| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "CubicUtilities.h" |
| #include "Extrema.h" |
| #include "LineUtilities.h" |
| #include "QuadraticUtilities.h" |
| |
| const int gPrecisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework |
| |
| // FIXME: cache keep the bounds and/or precision with the caller? |
| double calcPrecision(const Cubic& cubic) { |
| _Rect dRect; |
| dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ? |
| double width = dRect.right - dRect.left; |
| double height = dRect.bottom - dRect.top; |
| return (width > height ? width : height) / gPrecisionUnit; |
| } |
| |
| #if SK_DEBUG |
| double calcPrecision(const Cubic& cubic, double t, double scale) { |
| Cubic part; |
| sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part); |
| return calcPrecision(part); |
| } |
| #endif |
| |
| bool clockwise(const Cubic& c) { |
| double sum = (c[0].x - c[3].x) * (c[0].y + c[3].y); |
| for (int idx = 0; idx < 3; ++idx){ |
| sum += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
| } |
| return sum <= 0; |
| } |
| |
| void coefficients(const double* cubic, double& A, double& B, double& C, double& D) { |
| A = cubic[6]; // d |
| B = cubic[4] * 3; // 3*c |
| C = cubic[2] * 3; // 3*b |
| D = cubic[0]; // a |
| A -= D - C + B; // A = -a + 3*b - 3*c + d |
| B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c |
| C -= 3 * D; // C = -3*a + 3*b |
| } |
| |
| bool controls_contained_by_ends(const Cubic& c) { |
| _Vector startTan = c[1] - c[0]; |
| if (startTan.x == 0 && startTan.y == 0) { |
| startTan = c[2] - c[0]; |
| } |
| _Vector endTan = c[2] - c[3]; |
| if (endTan.x == 0 && endTan.y == 0) { |
| endTan = c[1] - c[3]; |
| } |
| if (startTan.dot(endTan) >= 0) { |
| return false; |
| } |
| _Line startEdge = {c[0], c[0]}; |
| startEdge[1].x -= startTan.y; |
| startEdge[1].y += startTan.x; |
| _Line endEdge = {c[3], c[3]}; |
| endEdge[1].x -= endTan.y; |
| endEdge[1].y += endTan.x; |
| double leftStart1 = is_left(startEdge, c[1]); |
| if (leftStart1 * is_left(startEdge, c[2]) < 0) { |
| return false; |
| } |
| double leftEnd1 = is_left(endEdge, c[1]); |
| if (leftEnd1 * is_left(endEdge, c[2]) < 0) { |
| return false; |
| } |
| return leftStart1 * leftEnd1 >= 0; |
| } |
| |
| bool ends_are_extrema_in_x_or_y(const Cubic& c) { |
| return (between(c[0].x, c[1].x, c[3].x) && between(c[0].x, c[2].x, c[3].x)) |
| || (between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y)); |
| } |
| |
| bool monotonic_in_y(const Cubic& c) { |
| return between(c[0].y, c[1].y, c[3].y) && between(c[0].y, c[2].y, c[3].y); |
| } |
| |
| bool serpentine(const Cubic& c) { |
| if (!controls_contained_by_ends(c)) { |
| return false; |
| } |
| double wiggle = (c[0].x - c[2].x) * (c[0].y + c[2].y); |
| for (int idx = 0; idx < 2; ++idx){ |
| wiggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
| } |
| double waggle = (c[1].x - c[3].x) * (c[1].y + c[3].y); |
| for (int idx = 1; idx < 3; ++idx){ |
| waggle += (c[idx + 1].x - c[idx].x) * (c[idx + 1].y + c[idx].y); |
| } |
| return wiggle * waggle < 0; |
| } |
| |
| // cubic roots |
| |
| const double PI = 4 * atan(1); |
| |
| // from SkGeometry.cpp (and Numeric Solutions, 5.6) |
| int cubicRootsValidT(double A, double B, double C, double D, double t[3]) { |
| #if 0 |
| if (approximately_zero(A)) { // we're just a quadratic |
| return quadraticRootsValidT(B, C, D, t); |
| } |
| double a, b, c; |
| { |
| double invA = 1 / A; |
| a = B * invA; |
| b = C * invA; |
| c = D * invA; |
| } |
| double a2 = a * a; |
| double Q = (a2 - b * 3) / 9; |
| double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| double Q3 = Q * Q * Q; |
| double R2MinusQ3 = R * R - Q3; |
| double adiv3 = a / 3; |
| double* roots = t; |
| double r; |
| |
| if (R2MinusQ3 < 0) // we have 3 real roots |
| { |
| double theta = acos(R / sqrt(Q3)); |
| double neg2RootQ = -2 * sqrt(Q); |
| |
| r = neg2RootQ * cos(theta / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| } |
| else // we have 1 real root |
| { |
| double A = fabs(R) + sqrt(R2MinusQ3); |
| A = cube_root(A); |
| if (R > 0) { |
| A = -A; |
| } |
| if (A != 0) { |
| A += Q / A; |
| } |
| r = A - adiv3; |
| if (is_unit_interval(r)) |
| *roots++ = r; |
| } |
| return (int)(roots - t); |
| #else |
| double s[3]; |
| int realRoots = cubicRootsReal(A, B, C, D, s); |
| int foundRoots = add_valid_ts(s, realRoots, t); |
| return foundRoots; |
| #endif |
| } |
| |
| int cubicRootsReal(double A, double B, double C, double D, double s[3]) { |
| #if SK_DEBUG |
| // create a string mathematica understands |
| // GDB set print repe 15 # if repeated digits is a bother |
| // set print elements 400 # if line doesn't fit |
| char str[1024]; |
| bzero(str, sizeof(str)); |
| sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D); |
| mathematica_ize(str, sizeof(str)); |
| #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
| SkDebugf("%s\n", str); |
| #endif |
| #endif |
| if (approximately_zero(A) |
| && approximately_zero_when_compared_to(A, B) |
| && approximately_zero_when_compared_to(A, C) |
| && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic |
| return quadraticRootsReal(B, C, D, s); |
| } |
| if (approximately_zero_when_compared_to(D, A) |
| && approximately_zero_when_compared_to(D, B) |
| && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
| int num = quadraticRootsReal(A, B, C, s); |
| for (int i = 0; i < num; ++i) { |
| if (approximately_zero(s[i])) { |
| return num; |
| } |
| } |
| s[num++] = 0; |
| return num; |
| } |
| if (approximately_zero(A + B + C + D)) { // 1 is one root |
| int num = quadraticRootsReal(A, A + B, -D, s); |
| for (int i = 0; i < num; ++i) { |
| if (AlmostEqualUlps(s[i], 1)) { |
| return num; |
| } |
| } |
| s[num++] = 1; |
| return num; |
| } |
| double a, b, c; |
| { |
| double invA = 1 / A; |
| a = B * invA; |
| b = C * invA; |
| c = D * invA; |
| } |
| double a2 = a * a; |
| double Q = (a2 - b * 3) / 9; |
| double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| double R2 = R * R; |
| double Q3 = Q * Q * Q; |
| double R2MinusQ3 = R2 - Q3; |
| double adiv3 = a / 3; |
| double r; |
| double* roots = s; |
| #if 0 |
| if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) { |
| if (approximately_zero_squared(R)) {/* one triple solution */ |
| *roots++ = -adiv3; |
| } else { /* one single and one double solution */ |
| |
| double u = cube_root(-R); |
| *roots++ = 2 * u - adiv3; |
| *roots++ = -u - adiv3; |
| } |
| } |
| else |
| #endif |
| if (R2MinusQ3 < 0) // we have 3 real roots |
| { |
| double theta = acos(R / sqrt(Q3)); |
| double neg2RootQ = -2 * sqrt(Q); |
| |
| r = neg2RootQ * cos(theta / 3) - adiv3; |
| *roots++ = r; |
| |
| r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| if (!AlmostEqualUlps(s[0], r)) { |
| *roots++ = r; |
| } |
| r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) { |
| *roots++ = r; |
| } |
| } |
| else // we have 1 real root |
| { |
| double sqrtR2MinusQ3 = sqrt(R2MinusQ3); |
| double A = fabs(R) + sqrtR2MinusQ3; |
| A = cube_root(A); |
| if (R > 0) { |
| A = -A; |
| } |
| if (A != 0) { |
| A += Q / A; |
| } |
| r = A - adiv3; |
| *roots++ = r; |
| if (AlmostEqualUlps(R2, Q3)) { |
| r = -A / 2 - adiv3; |
| if (!AlmostEqualUlps(s[0], r)) { |
| *roots++ = r; |
| } |
| } |
| } |
| return (int)(roots - s); |
| } |
| |
| // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf |
| // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 |
| // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 |
| // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 |
| static double derivativeAtT(const double* cubic, double t) { |
| double one_t = 1 - t; |
| double a = cubic[0]; |
| double b = cubic[2]; |
| double c = cubic[4]; |
| double d = cubic[6]; |
| return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); |
| } |
| |
| double dx_at_t(const Cubic& cubic, double t) { |
| return derivativeAtT(&cubic[0].x, t); |
| } |
| |
| double dy_at_t(const Cubic& cubic, double t) { |
| return derivativeAtT(&cubic[0].y, t); |
| } |
| |
| // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? |
| _Vector dxdy_at_t(const Cubic& cubic, double t) { |
| _Vector result = { derivativeAtT(&cubic[0].x, t), derivativeAtT(&cubic[0].y, t) }; |
| return result; |
| } |
| |
| // OPTIMIZE? share code with formulate_F1DotF2 |
| int find_cubic_inflections(const Cubic& src, double tValues[]) |
| { |
| double Ax = src[1].x - src[0].x; |
| double Ay = src[1].y - src[0].y; |
| double Bx = src[2].x - 2 * src[1].x + src[0].x; |
| double By = src[2].y - 2 * src[1].y + src[0].y; |
| double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x; |
| double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y; |
| return quadraticRootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); |
| } |
| |
| static void formulate_F1DotF2(const double src[], double coeff[4]) |
| { |
| double a = src[2] - src[0]; |
| double b = src[4] - 2 * src[2] + src[0]; |
| double c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
| coeff[0] = c * c; |
| coeff[1] = 3 * b * c; |
| coeff[2] = 2 * b * b + c * a; |
| coeff[3] = a * b; |
| } |
| |
| /* from SkGeometry.cpp |
| Looking for F' dot F'' == 0 |
| |
| A = b - a |
| B = c - 2b + a |
| C = d - 3c + 3b - a |
| |
| F' = 3Ct^2 + 6Bt + 3A |
| F'' = 6Ct + 6B |
| |
| F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
| */ |
| int find_cubic_max_curvature(const Cubic& src, double tValues[]) |
| { |
| double coeffX[4], coeffY[4]; |
| int i; |
| formulate_F1DotF2(&src[0].x, coeffX); |
| formulate_F1DotF2(&src[0].y, coeffY); |
| for (i = 0; i < 4; i++) { |
| coeffX[i] = coeffX[i] + coeffY[i]; |
| } |
| return cubicRootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); |
| } |
| |
| |
| bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) { |
| double dy = cubic[index].y - cubic[zero].y; |
| double dx = cubic[index].x - cubic[zero].x; |
| if (approximately_zero(dy)) { |
| if (approximately_zero(dx)) { |
| return false; |
| } |
| memcpy(rotPath, cubic, sizeof(Cubic)); |
| return true; |
| } |
| for (int index = 0; index < 4; ++index) { |
| rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy; |
| rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy; |
| } |
| return true; |
| } |
| |
| #if 0 // unused for now |
| double secondDerivativeAtT(const double* cubic, double t) { |
| double a = cubic[0]; |
| double b = cubic[2]; |
| double c = cubic[4]; |
| double d = cubic[6]; |
| return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t; |
| } |
| #endif |
| |
| _Point top(const Cubic& cubic, double startT, double endT) { |
| Cubic sub; |
| sub_divide(cubic, startT, endT, sub); |
| _Point topPt = sub[0]; |
| if (topPt.y > sub[3].y || (topPt.y == sub[3].y && topPt.x > sub[3].x)) { |
| topPt = sub[3]; |
| } |
| double extremeTs[2]; |
| if (!monotonic_in_y(sub)) { |
| int roots = findExtrema(sub[0].y, sub[1].y, sub[2].y, sub[3].y, extremeTs); |
| for (int index = 0; index < roots; ++index) { |
| _Point mid; |
| double t = startT + (endT - startT) * extremeTs[index]; |
| xy_at_t(cubic, t, mid.x, mid.y); |
| if (topPt.y > mid.y || (topPt.y == mid.y && topPt.x > mid.x)) { |
| topPt = mid; |
| } |
| } |
| } |
| return topPt; |
| } |
| |
| // OPTIMIZE: avoid computing the unused half |
| void xy_at_t(const Cubic& cubic, double t, double& x, double& y) { |
| _Point xy = xy_at_t(cubic, t); |
| if (&x) { |
| x = xy.x; |
| } |
| if (&y) { |
| y = xy.y; |
| } |
| } |
| |
| _Point xy_at_t(const Cubic& cubic, double t) { |
| double one_t = 1 - t; |
| double one_t2 = one_t * one_t; |
| double a = one_t2 * one_t; |
| double b = 3 * one_t2 * t; |
| double t2 = t * t; |
| double c = 3 * one_t * t2; |
| double d = t2 * t; |
| _Point result = {a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x, |
| a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y}; |
| return result; |
| } |