blob: 724f17fe51c8c53c7e509c982d2dfc22220f3b2a [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapDevice.h"
#include "SkConfig8888.h"
#include "SkDraw.h"
#include "SkRasterClip.h"
#include "SkShader.h"
#include "SkSurface.h"
#define CHECK_FOR_ANNOTATION(paint) \
do { if (paint.getAnnotation()) { return; } } while (0)
static bool valid_for_bitmap_device(const SkImageInfo& info,
SkAlphaType* newAlphaType) {
if (info.width() < 0 || info.height() < 0) {
return false;
}
// TODO: can we stop supporting kUnknown in SkBitmkapDevice?
if (kUnknown_SkColorType == info.colorType()) {
if (newAlphaType) {
*newAlphaType = kIgnore_SkAlphaType;
}
return true;
}
switch (info.alphaType()) {
case kPremul_SkAlphaType:
case kOpaque_SkAlphaType:
break;
default:
return false;
}
SkAlphaType canonicalAlphaType = info.alphaType();
switch (info.colorType()) {
case kAlpha_8_SkColorType:
break;
case kRGB_565_SkColorType:
canonicalAlphaType = kOpaque_SkAlphaType;
break;
case kPMColor_SkColorType:
break;
default:
return false;
}
if (newAlphaType) {
*newAlphaType = canonicalAlphaType;
}
return true;
}
SkBitmapDevice::SkBitmapDevice(const SkBitmap& bitmap) : fBitmap(bitmap) {
SkASSERT(valid_for_bitmap_device(bitmap.info(), NULL));
}
SkBitmapDevice::SkBitmapDevice(const SkBitmap& bitmap, const SkDeviceProperties& deviceProperties)
: SkBaseDevice(deviceProperties)
, fBitmap(bitmap)
{
SkASSERT(valid_for_bitmap_device(bitmap.info(), NULL));
}
#ifdef SK_SUPPORT_LEGACY_COMPATIBLEDEVICE_CONFIG
void SkBitmapDevice::init(SkBitmap::Config config, int width, int height, bool isOpaque) {
fBitmap.setConfig(config, width, height, 0, isOpaque ?
kOpaque_SkAlphaType : kPremul_SkAlphaType);
if (SkBitmap::kNo_Config != config) {
if (!fBitmap.allocPixels()) {
// indicate failure by zeroing our bitmap
fBitmap.setConfig(config, 0, 0, 0, isOpaque ?
kOpaque_SkAlphaType : kPremul_SkAlphaType);
} else if (!isOpaque) {
fBitmap.eraseColor(SK_ColorTRANSPARENT);
}
}
}
SkBitmapDevice::SkBitmapDevice(SkBitmap::Config config, int width, int height, bool isOpaque) {
this->init(config, width, height, isOpaque);
}
SkBitmapDevice::SkBitmapDevice(SkBitmap::Config config, int width, int height, bool isOpaque,
const SkDeviceProperties& deviceProperties)
: SkBaseDevice(deviceProperties)
{
this->init(config, width, height, isOpaque);
}
#endif
SkBitmapDevice* SkBitmapDevice::Create(const SkImageInfo& origInfo,
const SkDeviceProperties* props) {
SkImageInfo info = origInfo;
if (!valid_for_bitmap_device(info, &info.fAlphaType)) {
return NULL;
}
SkBitmap bitmap;
if (kUnknown_SkColorType == info.colorType()) {
if (!bitmap.setConfig(info)) {
return NULL;
}
} else {
if (!bitmap.allocPixels(info)) {
return NULL;
}
if (!bitmap.info().isOpaque()) {
bitmap.eraseColor(SK_ColorTRANSPARENT);
}
}
if (props) {
return SkNEW_ARGS(SkBitmapDevice, (bitmap, *props));
} else {
return SkNEW_ARGS(SkBitmapDevice, (bitmap));
}
}
SkImageInfo SkBitmapDevice::imageInfo() const {
return fBitmap.info();
}
void SkBitmapDevice::replaceBitmapBackendForRasterSurface(const SkBitmap& bm) {
SkASSERT(bm.width() == fBitmap.width());
SkASSERT(bm.height() == fBitmap.height());
fBitmap = bm; // intent is to use bm's pixelRef (and rowbytes/config)
fBitmap.lockPixels();
}
SkBaseDevice* SkBitmapDevice::onCreateDevice(const SkImageInfo& info, Usage usage) {
return SkBitmapDevice::Create(info, &this->getDeviceProperties());
}
void SkBitmapDevice::lockPixels() {
if (fBitmap.lockPixelsAreWritable()) {
fBitmap.lockPixels();
}
}
void SkBitmapDevice::unlockPixels() {
if (fBitmap.lockPixelsAreWritable()) {
fBitmap.unlockPixels();
}
}
void SkBitmapDevice::clear(SkColor color) {
fBitmap.eraseColor(color);
}
const SkBitmap& SkBitmapDevice::onAccessBitmap() {
return fBitmap;
}
bool SkBitmapDevice::canHandleImageFilter(const SkImageFilter*) {
return false;
}
bool SkBitmapDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src,
const SkMatrix& ctm, SkBitmap* result,
SkIPoint* offset) {
return false;
}
bool SkBitmapDevice::allowImageFilter(const SkImageFilter*) {
return true;
}
bool SkBitmapDevice::onReadPixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) {
SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config());
SkASSERT(!bitmap.isNull());
SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y,
bitmap.width(),
bitmap.height())));
SkIRect srcRect = SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height());
const SkBitmap& src = this->accessBitmap(false);
SkBitmap subset;
if (!src.extractSubset(&subset, srcRect)) {
return false;
}
if (kPMColor_SkColorType != subset.colorType()) {
// It'd be preferable to do this directly to bitmap.
subset.copyTo(&subset, kPMColor_SkColorType);
}
SkAutoLockPixels alp(bitmap);
uint32_t* bmpPixels = reinterpret_cast<uint32_t*>(bitmap.getPixels());
SkCopyBitmapToConfig8888(bmpPixels, bitmap.rowBytes(), config8888, subset);
return true;
}
#ifdef SK_SUPPORT_LEGACY_WRITEPIXELSCONFIG
void SkBitmapDevice::writePixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) {
if (bitmap.isNull() || bitmap.getTexture()) {
return;
}
const SkBitmap* sprite = &bitmap;
// check whether we have to handle a config8888 that doesn't match SkPMColor
if (SkBitmap::kARGB_8888_Config == bitmap.config() &&
SkCanvas::kNative_Premul_Config8888 != config8888 &&
kPMColorAlias != config8888) {
// We're going to have to convert from a config8888 to the native config
// First we clip to the device bounds.
SkBitmap dstBmp = this->accessBitmap(true);
SkIRect spriteRect = SkIRect::MakeXYWH(x, y,
bitmap.width(), bitmap.height());
SkIRect devRect = SkIRect::MakeWH(dstBmp.width(), dstBmp.height());
if (!spriteRect.intersect(devRect)) {
return;
}
// write directly to the device if it has pixels and is SkPMColor
bool drawSprite;
if (SkBitmap::kARGB_8888_Config == dstBmp.config() && !dstBmp.isNull()) {
// we can write directly to the dst when doing the conversion
dstBmp.extractSubset(&dstBmp, spriteRect);
drawSprite = false;
} else {
// we convert to a temporary bitmap and draw that as a sprite
if (!dstBmp.allocPixels(SkImageInfo::MakeN32Premul(spriteRect.width(),
spriteRect.height()))) {
return;
}
drawSprite = true;
}
// copy pixels to dstBmp and convert from config8888 to native config.
SkAutoLockPixels alp(bitmap);
uint32_t* srcPixels = bitmap.getAddr32(spriteRect.fLeft - x,
spriteRect.fTop - y);
SkCopyConfig8888ToBitmap(dstBmp,
srcPixels,
bitmap.rowBytes(),
config8888);
if (drawSprite) {
// we've clipped the sprite when we made a copy
x = spriteRect.fLeft;
y = spriteRect.fTop;
sprite = &dstBmp;
} else {
return;
}
}
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
SkRasterClip clip(SkIRect::MakeWH(fBitmap.width(), fBitmap.height()));
SkDraw draw;
draw.fRC = &clip;
draw.fClip = &clip.bwRgn();
draw.fBitmap = &fBitmap; // canvas should have already called accessBitmap
draw.fMatrix = &SkMatrix::I();
this->drawSprite(draw, *sprite, x, y, paint);
}
#endif
void* SkBitmapDevice::onAccessPixels(SkImageInfo* info, size_t* rowBytes) {
if (fBitmap.getPixels()) {
*info = fBitmap.info();
*rowBytes = fBitmap.rowBytes();
return fBitmap.getPixels();
}
return NULL;
}
static void rect_memcpy(void* dst, size_t dstRB, const void* src, size_t srcRB, size_t bytesPerRow,
int rowCount) {
SkASSERT(bytesPerRow <= srcRB);
SkASSERT(bytesPerRow <= dstRB);
for (int i = 0; i < rowCount; ++i) {
memcpy(dst, src, bytesPerRow);
dst = (char*)dst + dstRB;
src = (const char*)src + srcRB;
}
}
static bool info2config8888(const SkImageInfo& info, SkCanvas::Config8888* config) {
bool pre;
switch (info.alphaType()) {
case kPremul_SkAlphaType:
case kOpaque_SkAlphaType:
pre = true;
break;
case kUnpremul_SkAlphaType:
pre = false;
break;
default:
return false;
}
switch (info.colorType()) {
case kRGBA_8888_SkColorType:
*config = pre ? SkCanvas::kRGBA_Premul_Config8888 : SkCanvas::kRGBA_Unpremul_Config8888;
return true;
case kBGRA_8888_SkColorType:
*config = pre ? SkCanvas::kBGRA_Premul_Config8888 : SkCanvas::kBGRA_Unpremul_Config8888;
return true;
default:
return false;
}
}
// TODO: make this guy real, and not rely on legacy config8888 utility
#include "SkConfig8888.h"
static bool write_pixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes,
const SkImageInfo& srcInfo, const void* srcPixels, size_t srcRowBytes) {
if (srcInfo.dimensions() != dstInfo.dimensions()) {
return false;
}
if (4 == srcInfo.bytesPerPixel() && 4 == dstInfo.bytesPerPixel()) {
SkCanvas::Config8888 srcConfig, dstConfig;
if (!info2config8888(srcInfo, &srcConfig) || !info2config8888(dstInfo, &dstConfig)) {
return false;
}
SkConvertConfig8888Pixels((uint32_t*)dstPixels, dstRowBytes, dstConfig,
(const uint32_t*)srcPixels, srcRowBytes, srcConfig,
srcInfo.width(), srcInfo.height());
return true;
}
if (srcInfo.colorType() == dstInfo.colorType()) {
switch (srcInfo.colorType()) {
case kRGB_565_SkColorType:
case kAlpha_8_SkColorType:
break;
case kARGB_4444_SkColorType:
if (srcInfo.alphaType() != dstInfo.alphaType()) {
return false;
}
break;
default:
return false;
}
rect_memcpy(dstPixels, dstRowBytes, srcPixels, srcRowBytes,
srcInfo.width() * srcInfo.bytesPerPixel(), srcInfo.height());
}
// TODO: add support for more conversions as needed
return false;
}
bool SkBitmapDevice::onWritePixels(const SkImageInfo& srcInfo, const void* srcPixels,
size_t srcRowBytes, int x, int y) {
// since we don't stop creating un-pixeled devices yet, check for no pixels here
if (NULL == fBitmap.getPixels()) {
return false;
}
SkImageInfo dstInfo = fBitmap.info();
dstInfo.fWidth = srcInfo.width();
dstInfo.fHeight = srcInfo.height();
void* dstPixels = fBitmap.getAddr(x, y);
size_t dstRowBytes = fBitmap.rowBytes();
if (write_pixels(dstInfo, dstPixels, dstRowBytes, srcInfo, srcPixels, srcRowBytes)) {
fBitmap.notifyPixelsChanged();
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
void SkBitmapDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
draw.drawPaint(paint);
}
void SkBitmapDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
CHECK_FOR_ANNOTATION(paint);
draw.drawPoints(mode, count, pts, paint);
}
void SkBitmapDevice::drawRect(const SkDraw& draw, const SkRect& r, const SkPaint& paint) {
CHECK_FOR_ANNOTATION(paint);
draw.drawRect(r, paint);
}
void SkBitmapDevice::drawOval(const SkDraw& draw, const SkRect& oval, const SkPaint& paint) {
CHECK_FOR_ANNOTATION(paint);
SkPath path;
path.addOval(oval);
// call the VIRTUAL version, so any subclasses who do handle drawPath aren't
// required to override drawOval.
this->drawPath(draw, path, paint, NULL, true);
}
void SkBitmapDevice::drawRRect(const SkDraw& draw, const SkRRect& rrect, const SkPaint& paint) {
CHECK_FOR_ANNOTATION(paint);
#ifdef SK_IGNORE_BLURRED_RRECT_OPT
SkPath path;
path.addRRect(rrect);
// call the VIRTUAL version, so any subclasses who do handle drawPath aren't
// required to override drawRRect.
this->drawPath(draw, path, paint, NULL, true);
#else
draw.drawRRect(rrect, paint);
#endif
}
void SkBitmapDevice::drawPath(const SkDraw& draw, const SkPath& path,
const SkPaint& paint, const SkMatrix* prePathMatrix,
bool pathIsMutable) {
CHECK_FOR_ANNOTATION(paint);
draw.drawPath(path, paint, prePathMatrix, pathIsMutable);
}
void SkBitmapDevice::drawBitmap(const SkDraw& draw, const SkBitmap& bitmap,
const SkMatrix& matrix, const SkPaint& paint) {
draw.drawBitmap(bitmap, matrix, paint);
}
void SkBitmapDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap,
const SkRect* src, const SkRect& dst,
const SkPaint& paint,
SkCanvas::DrawBitmapRectFlags flags) {
SkMatrix matrix;
SkRect bitmapBounds, tmpSrc, tmpDst;
SkBitmap tmpBitmap;
bitmapBounds.isetWH(bitmap.width(), bitmap.height());
// Compute matrix from the two rectangles
if (src) {
tmpSrc = *src;
} else {
tmpSrc = bitmapBounds;
}
matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit);
const SkRect* dstPtr = &dst;
const SkBitmap* bitmapPtr = &bitmap;
// clip the tmpSrc to the bounds of the bitmap, and recompute dstRect if
// needed (if the src was clipped). No check needed if src==null.
if (src) {
if (!bitmapBounds.contains(*src)) {
if (!tmpSrc.intersect(bitmapBounds)) {
return; // nothing to draw
}
// recompute dst, based on the smaller tmpSrc
matrix.mapRect(&tmpDst, tmpSrc);
dstPtr = &tmpDst;
}
// since we may need to clamp to the borders of the src rect within
// the bitmap, we extract a subset.
SkIRect srcIR;
tmpSrc.roundOut(&srcIR);
if (!bitmap.extractSubset(&tmpBitmap, srcIR)) {
return;
}
bitmapPtr = &tmpBitmap;
// Since we did an extract, we need to adjust the matrix accordingly
SkScalar dx = 0, dy = 0;
if (srcIR.fLeft > 0) {
dx = SkIntToScalar(srcIR.fLeft);
}
if (srcIR.fTop > 0) {
dy = SkIntToScalar(srcIR.fTop);
}
if (dx || dy) {
matrix.preTranslate(dx, dy);
}
SkRect extractedBitmapBounds;
extractedBitmapBounds.isetWH(bitmapPtr->width(), bitmapPtr->height());
if (extractedBitmapBounds == tmpSrc) {
// no fractional part in src, we can just call drawBitmap
goto USE_DRAWBITMAP;
}
} else {
USE_DRAWBITMAP:
// We can go faster by just calling drawBitmap, which will concat the
// matrix with the CTM, and try to call drawSprite if it can. If not,
// it will make a shader and call drawRect, as we do below.
this->drawBitmap(draw, *bitmapPtr, matrix, paint);
return;
}
// construct a shader, so we can call drawRect with the dst
SkShader* s = SkShader::CreateBitmapShader(*bitmapPtr,
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode);
if (NULL == s) {
return;
}
s->setLocalMatrix(matrix);
SkPaint paintWithShader(paint);
paintWithShader.setStyle(SkPaint::kFill_Style);
paintWithShader.setShader(s)->unref();
// Call ourself, in case the subclass wanted to share this setup code
// but handle the drawRect code themselves.
this->drawRect(draw, *dstPtr, paintWithShader);
}
void SkBitmapDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
int x, int y, const SkPaint& paint) {
draw.drawSprite(bitmap, x, y, paint);
}
void SkBitmapDevice::drawText(const SkDraw& draw, const void* text, size_t len,
SkScalar x, SkScalar y, const SkPaint& paint) {
draw.drawText((const char*)text, len, x, y, paint);
}
void SkBitmapDevice::drawPosText(const SkDraw& draw, const void* text, size_t len,
const SkScalar xpos[], SkScalar y,
int scalarsPerPos, const SkPaint& paint) {
draw.drawPosText((const char*)text, len, xpos, y, scalarsPerPos, paint);
}
void SkBitmapDevice::drawTextOnPath(const SkDraw& draw, const void* text,
size_t len, const SkPath& path,
const SkMatrix* matrix,
const SkPaint& paint) {
draw.drawTextOnPath((const char*)text, len, path, matrix, paint);
}
void SkBitmapDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
int vertexCount,
const SkPoint verts[], const SkPoint textures[],
const SkColor colors[], SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
draw.drawVertices(vmode, vertexCount, verts, textures, colors, xmode,
indices, indexCount, paint);
}
void SkBitmapDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device,
int x, int y, const SkPaint& paint) {
const SkBitmap& src = device->accessBitmap(false);
draw.drawSprite(src, x, y, paint);
}
SkSurface* SkBitmapDevice::newSurface(const SkImageInfo& info) {
return SkSurface::NewRaster(info);
}
const void* SkBitmapDevice::peekPixels(SkImageInfo* info, size_t* rowBytes) {
if (fBitmap.getPixels() && fBitmap.asImageInfo(info)) {
if (rowBytes) {
*rowBytes = fBitmap.rowBytes();
}
return fBitmap.getPixels();
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmapDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) {
if (!paint.isLCDRenderText() || !paint.isAntiAlias()) {
// we're cool with the paint as is
return false;
}
if (SkBitmap::kARGB_8888_Config != fBitmap.config() ||
paint.getRasterizer() ||
paint.getPathEffect() ||
paint.isFakeBoldText() ||
paint.getStyle() != SkPaint::kFill_Style ||
!SkXfermode::IsMode(paint.getXfermode(), SkXfermode::kSrcOver_Mode)) {
// turn off lcd
flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag;
flags->fHinting = paint.getHinting();
return true;
}
// we're cool with the paint as is
return false;
}