s, %s, %s, filename);\n", pathOne, pathTwo, gOpStrs[op]);
SkDebugf("}\n");
}
SK_DECLARE_STATIC_MUTEX(gTestMutex);
void SkPathOpsDebug::ShowPath(const SkPath& a, const SkPath& b, SkPathOp shapeOp,
const char* testName) {
SkAutoMutexAcquire ac(gTestMutex);
show_function_header(testName);
ShowOnePath(a, "path", true);
ShowOnePath(b, "pathB", true);
show_op(shapeOp, "path", "pathB");
}
#include "SkPathOpsTypes.h"
#include "SkIntersectionHelper.h"
#include "SkIntersections.h"
#if DEBUG_T_SECT_LOOP_COUNT
void SkOpGlobalState::debugAddLoopCount(SkIntersections* i, const SkIntersectionHelper& wt,
const SkIntersectionHelper& wn) {
for (int index = 0; index < (int) SK_ARRAY_COUNT(fDebugLoopCount); ++index) {
SkIntersections::DebugLoop looper = (SkIntersections::DebugLoop) index;
if (fDebugLoopCount[index] >= i->debugLoopCount(looper)) {
continue;
}
fDebugLoopCount[index] = i->debugLoopCount(looper);
fDebugWorstVerb[index * 2] = wt.segment()->verb();
fDebugWorstVerb[index * 2 + 1] = wn.segment()->verb();
sk_bzero(&fDebugWorstPts[index * 8], sizeof(SkPoint) * 8);
memcpy(&fDebugWorstPts[index * 2 * 4], wt.pts(),
(SkPathOpsVerbToPoints(wt.segment()->verb()) + 1) * sizeof(SkPoint));
memcpy(&fDebugWorstPts[(index * 2 + 1) * 4], wn.pts(),
(SkPathOpsVerbToPoints(wn.segment()->verb()) + 1) * sizeof(SkPoint));
fDebugWorstWeight[index * 2] = wt.weight();
fDebugWorstWeight[index * 2 + 1] = wn.weight();
}
i->debugResetLoopCount();
}
void SkOpGlobalState::debugDoYourWorst(SkOpGlobalState* local) {
for (int index = 0; index < (int) SK_ARRAY_COUNT(fDebugLoopCount); ++index) {
if (fDebugLoopCount[index] >= local->fDebugLoopCount[index]) {
continue;
}
fDebugLoopCount[index] = local->fDebugLoopCount[index];
fDebugWorstVerb[index * 2] = local->fDebugWorstVerb[index * 2];
fDebugWorstVerb[index * 2 + 1] = local->fDebugWorstVerb[index * 2 + 1];
memcpy(&fDebugWorstPts[index * 2 * 4], &local->fDebugWorstPts[index * 2 * 4],
sizeof(SkPoint) * 8);
fDebugWorstWeight[index * 2] = local->fDebugWorstWeight[index * 2];
fDebugWorstWeight[index * 2 + 1] = local->fDebugWorstWeight[index * 2 + 1];
}
local->debugResetLoopCounts();
}
static void dump_curve(SkPath::Verb verb, const SkPoint& pts, float weight) {
if (!verb) {
return;
}
const char* verbs[] = { "", "line", "quad", "conic", "cubic" };
SkDebugf("%s: {{", verbs[verb]);
int ptCount = SkPathOpsVerbToPoints(verb);
for (int index = 0; index <= ptCount; ++index) {
SkDPoint::Dump((&pts)[index]);
if (index < ptCount - 1) {
SkDebugf(", ");
}
}
SkDebugf("}");
if (weight != 1) {
SkDebugf(", ");
if (weight == floorf(weight)) {
SkDebugf("%.0f", weight);
} else {
SkDebugf("%1.9gf", weight);
}
}
SkDebugf("}\n");
}
void SkOpGlobalState::debugLoopReport() {
const char* loops[] = { "iterations", "coinChecks", "perpCalcs" };
SkDebugf("\n");
for (int index = 0; index < (int) SK_ARRAY_COUNT(fDebugLoopCount); ++index) {
SkDebugf("%s: %d\n", loops[index], fDebugLoopCount[index]);
dump_curve(fDebugWorstVerb[index * 2], fDebugWorstPts[index * 2 * 4],
fDebugWorstWeight[index * 2]);
dump_curve(fDebugWorstVerb[index * 2 + 1], fDebugWorstPts[(index * 2 + 1) * 4],
fDebugWorstWeight[index * 2 + 1]);
}
}
void SkOpGlobalState::debugResetLoopCounts() {
sk_bzero(fDebugLoopCount, sizeof(fDebugLoopCount));
sk_bzero(fDebugWorstVerb, sizeof(fDebugWorstVerb));
sk_bzero(fDebugWorstPts, sizeof(fDebugWorstPts));
sk_bzero(fDebugWorstWeight, sizeof(fDebugWorstWeight));
}
#endif
#ifdef SK_DEBUG
bool SkOpGlobalState::debugRunFail() const {
#if DEBUG_VALIDATE
return FLAGS_runFail;
#else
return false;
#endif
}
#endif
#if DEBUG_T_SECT_LOOP_COUNT
void SkIntersections::debugBumpLoopCount(DebugLoop index) {
fDebugLoopCount[index]++;
}
int SkIntersections::debugLoopCount(DebugLoop index) const {
return fDebugLoopCount[index];
}
void SkIntersections::debugResetLoopCount() {
sk_bzero(fDebugLoopCount, sizeof(fDebugLoopCount));
}
#endif
#include "SkPathOpsCubic.h"
#include "SkPathOpsQuad.h"
SkDCubic SkDQuad::debugToCubic() const {
SkDCubic cubic;
cubic[0] = fPts[0];
cubic[2] = fPts[1];
cubic[3] = fPts[2];
cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
return cubic;
}
void SkDRect::debugInit() {
fLeft = fTop = fRight = fBottom = SK_ScalarNaN;
}
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#if DEBUG_COINCIDENCE
// commented-out lines keep this in sync with addT()
const SkOpPtT* SkOpSegment::debugAddT(double t, AliasMatch allowAlias, bool* allocated) const {
debugValidate();
SkPoint pt = this->ptAtT(t);
const SkOpSpanBase* span = &fHead;
do {
const SkOpPtT* result = span->ptT();
const SkOpPtT* loop;
bool duplicatePt;
if (t == result->fT) {
goto bumpSpan;
}
if (this->match(result, this, t, pt, allowAlias)) {
// see if any existing alias matches segment, pt, and t
loop = result->next();
duplicatePt = false;
while (loop != result) {
bool ptMatch = loop->fPt == pt;
if (loop->segment() == this && loop->fT == t && ptMatch) {
goto bumpSpan;
}
duplicatePt |= ptMatch;
loop = loop->next();
}
if (kNoAliasMatch == allowAlias) {
bumpSpan:
// span->bumpSpanAdds();
return result;
}
// SkOpPtT* alias = SkOpTAllocator<SkOpPtT>::Allocate(allocator);
// alias->init(result->span(), t, pt, duplicatePt);
// result->insert(alias);
// result->span()->unaligned();
this->debugValidate();
// #if DEBUG_ADD_T
// SkDebugf("%s alias t=%1.9g segID=%d spanID=%d\n", __FUNCTION__, t,
// alias->segment()->debugID(), alias->span()->debugID());
// #endif
// span->bumpSpanAdds();
if (allocated) {
*allocated = true;
}
return nullptr;
}
if (t < result->fT) {
const SkOpSpan* prev = result->span()->prev();
if (!prev) {
return nullptr; // FIXME: this is a fail case; nullptr return elsewhere means result was allocated in non-const version
}
// SkOpSpan* span = insert(prev, allocator);
// span->init(this, prev, t, pt);
this->debugValidate();
// #if DEBUG_ADD_T
// SkDebugf("%s insert t=%1.9g segID=%d spanID=%d\n", __FUNCTION__, t,
// span->segment()->debugID(), span->debugID());
// #endif
// span->bumpSpanAdds();
if (allocated) {
*allocated = true;
}
return nullptr;
}
SkASSERT(span != &fTail);
} while ((span = span->upCast()->next()));
SkASSERT(0);
return nullptr;
}
#endif
#if DEBUG_ANGLE
void SkOpSegment::debugCheckAngleCoin() const {
const SkOpSpanBase* base = &fHead;
const SkOpSpan* span;
do {
const SkOpAngle* angle = base->fromAngle();
if (angle && angle->debugCheckCoincidence()) {
angle->debugCheckNearCoincidence();
}
if (base->final()) {
break;
}
span = base->upCast();
angle = span->toAngle();
if (angle && angle->debugCheckCoincidence()) {
angle->debugCheckNearCoincidence();
}
} while ((base = span->next()));
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
// this mimics the order of the checks in handle coincidence
void SkOpSegment::debugCheckHealth(const char* id, SkPathOpsDebug::GlitchLog* glitches) const {
debugMoveMultiples(id, glitches);
debugMoveNearby(id, glitches);
debugMissingCoincidence(id, glitches);
}
// commented-out lines keep this in sync with clearAll()
void SkOpSegment::debugClearAll(const char* id, SkPathOpsDebug::GlitchLog* glitches) const {
const SkOpSpan* span = &fHead;
do {
this->debugClearOne(span, id, glitches);
} while ((span = span->next()->upCastable()));
this->globalState()->coincidence()->debugRelease(id, glitches, this);
}
// commented-out lines keep this in sync with clearOne()
void SkOpSegment::debugClearOne(const SkOpSpan* span, const char* id, SkPathOpsDebug::GlitchLog* glitches) const {
if (span->windValue()) glitches->record(kCollapsedWindValue_Glitch, id, span);
if (span->oppValue()) glitches->record(kCollapsedOppValue_Glitch, id, span);
if (!span->done()) glitches->record(kCollapsedDone_Glitch, id, span);
}
#endif
SkOpAngle* SkOpSegment::debugLastAngle() {
SkOpAngle* result = nullptr;
SkOpSpan* span = this->head();
do {
if (span->toAngle()) {
SkASSERT(!result);
result = span->toAngle();
}
} while ((span = span->next()->upCastable()));
SkASSERT(result);
return result;
}
#if DEBUG_COINCIDENCE
// commented-out lines keep this in sync with ClearVisited
void SkOpSegment::DebugClearVisited(const SkOpSpanBase* span) {
// reset visited flag back to false
do {
const SkOpPtT* ptT = span->ptT(), * stopPtT = ptT;
while ((ptT = ptT->next()) != stopPtT) {
const SkOpSegment* opp = ptT->segment();
opp->resetDebugVisited();
}
} while (!span->final() && (span = span->upCast()->next()));
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
// commented-out lines keep this in sync with missingCoincidence()
// look for pairs of undetected coincident curves
// assumes that segments going in have visited flag clear
// Even though pairs of curves correct detect coincident runs, a run may be missed
// if the coincidence is a product of multiple intersections. For instance, given
// curves A, B, and C:
// A-B intersect at a point 1; A-C and B-C intersect at point 2, so near
// the end of C that the intersection is replaced with the end of C.
// Even though A-B correctly do not detect an intersection at point 2,
// the resulting run from point 1 to point 2 is coincident on A and B.
void SkOpSegment::debugMissingCoincidence(const char* id, SkPathOpsDebug::GlitchLog* log) const {
if (this->done()) {
return;
}
const SkOpSpan* prior = nullptr;
const SkOpSpanBase* spanBase = &fHead;
// bool result = false;
do {
const SkOpPtT* ptT = spanBase->ptT(), * spanStopPtT = ptT;
SkASSERT(ptT->span() == spanBase);
while ((ptT = ptT->next()) != spanStopPtT) {
if (ptT->deleted()) {
continue;
}
const SkOpSegment* opp = ptT->span()->segment();
if (opp->done()) {
continue;
}
// when opp is encounted the 1st time, continue; on 2nd encounter, look for coincidence
if (!opp->debugVisited()) {
continue;
}
if (spanBase == &fHead) {
continue;
}
if (ptT->segment() == this) {
continue;
}
const SkOpSpan* span = spanBase->upCastable();
// FIXME?: this assumes that if the opposite segment is coincident then no more
// coincidence needs to be detected. This may not be true.
if (span && span->segment() != opp && span->containsCoincidence(opp)) { // debug has additional condition since it may be called before inner duplicate points have been deleted
continue;
}
if (spanBase->segment() != opp && spanBase->containsCoinEnd(opp)) { // debug has additional condition since it may be called before inner duplicate points have been deleted
continue;
}
const SkOpPtT* priorPtT = nullptr, * priorStopPtT;
// find prior span containing opp segment
const SkOpSegment* priorOpp = nullptr;
const SkOpSpan* priorTest = spanBase->prev();
while (!priorOpp && priorTest) {
priorStopPtT = priorPtT = priorTest->ptT();
while ((priorPtT = priorPtT->next()) != priorStopPtT) {
if (priorPtT->deleted()) {
continue;
}
SkOpSegment* segment = priorPtT->span()->segment();
if (segment == opp) {
prior = priorTest;
priorOpp = opp;
break;
}
}
priorTest = priorTest->prev();
}
if (!priorOpp) {
continue;
}
if (priorPtT == ptT) {
continue;
}
const SkOpPtT* oppStart = prior->ptT();
const SkOpPtT* oppEnd = spanBase->ptT();
bool swapped = priorPtT->fT > ptT->fT;
if (swapped) {
SkTSwap(priorPtT, ptT);
SkTSwap(oppStart, oppEnd);
}
const SkOpCoincidence* coincidence = this->globalState()->coincidence();
const SkOpPtT* rootPriorPtT = priorPtT->span()->ptT();
const SkOpPtT* rootPtT = ptT->span()->ptT();
const SkOpPtT* rootOppStart = oppStart->span()->ptT();
const SkOpPtT* rootOppEnd = oppEnd->span()->ptT();
if (coincidence->contains(rootPriorPtT, rootPtT, rootOppStart, rootOppEnd)) {
goto swapBack;
}
if (testForCoincidence(rootPriorPtT, rootPtT, prior, spanBase, opp)) {
// mark coincidence
#if DEBUG_COINCIDENCE
// SkDebugf("%s coinSpan=%d endSpan=%d oppSpan=%d oppEndSpan=%d\n", __FUNCTION__,
// rootPriorPtT->debugID(), rootPtT->debugID(), rootOppStart->debugID(),
// rootOppEnd->debugID());
#endif
log->record(kMissingCoin_Glitch, id, priorPtT, ptT, oppStart, oppEnd);
// coincidences->add(rootPriorPtT, rootPtT, rootOppStart, rootOppEnd);
// }
#if DEBUG_COINCIDENCE
// SkASSERT(coincidences->contains(rootPriorPtT, rootPtT, rootOppStart, rootOppEnd)
#endif
// result = true;
}
swapBack:
if (swapped) {
SkTSwap(priorPtT, ptT);
}
}
} while ((spanBase = spanBase->final() ? nullptr : spanBase->upCast()->next()));
DebugClearVisited(&fHead);
return;
}
// commented-out lines keep this in sync with moveMultiples()
// if a span has more than one intersection, merge the other segments' span as needed
void SkOpSegment::debugMoveMultiples(const char* id, SkPathOpsDebug::GlitchLog* glitches) const {
debugValidate();
const SkOpSpanBase* test = &fHead;
do {
int addCount = test->spanAddsCount();
SkASSERT(addCount >= 1);
if (addCount == 1) {
continue;
}
const SkOpPtT* startPtT = test->ptT();
const SkOpPtT* testPtT = startPtT;
do { // iterate through all spans associated with start
const SkOpSpanBase* oppSpan = testPtT->span();
if (oppSpan->spanAddsCount() == addCount) {
continue;
}
if (oppSpan->deleted()) {
continue;
}
const SkOpSegment* oppSegment = oppSpan->segment();
if (oppSegment == this) {
continue;
}
// find range of spans to consider merging
const SkOpSpanBase* oppPrev = oppSpan;
const SkOpSpanBase* oppFirst = oppSpan;
while ((oppPrev = oppPrev->prev())) {
if (!roughly_equal(oppPrev->t(), oppSpan->t())) {
break;
}
if (oppPrev->spanAddsCount() == addCount) {
continue;
}
if (oppPrev->deleted()) {
continue;
}
oppFirst = oppPrev;
}
const SkOpSpanBase* oppNext = oppSpan;
const SkOpSpanBase* oppLast = oppSpan;
while ((oppNext = oppNext->final() ? nullptr : oppNext->upCast()->next())) {
if (!roughly_equal(oppNext->t(), oppSpan->t())) {
break;
}
if (oppNext->spanAddsCount() == addCount) {
continue;
}
if (oppNext->deleted()) {
continue;
}
oppLast = oppNext;
}
if (oppFirst == oppLast) {
continue;
}
const SkOpSpanBase* oppTest = oppFirst;
do {
if (oppTest == oppSpan) {
continue;
}
// check to see if the candidate meets specific criteria:
// it contains spans of segments in test's loop but not including 'this'
const SkOpPtT* oppStartPtT = oppTest->ptT();
const SkOpPtT* oppPtT = oppStartPtT;
while ((oppPtT = oppPtT->next()) != oppStartPtT) {
const SkOpSegment* oppPtTSegment = oppPtT->segment();
if (oppPtTSegment == this) {
goto tryNextSpan;
}
const SkOpPtT* matchPtT = startPtT;
do {
if (matchPtT->segment() == oppPtTSegment) {
goto foundMatch;
}
} while ((matchPtT = matchPtT->next()) != startPtT);
goto tryNextSpan;
foundMatch: // merge oppTest and oppSpan
oppSegment->debugValidate();
if (oppTest == &oppSegment->fTail || oppTest == &oppSegment->fHead) {
SkASSERT(oppSpan != &oppSegment->fHead); // don't expect collapse
SkASSERT(oppSpan != &oppSegment->fTail);
glitches->record(kMoveMultiple_Glitch, id, oppTest, oppSpan);
} else {
glitches->record(kMoveMultiple_Glitch, id, oppSpan, oppTest);
}
oppSegment->debugValidate();
goto checkNextSpan;
}
tryNextSpan:
;
} while (oppTest != oppLast && (oppTest = oppTest->upCast()->next()));
} while ((testPtT = testPtT->next()) != startPtT);
checkNextSpan:
;
} while ((test = test->final() ? nullptr : test->upCast()->next()));
debugValidate();
return;
}
// commented-out lines keep this in sync with moveNearby()
// Move nearby t values and pts so they all hang off the same span. Alignment happens later.
void SkOpSegment::debugMoveNearby(const char* id, SkPathOpsDebug::GlitchLog* glitches) const {
debugValidate();
// release undeleted spans pointing to this seg that are linked to the primary span
const SkOpSpanBase* spanBase = &fHead;
do {
const SkOpPtT* ptT = spanBase->ptT();
const SkOpPtT* headPtT = ptT;
while ((ptT = ptT->next()) != headPtT) {
const SkOpSpanBase* test = ptT->span();
if (ptT->segment() == this && !ptT->deleted() && test != spanBase
&& test->ptT() == ptT) {
if (test->final()) {
if (spanBase == &fHead) {
glitches->record(kMoveNearbyClearAll_Glitch, id, this);
// return;
}
glitches->record(kMoveNearbyReleaseFinal_Glitch, id, spanBase, ptT);
} else if (test->prev()) {
glitches->record(kMoveNearbyRelease_Glitch, id, test, headPtT);
}
// break;
}
}
spanBase = spanBase->upCast()->next();
} while (!spanBase->final());
// This loop looks for adjacent spans which are near by
spanBase = &fHead;
do { // iterate through all spans associated with start
const SkOpSpanBase* test = spanBase->upCast()->next();
if (this->spansNearby(spanBase, test)) {
if (test->final()) {
if (spanBase->prev()) {
glitches->record(kMoveNearbyMergeFinal_Glitch, id, test);
} else {
glitches->record(kMoveNearbyClearAll2_Glitch, id, this);
// return
}
} else {
glitches->record(kMoveNearbyMerge_Glitch, id, spanBase);
}
}
spanBase = test;
} while (!spanBase->final());
debugValidate();
}
#endif
void SkOpSegment::debugReset() {
this->init(this->fPts, this->fWeight, this->contour(), this->verb());
}
#if DEBUG_ACTIVE_SPANS
void SkOpSegment::debugShowActiveSpans() const {
debugValidate();
if (done()) {
return;
}
int lastId = -1;
double lastT = -1;
const SkOpSpan* span = &fHead;
do {
if (span->done()) {
continue;
}
if (lastId == this->debugID() && lastT == span->t()) {
continue;
}
lastId = this->debugID();
lastT = span->t();
SkDebugf("%s id=%d", __FUNCTION__, this->debugID());
// since endpoints may have be adjusted, show actual computed curves
SkDCurve curvePart;
this->subDivide(span, span->next(), &curvePart);
const SkDPoint* pts = curvePart.fCubic.fPts;
SkDebugf(" (%1.9g,%1.9g", pts[0].fX, pts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", pts[vIndex].fX, pts[vIndex].fY);
}
if (SkPath::kConic_Verb == fVerb) {
SkDebugf(" %1.9gf", curvePart.fConic.fWeight);
}
SkDebugf(") t=%1.9g tEnd=%1.9g", span->t(), span->next()->t());
if (span->windSum() == SK_MinS32) {
SkDebugf(" windSum=?");
} else {
SkDebugf(" windSum=%d", span->windSum());
}
if (span->oppValue() && span->oppSum() == SK_MinS32) {
SkDebugf(" oppSum=?");
} else if (span->oppValue() || span->oppSum() != SK_MinS32) {
SkDebugf(" oppSum=%d", span->oppSum());
}
SkDebugf(" windValue=%d", span->windValue());
if (span->oppValue() || span->oppSum() != SK_MinS32) {
SkDebugf(" oppValue=%d", span->oppValue());
}
SkDebugf("\n");
} while ((span = span->next()->upCastable()));
}
#endif
#if DEBUG_MARK_DONE
void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan* span, int winding) {
const SkPoint& pt = span->ptT()->fPt;
SkDebugf("%s id=%d", fun, this->debugID());
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
}
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=",
span->t(), span->debugID(), pt.fX, pt.fY, span->next()->t());
if (winding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", winding);
}
SkDebugf(" windSum=");
if (span->windSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->windSum());
}
SkDebugf(" windValue=%d\n", span->windValue());
}
void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan* span, int winding,
int oppWinding) {
const SkPoint& pt = span->ptT()->fPt;
SkDebugf("%s id=%d", fun, this->debugID());
SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
for (int vIndex = 1; vIndex <= SkPathOpsVerbToPoints(fVerb); ++vIndex) {
SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
}
SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=",
span->t(), span->debugID(), pt.fX, pt.fY, span->next()->t(), winding, oppWinding);
if (winding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", winding);
}
SkDebugf(" newOppSum=");
if (oppWinding == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", oppWinding);
}
SkDebugf(" oppSum=");
if (span->oppSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->oppSum());
}
SkDebugf(" windSum=");
if (span->windSum() == SK_MinS32) {
SkDebugf("?");
} else {
SkDebugf("%d", span->windSum());
}
SkDebugf(" windValue=%d oppValue=%d\n", span->windValue(), span->oppValue());
}
#endif
// loop looking for a pair of angle parts that are too close to be sorted
/* This is called after other more simple intersection and angle sorting tests have been exhausted.
This should be rarely called -- the test below is thorough and time consuming.
This checks the distance between start points; the distance between
*/
#if DEBUG_ANGLE
void SkOpAngle::debugCheckNearCoincidence() const {
const SkOpAngle* test = this;
do {
const SkOpSegment* testSegment = test->segment();
double testStartT = test->start()->t();
SkDPoint testStartPt = testSegment->dPtAtT(testStartT);
double testEndT = test->end()->t();
SkDPoint testEndPt = testSegment->dPtAtT(testEndT);
double testLenSq = testStartPt.distanceSquared(testEndPt);
SkDebugf("%s testLenSq=%1.9g id=%d\n", __FUNCTION__, testLenSq, testSegment->debugID());
double testMidT = (testStartT + testEndT) / 2;
const SkOpAngle* next = test;
while ((next = next->fNext) != this) {
SkOpSegment* nextSegment = next->segment();
double testMidDistSq = testSegment->distSq(testMidT, next);
double testEndDistSq = testSegment->distSq(testEndT, next);
double nextStartT = next->start()->t();
SkDPoint nextStartPt = nextSegment->dPtAtT(nextStartT);
double distSq = testStartPt.distanceSquared(nextStartPt);
double nextEndT = next->end()->t();
double nextMidT = (nextStartT + nextEndT) / 2;
double nextMidDistSq = nextSegment->distSq(nextMidT, test);
double nextEndDistSq = nextSegment->distSq(nextEndT, test);
SkDebugf("%s distSq=%1.9g testId=%d nextId=%d\n", __FUNCTION__, distSq,
testSegment->debugID(), nextSegment->debugID());
SkDebugf("%s testMidDistSq=%1.9g\n", __FUNCTION__, testMidDistSq);
SkDebugf("%s testEndDistSq=%1.9g\n", __FUNCTION__, testEndDistSq);
SkDebugf("%s nextMidDistSq=%1.9g\n", __FUNCTION__, nextMidDistSq);
SkDebugf("%s nextEndDistSq=%1.9g\n", __FUNCTION__, nextEndDistSq);
SkDPoint nextEndPt = nextSegment->dPtAtT(nextEndT);
double nextLenSq = nextStartPt.distanceSquared(nextEndPt);
SkDebugf("%s nextLenSq=%1.9g\n", __FUNCTION__, nextLenSq);
SkDebugf("\n");
}
test = test->fNext;
} while (test->fNext != this);
}
#endif
#if DEBUG_ANGLE
SkString SkOpAngle::debugPart() const {
SkString result;
switch (this->segment()->verb()) {
case SkPath::kLine_Verb:
result.printf(LINE_DEBUG_STR " id=%d", LINE_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
case SkPath::kQuad_Verb:
result.printf(QUAD_DEBUG_STR " id=%d", QUAD_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
case SkPath::kConic_Verb:
result.printf(CONIC_DEBUG_STR " id=%d",
CONIC_DEBUG_DATA(fCurvePart, fCurvePart.fConic.fWeight),
this->segment()->debugID());
break;
case SkPath::kCubic_Verb:
result.printf(CUBIC_DEBUG_STR " id=%d", CUBIC_DEBUG_DATA(fCurvePart),
this->segment()->debugID());
break;
default:
SkASSERT(0);
}
return result;
}
#endif
#if DEBUG_SORT
void SkOpAngle::debugLoop() const {
const SkOpAngle* first = this;
const SkOpAngle* next = this;
do {
next->dumpOne(true);
SkDebugf("\n");
next = next->fNext;
} while (next && next != first);
next = first;
do {
next->debugValidate();
next = next->fNext;
} while (next && next != first);
}
#endif
void SkOpAngle::debugValidate() const {
#if DEBUG_COINCIDENCE
if (this->globalState()->debugCheckHealth()) {
return;
}
#endif
#if DEBUG_VALIDATE
const SkOpAngle* first = this;
const SkOpAngle* next = this;
int wind = 0;
int opp = 0;
int lastXor = -1;
int lastOppXor = -1;
do {
if (next->unorderable()) {
return;
}
const SkOpSpan* minSpan = next->start()->starter(next->end());
if (minSpan->windValue() == SK_MinS32) {
return;
}
bool op = next->segment()->operand();
bool isXor = next->segment()->isXor();
bool oppXor = next->segment()->oppXor();
SkASSERT(!DEBUG_LIMIT_WIND_SUM || between(0, minSpan->windValue(), DEBUG_LIMIT_WIND_SUM));
SkASSERT(!DEBUG_LIMIT_WIND_SUM
|| between(-DEBUG_LIMIT_WIND_SUM, minSpan->oppValue(), DEBUG_LIMIT_WIND_SUM));
bool useXor = op ? oppXor : isXor;
SkASSERT(lastXor == -1 || lastXor == (int) useXor);
lastXor = (int) useXor;
wind += next->debugSign() * (op ? minSpan->oppValue() : minSpan->windValue());
if (useXor) {
wind &= 1;
}
useXor = op ? isXor : oppXor;
SkASSERT(lastOppXor == -1 || lastOppXor == (int) useXor);
lastOppXor = (int) useXor;
opp += next->debugSign() * (op ? minSpan->windValue() : minSpan->oppValue());
if (useXor) {
opp &= 1;
}
next = next->fNext;
} while (next && next != first);
SkASSERT(wind == 0 || !FLAGS_runFail);
SkASSERT(opp == 0 || !FLAGS_runFail);
#endif
}
void SkOpAngle::debugValidateNext() const {
#if !FORCE_RELEASE
const SkOpAngle* first = this;
const SkOpAngle* next = first;
SkTDArray<const SkOpAngle*>(angles);
do {
// SkASSERT_RELEASE(next->fSegment->debugContains(next));
angles.push(next);
next = next->next();
if (next == first) {
break;
}
SkASSERT_RELEASE(!angles.contains(next));
if (!next) {
return;
}
} while (true);
#endif
}
#ifdef SK_DEBUG
void SkCoincidentSpans::debugStartCheck(const SkOpSpanBase* outer, const SkOpSpanBase* over,
const SkOpGlobalState* debugState) const {
SkASSERT(coinPtTEnd()->span() == over || !debugState->debugRunFail());
SkASSERT(oppPtTEnd()->span() == outer || !debugState->debugRunFail());
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
/* Commented-out lines keep this in sync with expand */
bool SkCoincidentSpans::debugExpand(const char* id, SkPathOpsDebug::GlitchLog* log) const {
bool expanded = false;
const SkOpSegment* segment = coinPtTStart()->segment();
const SkOpSegment* oppSegment = oppPtTStart()->segment();
do {
const SkOpSpan* start = coinPtTStart()->span()->upCast();
const SkOpSpan* prev = start->prev();
const SkOpPtT* oppPtT;
if (!prev || !(oppPtT = prev->contains(oppSegment))) {
break;
}
double midT = (prev->t() + start->t()) / 2;
if (!segment->isClose(midT, oppSegment)) {
break;
}
if (log) log->record(kExpandCoin_Glitch, id, this, prev->ptT(), oppPtT);
expanded = true;
} while (false); // actual continues while expansion is possible
do {
const SkOpSpanBase* end = coinPtTEnd()->span();
SkOpSpanBase* next = end->final() ? nullptr : end->upCast()->next();
const SkOpPtT* oppPtT;
if (!next || !(oppPtT = next->contains(oppSegment))) {
break;
}
double midT = (end->t() + next->t()) / 2;
if (!segment->isClose(midT, oppSegment)) {
break;
}
if (log) log->record(kExpandCoin_Glitch, id, this, next->ptT(), oppPtT);
expanded = true;
} while (false); // actual continues while expansion is possible
return expanded;
}
#define FAIL_IF(cond) do { if (cond) log->record(kAddExpandedFail_Glitch, id, coin); } while (false)
/* Commented-out lines keep this in sync with addExpanded */
// for each coincident pair, match the spans
// if the spans don't match, add the mssing pt to the segment and loop it in the opposite span
void SkOpCoincidence::debugAddExpanded(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* coin = this->fHead;
if (!coin) {
return;
}
do {
const SkOpPtT* startPtT = coin->coinPtTStart();
const SkOpPtT* oStartPtT = coin->oppPtTStart();
SkASSERT(startPtT->contains(oStartPtT));
SkASSERT(coin->coinPtTEnd()->contains(coin->oppPtTEnd()));
const SkOpSpanBase* start = startPtT->span();
const SkOpSpanBase* oStart = oStartPtT->span();
const SkOpSpanBase* end = coin->coinPtTEnd()->span();
const SkOpSpanBase* oEnd = coin->oppPtTEnd()->span();
FAIL_IF(oEnd->deleted());
const SkOpSpanBase* test = start->upCast()->next();
const SkOpSpanBase* oTest = coin->flipped() ? oStart->prev() : oStart->upCast()->next();
if (!oTest) {
return;
}
while (test != end || oTest != oEnd) {
if (!test->ptT()->contains(oTest->segment())
|| !oTest->ptT()->contains(start->segment())) {
// use t ranges to guess which one is missing
double startRange = coin->coinPtTEnd()->fT - startPtT->fT;
FAIL_IF(!startRange);
double startPart = (test->t() - startPtT->fT) / startRange;
double oStartRange = coin->oppPtTEnd()->fT - oStartPtT->fT;
FAIL_IF(!oStartRange);
double oStartPart = (oTest->t() - oStartPtT->fT) / oStartRange;
FAIL_IF(startPart == oStartPart);
bool startOver = false;
if (startPart < oStartPart)
log->record(kAddExpandedCoin_Glitch, id, // strange debug formatting lines up with original
oStartPtT->fT + oStartRange * startPart, test);
else log->record(kAddExpandedCoin_Glitch, id,
startPtT->fT + startRange * oStartPart, oTest);
if (false) {
SkASSERT(0);
return;
}
if (startOver) {
test = start;
oTest = oStart;
}
}
if (test != end) {
test = test->upCast()->next();
}
if (oTest != oEnd) {
oTest = coin->flipped() ? oTest->prev() : oTest->upCast()->next();
if (!oTest) {
return;
}
}
}
} while ((coin = coin->next()));
return;
}
/* Commented-out lines keep this in sync with addIfMissing() */
void SkOpCoincidence::debugAddIfMissing(const SkCoincidentSpans* outer, const SkOpPtT* over1s,
const SkOpPtT* over1e, const char* id, SkPathOpsDebug::GlitchLog* log) const {
// SkASSERT(fTop);
if (fTop && alreadyAdded(fTop, outer, over1s, over1e)) { // in debug, fTop may be null
return;
}
if (fHead && alreadyAdded(fHead, outer, over1s, over1e)) {
return;
}
log->record(kAddIfMissingCoin_Glitch, id, outer->coinPtTStart(), outer->coinPtTEnd(), over1s, over1e);
this->debugValidate();
return;
}
/* Commented-out lines keep this in sync addIfMissing() */
void SkOpCoincidence::debugAddIfMissing(const SkOpPtT* over1s, const SkOpPtT* over1e,
const SkOpPtT* over2s, const SkOpPtT* over2e, double tStart, double tEnd,
const SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd,
const SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd, const char* id, SkPathOpsDebug::GlitchLog* log) const {
double coinTs, coinTe, oppTs, oppTe;
TRange(over1s, over1e, tStart, tEnd, coinPtTStart, coinPtTEnd, &coinTs, &coinTe);
TRange(over2s, over2e, tStart, tEnd, oppPtTStart, oppPtTEnd, &oppTs, &oppTe);
bool swap = coinTs > coinTe;
if (swap) {
SkTSwap(coinTs, coinTe);
}
if ((over1s->fT < over1e->fT) != (over2s->fT < over2e->fT)) {
SkTSwap(oppTs, oppTe);
}
if (swap) {
SkTSwap(oppTs, oppTe);
}
const SkOpSegment* coinSeg = coinPtTStart->segment();
const SkOpSegment* oppSeg = oppPtTStart->segment();
if (coinSeg == oppSeg) {
return;
}
return this->debugAddOrOverlap(coinSeg, oppSeg, coinTs, coinTe, oppTs, oppTe, id, log);
}
/* Commented-out lines keep this in sync addOrOverlap() */
void SkOpCoincidence::debugAddOrOverlap(const SkOpSegment* coinSeg, const SkOpSegment* oppSeg,
double coinTs, double coinTe, double oppTs, double oppTe, const char* id, SkPathOpsDebug::GlitchLog* log) const {
SkTDArray<SkCoincidentSpans*> overlaps;
SkASSERT(!fTop); // this is (correctly) reversed in addifMissing()
if (fTop && !this->checkOverlap(fTop, coinSeg, oppSeg, coinTs, coinTe, oppTs, oppTe, &overlaps)) {
return;
}
if (fHead && !this->checkOverlap(fHead, coinSeg, oppSeg, coinTs,
coinTe, oppTs, oppTe, &overlaps)) {
return;
}
const SkCoincidentSpans* overlap = overlaps.count() ? overlaps[0] : nullptr;
for (int index = 1; index < overlaps.count(); ++index) { // combine overlaps before continuing
const SkCoincidentSpans* test = overlaps[index];
if (overlap->coinPtTStart()->fT > test->coinPtTStart()->fT) {
log->record(kAddOrOverlap_Glitch, id, overlap, test->coinPtTStart());
}
if (overlap->coinPtTEnd()->fT < test->coinPtTEnd()->fT) {
log->record(kAddOrOverlap_Glitch, id, overlap, test->coinPtTEnd());
}
if (overlap->flipped()
? overlap->oppPtTStart()->fT < test->oppPtTStart()->fT
: overlap->oppPtTStart()->fT > test->oppPtTStart()->fT) {
log->record(kAddOrOverlap_Glitch, id, overlap, test->oppPtTStart());
}
if (overlap->flipped()
? overlap->oppPtTEnd()->fT > test->oppPtTEnd()->fT
: overlap->oppPtTEnd()->fT < test->oppPtTEnd()->fT) {
log->record(kAddOrOverlap_Glitch, id, overlap, test->oppPtTEnd());
}
if (!fHead) {
SkAssertResult(true);
}
}
const SkOpPtT* cs = coinSeg->existing(coinTs, oppSeg);
const SkOpPtT* ce = coinSeg->existing(coinTe, oppSeg);
if (overlap && cs && ce && overlap->contains(cs, ce)) {
return;
}
SkASSERT(cs != ce || !cs);
const SkOpPtT* os = oppSeg->existing(oppTs, coinSeg);
const SkOpPtT* oe = oppSeg->existing(oppTe, coinSeg);
if (overlap && os && oe && overlap->contains(os, oe)) {
return;
}
SkASSERT(true || !cs || !cs->deleted());
SkASSERT(true || !os || !os->deleted());
SkASSERT(true || !ce || !ce->deleted());
SkASSERT(true || !oe || !oe->deleted());
const SkOpPtT* csExisting = !cs ? coinSeg->existing(coinTs, nullptr) : nullptr;
const SkOpPtT* ceExisting = !ce ? coinSeg->existing(coinTe, nullptr) : nullptr;
if (csExisting && csExisting == ceExisting) {
return;
}
if (csExisting && (csExisting == ce || csExisting->contains(ceExisting ? ceExisting : ce))) {
return;
}
if (ceExisting && (ceExisting == cs || ceExisting->contains(csExisting ? csExisting : cs))) {
return;
}
const SkOpPtT* osExisting = !os ? oppSeg->existing(oppTs, nullptr) : nullptr;
const SkOpPtT* oeExisting = !oe ? oppSeg->existing(oppTe, nullptr) : nullptr;
if (osExisting && osExisting == oeExisting) {
return;
}
if (osExisting && (osExisting == oe || osExisting->contains(oeExisting ? oeExisting : oe))) {
return;
}
if (oeExisting && (oeExisting == os || oeExisting->contains(osExisting ? osExisting : os))) {
return;
}
bool csDeleted = false, osDeleted = false, ceDeleted = false, oeDeleted = false;
this->debugValidate();
if (!cs || !os) {
if (!cs)
cs = coinSeg->debugAddT(coinTs, SkOpSegment::kNoAliasMatch, nullptr);
if (!os)
os = oppSeg->debugAddT(oppTs, SkOpSegment::kNoAliasMatch, nullptr);
if (cs && os) cs->span()->debugAddOppAndMerge(id, log, os->span(), &csDeleted, &osDeleted);
// cs = csWritable;
// os = osWritable;
if ((ce && ce->deleted()) || (oe && oe->deleted())) {
return;
}
}
if (!ce || !oe) {
if (!ce)
ce = coinSeg->debugAddT(coinTe, SkOpSegment::kNoAliasMatch, nullptr);
if (!oe)
oe = oppSeg->debugAddT(oppTe, SkOpSegment::kNoAliasMatch, nullptr);
if (ce && oe) ce->span()->debugAddOppAndMerge(id, log, oe->span(), &ceDeleted, &oeDeleted);
// ce = ceWritable;
// oe = oeWritable;
}
this->debugValidate();
if (csDeleted || osDeleted || ceDeleted || oeDeleted) {
return;
}
if (!cs || !ce || cs->contains(ce) || !os || !oe || os->contains(oe)) {
return;
}
// bool result = true;
if (overlap) {
if (overlap->coinPtTStart()->segment() == coinSeg) {
log->record(kAddMissingExtend_Glitch, id, coinSeg, coinTs, coinTe, oppSeg, oppTs, oppTe);
} else {
if (oppTs > oppTe) {
SkTSwap(coinTs, coinTe);
SkTSwap(oppTs, oppTe);
}
log->record(kAddMissingExtend_Glitch, id, oppSeg, oppTs, oppTe, coinSeg, coinTs, coinTe);
}
#if DEBUG_COINCIDENCE_VERBOSE
// if (result) {
// overlap->debugShow();
// }
#endif
} else {
log->record(kAddMissingCoin_Glitch, id, coinSeg, coinTs, coinTe, oppSeg, oppTs, oppTe);
#if DEBUG_COINCIDENCE_VERBOSE
// fHead->debugShow();
#endif
}
this->debugValidate();
return;
}
// Extra commented-out lines keep this in sync with addMissing()
/* detects overlaps of different coincident runs on same segment */
/* does not detect overlaps for pairs without any segments in common */
// returns true if caller should loop again
void SkOpCoincidence::debugAddMissing(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* outer = fHead;
if (!outer) {
return;
}
// bool added = false;
// fTop = outer;
// fHead = nullptr;
do {
// addifmissing can modify the list that this is walking
// save head so that walker can iterate over old data unperturbed
// addifmissing adds to head freely then add saved head in the end
const SkOpSegment* outerCoin = outer->coinPtTStart()->segment();
const SkOpSegment* outerOpp = outer->oppPtTStart()->segment();
if (outerCoin->done() || outerOpp->done()) {
continue;
}
const SkCoincidentSpans* inner = outer;
while ((inner = inner->next())) {
this->debugValidate();
double overS, overE;
const SkOpSegment* innerCoin = inner->coinPtTStart()->segment();
const SkOpSegment* innerOpp = inner->oppPtTStart()->segment();
if (innerCoin->done() || innerOpp->done()) {
continue;
}
if (outerCoin == innerCoin) {
if (outerOpp != innerOpp
&& this->overlap(outer->coinPtTStart(), outer->coinPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), &overS, &overE)) {
this->debugAddIfMissing(outer->coinPtTStart(), outer->coinPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), overS, overE,
outer->oppPtTStart(), outer->oppPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), id, log);
}
} else if (outerCoin == innerOpp) {
if (outerOpp != innerCoin
&& this->overlap(outer->coinPtTStart(), outer->coinPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), &overS, &overE)) {
this->debugAddIfMissing(outer->coinPtTStart(), outer->coinPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), overS, overE,
outer->oppPtTStart(), outer->oppPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), id, log);
}
} else if (outerOpp == innerCoin) {
SkASSERT(outerCoin != innerOpp);
if (this->overlap(outer->oppPtTStart(), outer->oppPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), &overS, &overE)) {
this->debugAddIfMissing(outer->oppPtTStart(), outer->oppPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), overS, overE,
outer->coinPtTStart(), outer->coinPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), id, log);
}
} else if (outerOpp == innerOpp) {
SkASSERT(outerCoin != innerCoin);
if (this->overlap(outer->oppPtTStart(), outer->oppPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), &overS, &overE)) {
this->debugAddIfMissing(outer->oppPtTStart(), outer->oppPtTEnd(),
inner->oppPtTStart(), inner->oppPtTEnd(), overS, overE,
outer->coinPtTStart(), outer->coinPtTEnd(),
inner->coinPtTStart(), inner->coinPtTEnd(), id, log);
}
}
this->debugValidate();
}
} while ((outer = outer->next()));
// this->restoreHead();
return;
}
// Commented-out lines keep this in sync with release()
void SkOpCoincidence::debugRelease(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpSegment* deleted) const {
const SkCoincidentSpans* coin = fHead;
if (!coin) {
return;
}
do {
if (coin->coinPtTStart()->segment() == deleted
|| coin->coinPtTEnd()->segment() == deleted
|| coin->oppPtTStart()->segment() == deleted
|| coin->oppPtTEnd()->segment() == deleted) {
log->record(kReleasedSpan_Glitch, id, coin);
}
} while ((coin = coin->next()));
}
// Commented-out lines keep this in sync with reorder()
// iterate through all coincident pairs, looking for ranges greater than 1
// if found, see if the opposite pair can match it -- which may require
// reordering the ptT pairs
void SkOpCoincidence::debugReorder(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* coin = fHead;
if (!coin) {
return;
}
do {
// most commonly, concidence are one span long; check for that first
int intervals = coin->spanCount();
if (intervals = 1) {
#if DEBUG_COINCIDENCE_VERBOSE
// SkASSERT(!coin->debugExpand(nullptr, nullptr));
#endif
continue;
}
coin->debugExpand(id, log);
if (coin->spanCount() <= 0) {
return;
}
// check to see if every span in coin has a mate in opp
const SkOpSpan* start = coin->coinPtTStart()->span()->upCast();
bool flipped = coin->flipped();
const SkOpSpanBase* oppStartBase = coin->oppPtTStart()->span();
const SkOpSpan* oppStart = flipped ? oppStartBase->prev() : oppStartBase->upCast();
SkDebugf("", start, oppStart);
} while ((coin = coin->next()));
return;
}
// Commented-out lines keep this in sync with expand()
// expand the range by checking adjacent spans for coincidence
bool SkOpCoincidence::debugExpand(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* coin = fHead;
if (!coin) {
return false;
}
bool expanded = false;
do {
if (coin->debugExpand(id, log)) {
// check to see if multiple spans expanded so they are now identical
const SkCoincidentSpans* test = fHead;
do {
if (coin == test) {
continue;
}
if (coin->coinPtTStart() == test->coinPtTStart()
&& coin->oppPtTStart() == test->oppPtTStart()) {
if (log) log->record(kExpandCoin_Glitch, id, fHead, test->coinPtTStart());
break;
}
} while ((test = test->next()));
expanded = true;
}
} while ((coin = coin->next()));
return expanded;
}
// Commented-out lines keep this in sync with removeCollapsed()
void SkOpCoincidence::debugRemoveCollapsed(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* coin = fHead;
if (!coin) {
return;
}
// SkCoincidentSpans** priorPtr = &fHead;
do {
if (coin->coinPtTStart() == coin->coinPtTEnd()) {
return;
}
if (coin->oppPtTStart() == coin->oppPtTEnd()) {
return;
}
if (coin->coinPtTStart()->collapsed(coin->coinPtTEnd())) {
log->record(kCollapsedCoin_Glitch, id, coin);
// continue;
}
if (coin->oppPtTStart()->collapsed(coin->oppPtTEnd())) {
log->record(kCollapsedCoin_Glitch, id, coin, coin);
// continue;
}
// priorPtr = &coin->nextPtr();
} while ((coin = coin->next()));
return;
}
// Commented-out lines keep this in sync with mark()
/* this sets up the coincidence links in the segments when the coincidence crosses multiple spans */
void SkOpCoincidence::debugMark(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkCoincidentSpans* coin = fHead;
if (!coin) {
return;
}
do {
const SkOpSpan* start = coin->coinPtTStartWritable()->span()->upCast();
// SkASSERT(start->deleted());
const SkOpSpanBase* end = coin->coinPtTEndWritable()->span();
// SkASSERT(end->deleted());
const SkOpSpanBase* oStart = coin->oppPtTStartWritable()->span();
// SkASSERT(oStart->deleted());
const SkOpSpanBase* oEnd = coin->oppPtTEndWritable()->span();
// SkASSERT(oEnd->deleted());
bool flipped = coin->flipped();
if (flipped) {
SkTSwap(oStart, oEnd);
}
/* coin and opp spans may not match up. Mark the ends, and then let the interior
get marked as many times as the spans allow */
start->debugInsertCoincidence(id, log, oStart->upCast());
end->debugInsertCoinEnd(id, log, oEnd);
const SkOpSegment* segment = start->segment();
const SkOpSegment* oSegment = oStart->segment();
const SkOpSpanBase* next = start;
const SkOpSpanBase* oNext = oStart;
while ((next = next->upCast()->next()) != end) {
if (next->upCast()->debugInsertCoincidence(id, log, oSegment, flipped), false) {
return;
}
}
while ((oNext = oNext->upCast()->next()) != oEnd) {
if (oNext->upCast()->debugInsertCoincidence(id, log, segment, flipped), false) {
return;
}
}
} while ((coin = coin->next()));
return;
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
// Commented-out lines keep this in sync with markCollapsed()
void SkOpCoincidence::debugMarkCollapsed(const char* id, SkPathOpsDebug::GlitchLog* log, const SkCoincidentSpans* coin, const SkOpPtT* test) const {
while (coin) {
if (coin->collapsed(test)) {
if (zero_or_one(coin->coinPtTStart()->fT) && zero_or_one(coin->coinPtTEnd()->fT)) {
log->record(kCollapsedCoin_Glitch, id, coin);
}
if (zero_or_one(coin->oppPtTStart()->fT) && zero_or_one(coin->oppPtTEnd()->fT)) {
log->record(kCollapsedCoin_Glitch, id, coin);
}
}
coin = coin->next();
}
}
// Commented-out lines keep this in sync with markCollapsed()
void SkOpCoincidence::debugMarkCollapsed(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpPtT* test) const {
this->debugMarkCollapsed(id, log, fHead, test);
this->debugMarkCollapsed(id, log, fTop, test);
}
#endif
void SkCoincidentSpans::debugShow() const {
SkDebugf("%s - id=%d t=%1.9g tEnd=%1.9g\n", __FUNCTION__,
coinPtTStart()->segment()->debugID(),
coinPtTStart()->fT, coinPtTEnd()->fT);
SkDebugf("%s + id=%d t=%1.9g tEnd=%1.9g\n", __FUNCTION__,
oppPtTStart()->segment()->debugID(),
oppPtTStart()->fT, oppPtTEnd()->fT);
}
void SkOpCoincidence::debugShowCoincidence() const {
#if DEBUG_COINCIDENCE
const SkCoincidentSpans* span = fHead;
while (span) {
span->debugShow();
span = span->next();
}
#endif
}
#if DEBUG_COINCIDENCE
static void DebugValidate(const SkOpSpanBase* next, const SkOpSpanBase* end,
double oStart, double oEnd, const SkOpSegment* oSegment,
const char* id, SkPathOpsDebug::GlitchLog* log) {
SkASSERT(next != end);
SkASSERT(!next->contains(end) || log);
if (next->t() > end->t()) {
SkTSwap(next, end);
}
do {
const SkOpPtT* ptT = next->ptT();
int index = 0;
bool somethingBetween;
do {
++index;
ptT = ptT->next();
const SkOpPtT* checkPtT = next->ptT();
if (ptT == checkPtT) {
break;
}
bool looped = false;
for (int check = 0; check < index; ++check) {
if ((looped = checkPtT == ptT)) {
break;
}
checkPtT = checkPtT->next();
}
if (looped) {
SkASSERT(0);
break;
}
if (ptT->deleted()) {
continue;
}
if (ptT->segment() != oSegment) {
continue;
}
somethingBetween |= between(oStart, ptT->fT, oEnd);
} while (true);
SkASSERT(somethingBetween);
} while (next != end && (next = next->upCast()->next()));
}
static void DebugCheckOverlap(const SkCoincidentSpans* test, const SkCoincidentSpans* list,
const char* id, SkPathOpsDebug::GlitchLog* log) {
if (!list) {
return;
}
const SkOpSegment* coinSeg = test->coinPtTStart()->segment();
SkASSERT(coinSeg == test->coinPtTEnd()->segment());
const SkOpSegment* oppSeg = test->oppPtTStart()->segment();
SkASSERT(oppSeg == test->oppPtTEnd()->segment());
SkASSERT(coinSeg != test->oppPtTStart()->segment());
SkDEBUGCODE(double tcs = test->coinPtTStart()->fT);
SkASSERT(between(0, tcs, 1));
SkDEBUGCODE(double tce = test->coinPtTEnd()->fT);
SkASSERT(between(0, tce, 1));
SkASSERT(tcs < tce);
double tos = test->oppPtTStart()->fT;
SkASSERT(between(0, tos, 1));
double toe = test->oppPtTEnd()->fT;
SkASSERT(between(0, toe, 1));
SkASSERT(tos != toe);
if (tos > toe) {
SkTSwap(tos, toe);
}
do {
double lcs, lce, los, loe;
if (coinSeg == list->coinPtTStart()->segment()) {
if (oppSeg != list->oppPtTStart()->segment()) {
continue;
}
lcs = list->coinPtTStart()->fT;
lce = list->coinPtTEnd()->fT;
los = list->oppPtTStart()->fT;
loe = list->oppPtTEnd()->fT;
if (los > loe) {
SkTSwap(los, loe);
}
} else if (coinSeg == list->oppPtTStart()->segment()) {
if (oppSeg != list->coinPtTStart()->segment()) {
continue;
}
lcs = list->oppPtTStart()->fT;
lce = list->oppPtTEnd()->fT;
if (lcs > lce) {
SkTSwap(lcs, lce);
}
los = list->coinPtTStart()->fT;
loe = list->coinPtTEnd()->fT;
} else {
continue;
}
SkASSERT(tce < lcs || lce < tcs);
SkASSERT(toe < los || loe < tos);
} while ((list = list->next()));
}
static void DebugCheckOverlapTop(const SkCoincidentSpans* head, const SkCoincidentSpans* opt,
const char* id, SkPathOpsDebug::GlitchLog* log) {
// check for overlapping coincident spans
const SkCoincidentSpans* test = head;
while (test) {
const SkCoincidentSpans* next = test->next();
DebugCheckOverlap(test, next, id, log);
DebugCheckOverlap(test, opt, id, log);
test = next;
}
}
#if DEBUG_COINCIDENCE_VERBOSE
void SkOpCoincidence::debugCheckOverlap(const char* id, SkPathOpsDebug::GlitchLog* log) const {
DebugCheckOverlapTop(fHead, fTop, id, log);
DebugCheckOverlapTop(fTop, nullptr, id, log);
}
#endif
static void DebugValidate(const SkCoincidentSpans* head, const SkCoincidentSpans* opt,
const char* id, SkPathOpsDebug::GlitchLog* log) {
// look for pts inside coincident spans that are not inside the opposite spans
const SkCoincidentSpans* coin = head;
while (coin) {
SkASSERT(SkOpCoincidence::Ordered(coin->coinPtTStart()->segment(),
coin->oppPtTStart()->segment()));
SkASSERT(coin->coinPtTStart()->span()->ptT() == coin->coinPtTStart());
SkASSERT(coin->coinPtTEnd()->span()->ptT() == coin->coinPtTEnd());
SkASSERT(coin->oppPtTStart()->span()->ptT() == coin->oppPtTStart());
SkASSERT(coin->oppPtTEnd()->span()->ptT() == coin->oppPtTEnd());
DebugValidate(coin->coinPtTStart()->span(), coin->coinPtTEnd()->span(),
coin->oppPtTStart()->fT, coin->oppPtTEnd()->fT, coin->oppPtTStart()->segment(),
id, log);
DebugValidate(coin->oppPtTStart()->span(), coin->oppPtTEnd()->span(),
coin->coinPtTStart()->fT, coin->coinPtTEnd()->fT, coin->coinPtTStart()->segment(),
id, log);
coin = coin->next();
}
DebugCheckOverlapTop(head, opt, id, log);
}
#endif
void SkOpCoincidence::debugValidate() const {
#if DEBUG_COINCIDENCE
// if (fGlobalState->debugCheckHealth()) {
// return;
// }
DebugValidate(fHead, fTop, nullptr, nullptr);
DebugValidate(fTop, nullptr, nullptr, nullptr);
#endif
}
#if DEBUG_COINCIDENCE_VERBOSE
void SkOpCoincidence::debugCheckValid(const char* id, SkPathOpsDebug::GlitchLog* log) const {
DebugValidate(fHead, fTop, id, log);
DebugValidate(fTop, nullptr, id, log);
}
#endif
#if DEBUG_COINCIDENCE_VERBOSE
void SkOpContour::debugCheckHealth(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkOpSegment* segment = &fHead;
do {
segment->debugCheckHealth(id, log);
} while ((segment = segment->next()));
}
// commmented-out lines keep this aligned with missingCoincidence()
void SkOpContour::debugMissingCoincidence(const char* id, SkPathOpsDebug::GlitchLog* log) const {
// SkASSERT(fCount > 0);
const SkOpSegment* segment = &fHead;
// bool result = false;
do {
if (fState->angleCoincidence()) {
// #if DEBUG_ANGLE
// segment->debugCheckAngleCoin();
// #endif
} else if (segment->debugMissingCoincidence(id, log), false) {
// result = true;
// see FIXME in missingCoincidence()
//
//
//
// continue;
}
segment = segment->next();
} while (segment);
return;
}
#endif
void SkOpSegment::debugValidate() const {
#if DEBUG_COINCIDENCE
if (this->globalState()->debugCheckHealth()) {
return;
}
#endif
#if DEBUG_VALIDATE
const SkOpSpanBase* span = &fHead;
double lastT = -1;
const SkOpSpanBase* prev = nullptr;
int count = 0;
int done = 0;
do {
if (!span->final()) {
++count;
done += span->upCast()->done() ? 1 : 0;
}
SkASSERT(span->segment() == this);
SkASSERT(!prev || prev->upCast()->next() == span);
SkASSERT(!prev || prev == span->prev());
prev = span;
double t = span->ptT()->fT;
SkASSERT(lastT < t);
lastT = t;
span->debugValidate();
} while (!span->final() && (span = span->upCast()->next()));
SkASSERT(count == fCount);
SkASSERT(done == fDoneCount);
SkASSERT(count >= fDoneCount);
SkASSERT(span->final());
span->debugValidate();
#endif
}
#if DEBUG_COINCIDENCE_VERBOSE
// Commented-out lines keep this in sync with addOppAndMerge()
// If the added points envelop adjacent spans, merge them in.
void SkOpSpanBase::debugAddOppAndMerge(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpSpanBase* opp, bool* spanDeleted, bool* oppDeleted) const {
if (this->ptT()->debugAddOpp(opp->ptT())) {
this->debugCheckForCollapsedCoincidence(id, log);
}
// compute bounds of points in span
SkPathOpsBounds bounds;
bounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMin, SK_ScalarMin);
const SkOpPtT* head = this->ptT();
const SkOpPtT* nextPt = head;
do {
bounds.add(nextPt->fPt);
} while ((nextPt = nextPt->next()) != head);
if (!bounds.width() && !bounds.height()) {
return;
}
this->debugMergeContained(id, log, bounds, spanDeleted);
opp->debugMergeContained(id, log, bounds, oppDeleted);
}
// Commented-out lines keep this in sync with checkForCollapsedCoincidence()
void SkOpSpanBase::debugCheckForCollapsedCoincidence(const char* id, SkPathOpsDebug::GlitchLog* log) const {
const SkOpCoincidence* coins = this->globalState()->coincidence();
if (coins->isEmpty()) {
return;
}
// the insert above may have put both ends of a coincident run in the same span
// for each coincident ptT in loop; see if its opposite in is also in the loop
// this implementation is the motivation for marking that a ptT is referenced by a coincident span
const SkOpPtT* head = this->ptT();
const SkOpPtT* test = head;
do {
if (!test->coincident()) {
continue;
}
coins->debugMarkCollapsed(id, log, test);
} while ((test = test->next()) != head);
}
#endif
bool SkOpSpanBase::debugCoinEndLoopCheck() const {
int loop = 0;
const SkOpSpanBase* next = this;
SkOpSpanBase* nextCoin;
do {
nextCoin = next->fCoinEnd;
SkASSERT(nextCoin == this || nextCoin->fCoinEnd != nextCoin);
for (int check = 1; check < loop - 1; ++check) {
const SkOpSpanBase* checkCoin = this->fCoinEnd;
const SkOpSpanBase* innerCoin = checkCoin;
for (int inner = check + 1; inner < loop; ++inner) {
innerCoin = innerCoin->fCoinEnd;
if (checkCoin == innerCoin) {
SkDebugf("*** bad coincident end loop ***\n");
return false;
}
}
}
++loop;
} while ((next = nextCoin) && next != this);
return true;
}
#if DEBUG_COINCIDENCE_VERBOSE
// Commented-out lines keep this in sync with insertCoinEnd()
void SkOpSpanBase::debugInsertCoinEnd(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpSpanBase* coin) const {
if (containsCoinEnd(coin)) {
// SkASSERT(coin->containsCoinEnd(this));
return;
}
debugValidate();
// SkASSERT(this != coin);
log->record(kMarkCoinEnd_Glitch, id, this, coin);
// coin->fCoinEnd = this->fCoinEnd;
// this->fCoinEnd = coinNext;
debugValidate();
}
// Commented-out lines keep this in sync with mergeContained()
void SkOpSpanBase::debugMergeContained(const char* id, SkPathOpsDebug::GlitchLog* log, const SkPathOpsBounds& bounds, bool* deleted) const {
// while adjacent spans' points are contained by the bounds, merge them
const SkOpSpanBase* prev = this;
const SkOpSegment* seg = this->segment();
while ((prev = prev->prev()) && bounds.contains(prev->pt()) && !seg->ptsDisjoint(prev, this)) {
if (prev->prev()) {
log->record(kMergeContained_Glitch, id, this, prev);
} else if (this->final()) {
log->record(kMergeContained_Glitch, id, this, prev);
// return;
} else {
log->record(kMergeContained_Glitch, id, prev, this);
}
}
const SkOpSpanBase* current = this;
const SkOpSpanBase* next = this;
while (next->upCastable() && (next = next->upCast()->next())
&& bounds.contains(next->pt()) && !seg->ptsDisjoint(this, next)) {
if (!current->prev() && next->final()) {
log->record(kMergeContained_Glitch, id, next, current);
current = next;
}
if (current->prev()) {
log->record(kMergeContained_Glitch, id, next, current);
current = next;
} else {
log->record(kMergeContained_Glitch, id, next, current);
current = next;
}
}
#if DEBUG_COINCIDENCE
// this->globalState()->coincidence()->debugValidate();
#endif
}
#endif
const SkOpSpan* SkOpSpanBase::debugStarter(SkOpSpanBase const** endPtr) const {
const SkOpSpanBase* end = *endPtr;
SkASSERT(this->segment() == end->segment());
const SkOpSpanBase* result;
if (t() < end->t()) {
result = this;
} else {
result = end;
*endPtr = this;
}
return result->upCast();
}
void SkOpSpanBase::debugValidate() const {
#if DEBUG_COINCIDENCE
if (this->globalState()->debugCheckHealth()) {
return;
}
#endif
#if DEBUG_VALIDATE
const SkOpPtT* ptT = &fPtT;
SkASSERT(ptT->span() == this);
do {
// SkASSERT(SkDPoint::RoughlyEqual(fPtT.fPt, ptT->fPt));
ptT->debugValidate();
ptT = ptT->next();
} while (ptT != &fPtT);
SkASSERT(this->debugCoinEndLoopCheck());
if (!this->final()) {
SkASSERT(this->upCast()->debugCoinLoopCheck());
}
if (fFromAngle) {
fFromAngle->debugValidate();
}
if (!this->final() && this->upCast()->toAngle()) {
this->upCast()->toAngle()->debugValidate();
}
#endif
}
bool SkOpSpan::debugCoinLoopCheck() const {
int loop = 0;
const SkOpSpan* next = this;
SkOpSpan* nextCoin;
do {
nextCoin = next->fCoincident;
SkASSERT(nextCoin == this || nextCoin->fCoincident != nextCoin);
for (int check = 1; check < loop - 1; ++check) {
const SkOpSpan* checkCoin = this->fCoincident;
const SkOpSpan* innerCoin = checkCoin;
for (int inner = check + 1; inner < loop; ++inner) {
innerCoin = innerCoin->fCoincident;
if (checkCoin == innerCoin) {
SkDebugf("*** bad coincident loop ***\n");
return false;
}
}
}
++loop;
} while ((next = nextCoin) && next != this);
return true;
}
#if DEBUG_COINCIDENCE_VERBOSE
// Commented-out lines keep this in sync with insertCoincidence() in header
void SkOpSpan::debugInsertCoincidence(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpSpan* coin) const {
if (containsCoincidence(coin)) {
// SkASSERT(coin->containsCoincidence(this));
return;
}
debugValidate();
// SkASSERT(this != coin);
log->record(kMarkCoinStart_Glitch, id, this, coin);
// coin->fCoincident = this->fCoincident;
// this->fCoincident = coinNext;
debugValidate();
}
// Commented-out lines keep this in sync with insertCoincidence()
void SkOpSpan::debugInsertCoincidence(const char* id, SkPathOpsDebug::GlitchLog* log, const SkOpSegment* segment, bool flipped) const {
if (this->containsCoincidence(segment)) {
return;
}
const SkOpPtT* next = &fPtT;
while ((next = next->next()) != &fPtT) {
if (next->segment() == segment) {
log->record(kMarkCoinInsert_Glitch, id, flipped ? next->span()->prev() : next->span());
return;
}
}
#if DEBUG_COINCIDENCE
log->record(kMarkCoinMissing_Glitch, id, segment, this);
#endif
}
#endif
// called only by test code
int SkIntersections::debugCoincidentUsed() const {
if (!fIsCoincident[0]) {
SkASSERT(!fIsCoincident[1]);
return 0;
}
int count = 0;
SkDEBUGCODE(int count2 = 0;)
for (int index = 0; index < fUsed; ++index) {
if (fIsCoincident[0] & (1 << index)) {
++count;
}
#ifdef SK_DEBUG
if (fIsCoincident[1] & (1 << index)) {
++count2;
}
#endif
}
SkASSERT(count == count2);
return count;
}
#include "SkOpContour.h"
// Commented-out lines keep this in sync with addOpp()
bool SkOpPtT::debugAddOpp(const SkOpPtT* opp) const {
// find the fOpp ptr to opp
const SkOpPtT* oppPrev = opp->fNext;
if (oppPrev == this) {
return false;
}
while (oppPrev->fNext != opp) {
oppPrev = oppPrev->fNext;
if (oppPrev == this) {
return false;
}
}
// const SkOpPtT* oldNext = this->fNext;
SkASSERT(this != opp);
// this->fNext = opp;
// SkASSERT(oppPrev != oldNext);
// oppPrev->fNext = oldNext;
return true;
}
bool SkOpPtT::debugContains(const SkOpPtT* check) const {
SkASSERT(this != check);
const SkOpPtT* ptT = this;
int links = 0;
do {
ptT = ptT->next();
if (ptT == check) {
return true;
}
++links;
const SkOpPtT* test = this;
for (int index = 0; index < links; ++index) {
if (ptT == test) {
return false;
}
test = test->next();
}
} while (true);
}
const SkOpPtT* SkOpPtT::debugContains(const SkOpSegment* check) const {
SkASSERT(this->segment() != check);
const SkOpPtT* ptT = this;
int links = 0;
do {
ptT = ptT->next();
if (ptT->segment() == check) {
return ptT;
}
++links;
const SkOpPtT* test = this;
for (int index = 0; index < links; ++index) {
if (ptT == test) {
return nullptr;
}
test = test->next();
}
} while (true);
}
int SkOpPtT::debugLoopLimit(bool report) const {
int loop = 0;
const SkOpPtT* next = this;
do {
for (int check = 1; check < loop - 1; ++check) {
const SkOpPtT* checkPtT = this->fNext;
const SkOpPtT* innerPtT = checkPtT;
for (int inner = check + 1; inner < loop; ++inner) {
innerPtT = innerPtT->fNext;
if (checkPtT == innerPtT) {
if (report) {
SkDebugf("*** bad ptT loop ***\n");
}
return loop;
}
}
}
// there's nothing wrong with extremely large loop counts -- but this may appear to hang
// by taking a very long time to figure out that no loop entry is a duplicate
// -- and it's likely that a large loop count is indicative of a bug somewhere
if (++loop > 1000) {
SkDebugf("*** loop count exceeds 1000 ***\n");
return 1000;
}
} while ((next = next->fNext) && next != this);
return 0;
}
void SkOpPtT::debugValidate() const {
#if DEBUG_COINCIDENCE
if (this->globalState()->debugCheckHealth()) {
return;
}
#endif
#if DEBUG_VALIDATE
SkOpGlobalState::Phase phase = contour()->globalState()->phase();
if (phase == SkOpGlobalState::kIntersecting
|| phase == SkOpGlobalState::kFixWinding) {
return;
}
SkASSERT(fNext);
SkASSERT(fNext != this);
SkASSERT(fNext->fNext);
SkASSERT(debugLoopLimit(false) == 0);
#endif
}
static void output_scalar(SkScalar num) {
if (num == (int) num) {
SkDebugf("%d", (int) num);
} else {
SkString str;
str.printf("%1.9g", num);
int width = (int) str.size();
const char* cStr = str.c_str();
while (cStr[width - 1] == '0') {
--width;
}
str.resize(width);
SkDebugf("%sf", str.c_str());
}
}
static void output_points(const SkPoint* pts, int count) {
for (int index = 0; index < count; ++index) {
output_scalar(pts[index].fX);
SkDebugf(", ");
output_scalar(pts[index].fY);
if (index + 1 < count) {
SkDebugf(", ");
}
}
}
static void showPathContours(SkPath::RawIter& iter, const char* pathName) {
uint8_t verb;
SkPoint pts[4];
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkDebugf(" %s.moveTo(", pathName);
output_points(&pts[0], 1);
SkDebugf(");\n");
continue;
case SkPath::kLine_Verb:
SkDebugf(" %s.lineTo(", pathName);
output_points(&pts[1], 1);
SkDebugf(");\n");
break;
case SkPath::kQuad_Verb:
SkDebugf(" %s.quadTo(", pathName);
output_points(&pts[1], 2);
SkDebugf(");\n");
break;
case SkPath::kConic_Verb:
SkDebugf(" %s.conicTo(", pathName);
output_points(&pts[1], 2);
SkDebugf(", %1.9gf);\n", iter.conicWeight());
break;
case SkPath::kCubic_Verb:
SkDebugf(" %s.cubicTo(", pathName);
output_points(&pts[1], 3);
SkDebugf(");\n");
break;
case SkPath::kClose_Verb:
SkDebugf(" %s.close();\n", pathName);
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
}
static const char* gFillTypeStr[] = {
"kWinding_FillType",
"kEvenOdd_FillType",
"kInverseWinding_FillType",
"kInverseEvenOdd_FillType"
};
void SkPathOpsDebug::ShowOnePath(const SkPath& path, const char* name, bool includeDeclaration) {
SkPath::RawIter iter(path);
#define SUPPORT_RECT_CONTOUR_DETECTION 0
#if SUPPORT_RECT_CONTOUR_DETECTION
int rectCount = path.isRectContours() ? path.rectContours(nullptr, nullptr) : 0;
if (rectCount > 0) {
SkTDArray<SkRect> rects;
SkTDArray<SkPath::Direction> directions;
rects.setCount(rectCount);
directions.setCount(rectCount);
path.rectContours(rects.begin(), directions.begin());
for (int contour = 0; contour < rectCount; ++contour) {
const SkRect& rect = rects[contour];
SkDebugf("path.addRect(%1.9g, %1.9g, %1.9g, %1.9g, %s);\n", rect.fLeft, rect.fTop,
rect.fRight, rect.fBottom, directions[contour] == SkPath::kCCW_Direction
? "SkPath::kCCW_Direction" : "SkPath::kCW_Direction");
}
return;
}
#endif
SkPath::FillType fillType = path.getFillType();
SkASSERT(fillType >= SkPath::kWinding_FillType && fillType <= SkPath::kInverseEvenOdd_FillType);
if (includeDeclaration) {
SkDebugf(" SkPath %s;\n", name);
}
SkDebugf(" %s.setFillType(SkPath::%s);\n", name, gFillTypeStr[fillType]);
iter.setPath(path);
showPathContours(iter, name);
}