| /* vim: set ts=8 sw=8 noexpandtab: */ |
| // qcms |
| // Copyright (C) 2009 Mozilla Corporation |
| // Copyright (C) 1998-2007 Marti Maria |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining |
| // a copy of this software and associated documentation files (the "Software"), |
| // to deal in the Software without restriction, including without limitation |
| // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| // and/or sell copies of the Software, and to permit persons to whom the Software |
| // is furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| |
| #include <stdlib.h> |
| #include <math.h> |
| #include <assert.h> |
| #include <string.h> //memcpy |
| #include "qcmsint.h" |
| #include "transform_util.h" |
| #include "matrix.h" |
| |
| static struct matrix build_lut_matrix(struct lutType *lut) |
| { |
| struct matrix result; |
| if (lut) { |
| result.m[0][0] = s15Fixed16Number_to_float(lut->e00); |
| result.m[0][1] = s15Fixed16Number_to_float(lut->e01); |
| result.m[0][2] = s15Fixed16Number_to_float(lut->e02); |
| result.m[1][0] = s15Fixed16Number_to_float(lut->e10); |
| result.m[1][1] = s15Fixed16Number_to_float(lut->e11); |
| result.m[1][2] = s15Fixed16Number_to_float(lut->e12); |
| result.m[2][0] = s15Fixed16Number_to_float(lut->e20); |
| result.m[2][1] = s15Fixed16Number_to_float(lut->e21); |
| result.m[2][2] = s15Fixed16Number_to_float(lut->e22); |
| result.invalid = false; |
| } else { |
| memset(&result, 0, sizeof(struct matrix)); |
| result.invalid = true; |
| } |
| return result; |
| } |
| |
| static struct matrix build_mAB_matrix(struct lutmABType *lut) |
| { |
| struct matrix result; |
| if (lut) { |
| result.m[0][0] = s15Fixed16Number_to_float(lut->e00); |
| result.m[0][1] = s15Fixed16Number_to_float(lut->e01); |
| result.m[0][2] = s15Fixed16Number_to_float(lut->e02); |
| result.m[1][0] = s15Fixed16Number_to_float(lut->e10); |
| result.m[1][1] = s15Fixed16Number_to_float(lut->e11); |
| result.m[1][2] = s15Fixed16Number_to_float(lut->e12); |
| result.m[2][0] = s15Fixed16Number_to_float(lut->e20); |
| result.m[2][1] = s15Fixed16Number_to_float(lut->e21); |
| result.m[2][2] = s15Fixed16Number_to_float(lut->e22); |
| result.invalid = false; |
| } else { |
| memset(&result, 0, sizeof(struct matrix)); |
| result.invalid = true; |
| } |
| return result; |
| } |
| |
| //Based on lcms cmsLab2XYZ |
| #define f(t) (t <= (24.0f/116.0f)*(24.0f/116.0f)*(24.0f/116.0f)) ? ((841.0/108.0) * t + (16.0/116.0)) : pow(t,1.0/3.0) |
| #define f_1(t) (t <= (24.0f/116.0f)) ? ((108.0/841.0) * (t - (16.0/116.0))) : (t * t * t) |
| static void qcms_transform_module_LAB_to_XYZ(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| // lcms: D50 XYZ values |
| float WhitePointX = 0.9642f; |
| float WhitePointY = 1.0f; |
| float WhitePointZ = 0.8249f; |
| for (i = 0; i < length; i++) { |
| float device_L = *src++ * 100.0f; |
| float device_a = *src++ * 255.0f - 128.0f; |
| float device_b = *src++ * 255.0f - 128.0f; |
| float y = (device_L + 16.0f) / 116.0f; |
| |
| float X = f_1((y + 0.002f * device_a)) * WhitePointX; |
| float Y = f_1(y) * WhitePointY; |
| float Z = f_1((y - 0.005f * device_b)) * WhitePointZ; |
| *dest++ = X / (1.0 + 32767.0/32768.0); |
| *dest++ = Y / (1.0 + 32767.0/32768.0); |
| *dest++ = Z / (1.0 + 32767.0/32768.0); |
| } |
| } |
| |
| //Based on lcms cmsXYZ2Lab |
| static void qcms_transform_module_XYZ_to_LAB(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| // lcms: D50 XYZ values |
| float WhitePointX = 0.9642f; |
| float WhitePointY = 1.0f; |
| float WhitePointZ = 0.8249f; |
| for (i = 0; i < length; i++) { |
| float device_x = *src++ * (1.0 + 32767.0/32768.0) / WhitePointX; |
| float device_y = *src++ * (1.0 + 32767.0/32768.0) / WhitePointY; |
| float device_z = *src++ * (1.0 + 32767.0/32768.0) / WhitePointZ; |
| |
| float fx = f(device_x); |
| float fy = f(device_y); |
| float fz = f(device_z); |
| |
| float L = 116.0f*fy - 16.0f; |
| float a = 500.0f*(fx - fy); |
| float b = 200.0f*(fy - fz); |
| *dest++ = L / 100.0f; |
| *dest++ = (a+128.0f) / 255.0f; |
| *dest++ = (b+128.0f) / 255.0f; |
| } |
| |
| } |
| |
| static void qcms_transform_module_clut_only(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| int xy_len = 1; |
| int x_len = transform->grid_size; |
| int len = x_len * x_len; |
| float* r_table = transform->r_clut; |
| float* g_table = transform->g_clut; |
| float* b_table = transform->b_clut; |
| |
| assert(transform->grid_size >= 1); |
| |
| for (i = 0; i < length; i++) { |
| float linear_r = *src++; |
| float linear_g = *src++; |
| float linear_b = *src++; |
| |
| int x = floor(linear_r * (transform->grid_size-1)); |
| int y = floor(linear_g * (transform->grid_size-1)); |
| int z = floor(linear_b * (transform->grid_size-1)); |
| int x_n = ceil(linear_r * (transform->grid_size-1)); |
| int y_n = ceil(linear_g * (transform->grid_size-1)); |
| int z_n = ceil(linear_b * (transform->grid_size-1)); |
| float x_d = linear_r * (transform->grid_size-1) - x; |
| float y_d = linear_g * (transform->grid_size-1) - y; |
| float z_d = linear_b * (transform->grid_size-1) - z; |
| |
| float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); |
| float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); |
| float r_y1 = lerp(r_x1, r_x2, y_d); |
| float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); |
| float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); |
| float r_y2 = lerp(r_x3, r_x4, y_d); |
| float clut_r = lerp(r_y1, r_y2, z_d); |
| |
| float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); |
| float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); |
| float g_y1 = lerp(g_x1, g_x2, y_d); |
| float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); |
| float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); |
| float g_y2 = lerp(g_x3, g_x4, y_d); |
| float clut_g = lerp(g_y1, g_y2, z_d); |
| |
| float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); |
| float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); |
| float b_y1 = lerp(b_x1, b_x2, y_d); |
| float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); |
| float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); |
| float b_y2 = lerp(b_x3, b_x4, y_d); |
| float clut_b = lerp(b_y1, b_y2, z_d); |
| |
| *dest++ = clamp_float(clut_r); |
| *dest++ = clamp_float(clut_g); |
| *dest++ = clamp_float(clut_b); |
| } |
| } |
| |
| static void qcms_transform_module_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| int xy_len = 1; |
| int x_len = transform->grid_size; |
| int len = x_len * x_len; |
| float* r_table = transform->r_clut; |
| float* g_table = transform->g_clut; |
| float* b_table = transform->b_clut; |
| |
| assert(transform->grid_size >= 1); |
| |
| for (i = 0; i < length; i++) { |
| float device_r = *src++; |
| float device_g = *src++; |
| float device_b = *src++; |
| float linear_r = lut_interp_linear_float(device_r, |
| transform->input_clut_table_r, transform->input_clut_table_length); |
| float linear_g = lut_interp_linear_float(device_g, |
| transform->input_clut_table_g, transform->input_clut_table_length); |
| float linear_b = lut_interp_linear_float(device_b, |
| transform->input_clut_table_b, transform->input_clut_table_length); |
| |
| int x = floor(linear_r * (transform->grid_size-1)); |
| int y = floor(linear_g * (transform->grid_size-1)); |
| int z = floor(linear_b * (transform->grid_size-1)); |
| int x_n = ceil(linear_r * (transform->grid_size-1)); |
| int y_n = ceil(linear_g * (transform->grid_size-1)); |
| int z_n = ceil(linear_b * (transform->grid_size-1)); |
| float x_d = linear_r * (transform->grid_size-1) - x; |
| float y_d = linear_g * (transform->grid_size-1) - y; |
| float z_d = linear_b * (transform->grid_size-1) - z; |
| |
| float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); |
| float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); |
| float r_y1 = lerp(r_x1, r_x2, y_d); |
| float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); |
| float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); |
| float r_y2 = lerp(r_x3, r_x4, y_d); |
| float clut_r = lerp(r_y1, r_y2, z_d); |
| |
| float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); |
| float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); |
| float g_y1 = lerp(g_x1, g_x2, y_d); |
| float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); |
| float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); |
| float g_y2 = lerp(g_x3, g_x4, y_d); |
| float clut_g = lerp(g_y1, g_y2, z_d); |
| |
| float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); |
| float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); |
| float b_y1 = lerp(b_x1, b_x2, y_d); |
| float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); |
| float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); |
| float b_y2 = lerp(b_x3, b_x4, y_d); |
| float clut_b = lerp(b_y1, b_y2, z_d); |
| |
| float pcs_r = lut_interp_linear_float(clut_r, |
| transform->output_clut_table_r, transform->output_clut_table_length); |
| float pcs_g = lut_interp_linear_float(clut_g, |
| transform->output_clut_table_g, transform->output_clut_table_length); |
| float pcs_b = lut_interp_linear_float(clut_b, |
| transform->output_clut_table_b, transform->output_clut_table_length); |
| |
| *dest++ = clamp_float(pcs_r); |
| *dest++ = clamp_float(pcs_g); |
| *dest++ = clamp_float(pcs_b); |
| } |
| } |
| |
| /* NOT USED |
| static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| int xy_len = 1; |
| int x_len = transform->grid_size; |
| int len = x_len * x_len; |
| float* r_table = transform->r_clut; |
| float* g_table = transform->g_clut; |
| float* b_table = transform->b_clut; |
| float c0_r, c1_r, c2_r, c3_r; |
| float c0_g, c1_g, c2_g, c3_g; |
| float c0_b, c1_b, c2_b, c3_b; |
| float clut_r, clut_g, clut_b; |
| float pcs_r, pcs_g, pcs_b; |
| for (i = 0; i < length; i++) { |
| float device_r = *src++; |
| float device_g = *src++; |
| float device_b = *src++; |
| float linear_r = lut_interp_linear_float(device_r, |
| transform->input_clut_table_r, transform->input_clut_table_length); |
| float linear_g = lut_interp_linear_float(device_g, |
| transform->input_clut_table_g, transform->input_clut_table_length); |
| float linear_b = lut_interp_linear_float(device_b, |
| transform->input_clut_table_b, transform->input_clut_table_length); |
| |
| int x = floor(linear_r * (transform->grid_size-1)); |
| int y = floor(linear_g * (transform->grid_size-1)); |
| int z = floor(linear_b * (transform->grid_size-1)); |
| int x_n = ceil(linear_r * (transform->grid_size-1)); |
| int y_n = ceil(linear_g * (transform->grid_size-1)); |
| int z_n = ceil(linear_b * (transform->grid_size-1)); |
| float rx = linear_r * (transform->grid_size-1) - x; |
| float ry = linear_g * (transform->grid_size-1) - y; |
| float rz = linear_b * (transform->grid_size-1) - z; |
| |
| c0_r = CLU(r_table, x, y, z); |
| c0_g = CLU(g_table, x, y, z); |
| c0_b = CLU(b_table, x, y, z); |
| if( rx >= ry ) { |
| if (ry >= rz) { //rx >= ry && ry >= rz |
| c1_r = CLU(r_table, x_n, y, z) - c0_r; |
| c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); |
| c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
| c1_g = CLU(g_table, x_n, y, z) - c0_g; |
| c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); |
| c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
| c1_b = CLU(b_table, x_n, y, z) - c0_b; |
| c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); |
| c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
| } else { |
| if (rx >= rz) { //rx >= rz && rz >= ry |
| c1_r = CLU(r_table, x_n, y, z) - c0_r; |
| c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
| c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); |
| c1_g = CLU(g_table, x_n, y, z) - c0_g; |
| c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
| c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); |
| c1_b = CLU(b_table, x_n, y, z) - c0_b; |
| c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
| c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); |
| } else { //rz > rx && rx >= ry |
| c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); |
| c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
| c3_r = CLU(r_table, x, y, z_n) - c0_r; |
| c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); |
| c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
| c3_g = CLU(g_table, x, y, z_n) - c0_g; |
| c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); |
| c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
| c3_b = CLU(b_table, x, y, z_n) - c0_b; |
| } |
| } |
| } else { |
| if (rx >= rz) { //ry > rx && rx >= rz |
| c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); |
| c2_r = CLU(r_table, x_n, y_n, z) - c0_r; |
| c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
| c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); |
| c2_g = CLU(g_table, x_n, y_n, z) - c0_g; |
| c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
| c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); |
| c2_b = CLU(b_table, x_n, y_n, z) - c0_b; |
| c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
| } else { |
| if (ry >= rz) { //ry >= rz && rz > rx |
| c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
| c2_r = CLU(r_table, x, y_n, z) - c0_r; |
| c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); |
| c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
| c2_g = CLU(g_table, x, y_n, z) - c0_g; |
| c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); |
| c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
| c2_b = CLU(b_table, x, y_n, z) - c0_b; |
| c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); |
| } else { //rz > ry && ry > rx |
| c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
| c2_r = CLU(r_table, x, y_n, z) - c0_r; |
| c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
| c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
| c2_g = CLU(g_table, x, y_n, z) - c0_g; |
| c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
| c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
| c2_b = CLU(b_table, x, y_n, z) - c0_b; |
| c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
| } |
| } |
| } |
| |
| clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; |
| clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; |
| clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; |
| |
| pcs_r = lut_interp_linear_float(clut_r, |
| transform->output_clut_table_r, transform->output_clut_table_length); |
| pcs_g = lut_interp_linear_float(clut_g, |
| transform->output_clut_table_g, transform->output_clut_table_length); |
| pcs_b = lut_interp_linear_float(clut_b, |
| transform->output_clut_table_b, transform->output_clut_table_length); |
| *dest++ = clamp_float(pcs_r); |
| *dest++ = clamp_float(pcs_g); |
| *dest++ = clamp_float(pcs_b); |
| } |
| } |
| */ |
| |
| static void qcms_transform_module_gamma_table(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| float out_r, out_g, out_b; |
| for (i = 0; i < length; i++) { |
| float in_r = *src++; |
| float in_g = *src++; |
| float in_b = *src++; |
| |
| out_r = lut_interp_linear_float(in_r, transform->input_clut_table_r, 256); |
| out_g = lut_interp_linear_float(in_g, transform->input_clut_table_g, 256); |
| out_b = lut_interp_linear_float(in_b, transform->input_clut_table_b, 256); |
| |
| *dest++ = clamp_float(out_r); |
| *dest++ = clamp_float(out_g); |
| *dest++ = clamp_float(out_b); |
| } |
| } |
| |
| static void qcms_transform_module_gamma_lut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| float out_r, out_g, out_b; |
| for (i = 0; i < length; i++) { |
| float in_r = *src++; |
| float in_g = *src++; |
| float in_b = *src++; |
| |
| out_r = lut_interp_linear(in_r, |
| transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
| out_g = lut_interp_linear(in_g, |
| transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
| out_b = lut_interp_linear(in_b, |
| transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
| |
| *dest++ = clamp_float(out_r); |
| *dest++ = clamp_float(out_g); |
| *dest++ = clamp_float(out_b); |
| } |
| } |
| |
| static void qcms_transform_module_matrix_translate(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| struct matrix mat; |
| |
| /* store the results in column major mode |
| * this makes doing the multiplication with sse easier */ |
| mat.m[0][0] = transform->matrix.m[0][0]; |
| mat.m[1][0] = transform->matrix.m[0][1]; |
| mat.m[2][0] = transform->matrix.m[0][2]; |
| mat.m[0][1] = transform->matrix.m[1][0]; |
| mat.m[1][1] = transform->matrix.m[1][1]; |
| mat.m[2][1] = transform->matrix.m[1][2]; |
| mat.m[0][2] = transform->matrix.m[2][0]; |
| mat.m[1][2] = transform->matrix.m[2][1]; |
| mat.m[2][2] = transform->matrix.m[2][2]; |
| |
| for (i = 0; i < length; i++) { |
| float in_r = *src++; |
| float in_g = *src++; |
| float in_b = *src++; |
| |
| float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b + transform->tx; |
| float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b + transform->ty; |
| float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b + transform->tz; |
| |
| *dest++ = clamp_float(out_r); |
| *dest++ = clamp_float(out_g); |
| *dest++ = clamp_float(out_b); |
| } |
| } |
| |
| static void qcms_transform_module_matrix(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) |
| { |
| size_t i; |
| struct matrix mat; |
| |
| /* store the results in column major mode |
| * this makes doing the multiplication with sse easier */ |
| mat.m[0][0] = transform->matrix.m[0][0]; |
| mat.m[1][0] = transform->matrix.m[0][1]; |
| mat.m[2][0] = transform->matrix.m[0][2]; |
| mat.m[0][1] = transform->matrix.m[1][0]; |
| mat.m[1][1] = transform->matrix.m[1][1]; |
| mat.m[2][1] = transform->matrix.m[1][2]; |
| mat.m[0][2] = transform->matrix.m[2][0]; |
| mat.m[1][2] = transform->matrix.m[2][1]; |
| mat.m[2][2] = transform->matrix.m[2][2]; |
| |
| for (i = 0; i < length; i++) { |
| float in_r = *src++; |
| float in_g = *src++; |
| float in_b = *src++; |
| |
| float out_r = mat.m[0][0]*in_r + mat.m[1][0]*in_g + mat.m[2][0]*in_b; |
| float out_g = mat.m[0][1]*in_r + mat.m[1][1]*in_g + mat.m[2][1]*in_b; |
| float out_b = mat.m[0][2]*in_r + mat.m[1][2]*in_g + mat.m[2][2]*in_b; |
| |
| *dest++ = clamp_float(out_r); |
| *dest++ = clamp_float(out_g); |
| *dest++ = clamp_float(out_b); |
| } |
| } |
| |
| static struct qcms_modular_transform* qcms_modular_transform_alloc() { |
| return calloc(1, sizeof(struct qcms_modular_transform)); |
| } |
| |
| static void qcms_modular_transform_release(struct qcms_modular_transform *transform) |
| { |
| struct qcms_modular_transform *next_transform; |
| while (transform != NULL) { |
| next_transform = transform->next_transform; |
| // clut may use a single block of memory. |
| // Perhaps we should remove this to simply the code. |
| if (transform->input_clut_table_r + transform->input_clut_table_length == transform->input_clut_table_g && transform->input_clut_table_g + transform->input_clut_table_length == transform->input_clut_table_b) { |
| if (transform->input_clut_table_r) free(transform->input_clut_table_r); |
| } else { |
| if (transform->input_clut_table_r) free(transform->input_clut_table_r); |
| if (transform->input_clut_table_g) free(transform->input_clut_table_g); |
| if (transform->input_clut_table_b) free(transform->input_clut_table_b); |
| } |
| if (transform->r_clut + 1 == transform->g_clut && transform->g_clut + 1 == transform->b_clut) { |
| if (transform->r_clut) free(transform->r_clut); |
| } else { |
| if (transform->r_clut) free(transform->r_clut); |
| if (transform->g_clut) free(transform->g_clut); |
| if (transform->b_clut) free(transform->b_clut); |
| } |
| if (transform->output_clut_table_r + transform->output_clut_table_length == transform->output_clut_table_g && transform->output_clut_table_g+ transform->output_clut_table_length == transform->output_clut_table_b) { |
| if (transform->output_clut_table_r) free(transform->output_clut_table_r); |
| } else { |
| if (transform->output_clut_table_r) free(transform->output_clut_table_r); |
| if (transform->output_clut_table_g) free(transform->output_clut_table_g); |
| if (transform->output_clut_table_b) free(transform->output_clut_table_b); |
| } |
| if (transform->output_gamma_lut_r) free(transform->output_gamma_lut_r); |
| if (transform->output_gamma_lut_g) free(transform->output_gamma_lut_g); |
| if (transform->output_gamma_lut_b) free(transform->output_gamma_lut_b); |
| free(transform); |
| transform = next_transform; |
| } |
| } |
| |
| /* Set transform to be the next element in the linked list. */ |
| static void append_transform(struct qcms_modular_transform *transform, struct qcms_modular_transform ***next_transform) |
| { |
| **next_transform = transform; |
| while (transform) { |
| *next_transform = &(transform->next_transform); |
| transform = transform->next_transform; |
| } |
| } |
| |
| /* reverse the transformation list (used by mBA) */ |
| static struct qcms_modular_transform* reverse_transform(struct qcms_modular_transform *transform) |
| { |
| struct qcms_modular_transform *prev_transform = NULL; |
| while (transform != NULL) { |
| struct qcms_modular_transform *next_transform = transform->next_transform; |
| transform->next_transform = prev_transform; |
| prev_transform = transform; |
| transform = next_transform; |
| } |
| |
| return prev_transform; |
| } |
| |
| #define EMPTY_TRANSFORM_LIST NULL |
| static struct qcms_modular_transform* qcms_modular_transform_create_mAB(struct lutmABType *lut) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform **next_transform = &first_transform; |
| struct qcms_modular_transform *transform = NULL; |
| |
| if (lut->a_curves[0] != NULL) { |
| size_t clut_length; |
| float *clut; |
| |
| // If the A curve is present this also implies the |
| // presence of a CLUT. |
| if (!lut->clut_table) |
| goto fail; |
| |
| // Prepare A curve. |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->input_clut_table_r = build_input_gamma_table(lut->a_curves[0]); |
| transform->input_clut_table_g = build_input_gamma_table(lut->a_curves[1]); |
| transform->input_clut_table_b = build_input_gamma_table(lut->a_curves[2]); |
| transform->transform_module_fn = qcms_transform_module_gamma_table; |
| if (lut->num_grid_points[0] != lut->num_grid_points[1] || |
| lut->num_grid_points[1] != lut->num_grid_points[2] ) { |
| //XXX: We don't currently support clut that are not squared! |
| goto fail; |
| } |
| |
| // Prepare CLUT |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| clut_length = sizeof(float)*pow(lut->num_grid_points[0], 3)*3; |
| clut = malloc(clut_length); |
| if (!clut) |
| goto fail; |
| memcpy(clut, lut->clut_table, clut_length); |
| transform->r_clut = clut + 0; |
| transform->g_clut = clut + 1; |
| transform->b_clut = clut + 2; |
| transform->grid_size = lut->num_grid_points[0]; |
| transform->transform_module_fn = qcms_transform_module_clut_only; |
| } |
| if (lut->m_curves[0] != NULL) { |
| // M curve imples the presence of a Matrix |
| |
| // Prepare M curve |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->input_clut_table_r = build_input_gamma_table(lut->m_curves[0]); |
| transform->input_clut_table_g = build_input_gamma_table(lut->m_curves[1]); |
| transform->input_clut_table_b = build_input_gamma_table(lut->m_curves[2]); |
| transform->transform_module_fn = qcms_transform_module_gamma_table; |
| |
| // Prepare Matrix |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix = build_mAB_matrix(lut); |
| if (transform->matrix.invalid) |
| goto fail; |
| transform->tx = s15Fixed16Number_to_float(lut->e03); |
| transform->ty = s15Fixed16Number_to_float(lut->e13); |
| transform->tz = s15Fixed16Number_to_float(lut->e23); |
| transform->transform_module_fn = qcms_transform_module_matrix_translate; |
| } |
| if (lut->b_curves[0] != NULL) { |
| // Prepare B curve |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->input_clut_table_r = build_input_gamma_table(lut->b_curves[0]); |
| transform->input_clut_table_g = build_input_gamma_table(lut->b_curves[1]); |
| transform->input_clut_table_b = build_input_gamma_table(lut->b_curves[2]); |
| transform->transform_module_fn = qcms_transform_module_gamma_table; |
| } else { |
| // B curve is mandatory |
| goto fail; |
| } |
| |
| if (lut->reversed) { |
| // mBA are identical to mAB except that the transformation order |
| // is reversed |
| first_transform = reverse_transform(first_transform); |
| } |
| |
| return first_transform; |
| fail: |
| qcms_modular_transform_release(first_transform); |
| return NULL; |
| } |
| |
| static struct qcms_modular_transform* qcms_modular_transform_create_lut(struct lutType *lut) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform **next_transform = &first_transform; |
| struct qcms_modular_transform *transform = NULL; |
| |
| size_t in_curve_len, clut_length, out_curve_len; |
| float *in_curves, *clut, *out_curves; |
| |
| // Prepare Matrix |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix = build_lut_matrix(lut); |
| if (transform->matrix.invalid) |
| goto fail; |
| transform->transform_module_fn = qcms_transform_module_matrix; |
| |
| // Prepare input curves |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| in_curve_len = sizeof(float)*lut->num_input_table_entries * 3; |
| in_curves = malloc(in_curve_len); |
| if (!in_curves) |
| goto fail; |
| memcpy(in_curves, lut->input_table, in_curve_len); |
| transform->input_clut_table_r = in_curves + lut->num_input_table_entries * 0; |
| transform->input_clut_table_g = in_curves + lut->num_input_table_entries * 1; |
| transform->input_clut_table_b = in_curves + lut->num_input_table_entries * 2; |
| transform->input_clut_table_length = lut->num_input_table_entries; |
| |
| // Prepare table |
| clut_length = sizeof(float)*pow(lut->num_clut_grid_points, 3)*3; |
| clut = malloc(clut_length); |
| if (!clut) |
| goto fail; |
| memcpy(clut, lut->clut_table, clut_length); |
| transform->r_clut = clut + 0; |
| transform->g_clut = clut + 1; |
| transform->b_clut = clut + 2; |
| transform->grid_size = lut->num_clut_grid_points; |
| |
| // Prepare output curves |
| out_curve_len = sizeof(float) * lut->num_output_table_entries * 3; |
| out_curves = malloc(out_curve_len); |
| if (!out_curves) |
| goto fail; |
| memcpy(out_curves, lut->output_table, out_curve_len); |
| transform->output_clut_table_r = out_curves + lut->num_output_table_entries * 0; |
| transform->output_clut_table_g = out_curves + lut->num_output_table_entries * 1; |
| transform->output_clut_table_b = out_curves + lut->num_output_table_entries * 2; |
| transform->output_clut_table_length = lut->num_output_table_entries; |
| transform->transform_module_fn = qcms_transform_module_clut; |
| |
| return first_transform; |
| fail: |
| qcms_modular_transform_release(first_transform); |
| return NULL; |
| } |
| |
| struct qcms_modular_transform* qcms_modular_transform_create_input(qcms_profile *in) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform **next_transform = &first_transform; |
| |
| if (in->A2B0) { |
| struct qcms_modular_transform *lut_transform; |
| lut_transform = qcms_modular_transform_create_lut(in->A2B0); |
| if (!lut_transform) |
| goto fail; |
| append_transform(lut_transform, &next_transform); |
| } else if (in->mAB && in->mAB->num_in_channels == 3 && in->mAB->num_out_channels == 3) { |
| struct qcms_modular_transform *mAB_transform; |
| mAB_transform = qcms_modular_transform_create_mAB(in->mAB); |
| if (!mAB_transform) |
| goto fail; |
| append_transform(mAB_transform, &next_transform); |
| |
| } else { |
| struct qcms_modular_transform *transform; |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->input_clut_table_r = build_input_gamma_table(in->redTRC); |
| transform->input_clut_table_g = build_input_gamma_table(in->greenTRC); |
| transform->input_clut_table_b = build_input_gamma_table(in->blueTRC); |
| transform->transform_module_fn = qcms_transform_module_gamma_table; |
| if (!transform->input_clut_table_r || !transform->input_clut_table_g || |
| !transform->input_clut_table_b) { |
| goto fail; |
| } |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix.m[0][0] = 1/1.999969482421875f; |
| transform->matrix.m[0][1] = 0.f; |
| transform->matrix.m[0][2] = 0.f; |
| transform->matrix.m[1][0] = 0.f; |
| transform->matrix.m[1][1] = 1/1.999969482421875f; |
| transform->matrix.m[1][2] = 0.f; |
| transform->matrix.m[2][0] = 0.f; |
| transform->matrix.m[2][1] = 0.f; |
| transform->matrix.m[2][2] = 1/1.999969482421875f; |
| transform->matrix.invalid = false; |
| transform->transform_module_fn = qcms_transform_module_matrix; |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix = build_colorant_matrix(in); |
| transform->transform_module_fn = qcms_transform_module_matrix; |
| } |
| |
| return first_transform; |
| fail: |
| qcms_modular_transform_release(first_transform); |
| return EMPTY_TRANSFORM_LIST; |
| } |
| static struct qcms_modular_transform* qcms_modular_transform_create_output(qcms_profile *out) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform **next_transform = &first_transform; |
| |
| if (out->B2A0) { |
| struct qcms_modular_transform *lut_transform; |
| lut_transform = qcms_modular_transform_create_lut(out->B2A0); |
| if (!lut_transform) |
| goto fail; |
| append_transform(lut_transform, &next_transform); |
| } else if (out->mBA && out->mBA->num_in_channels == 3 && out->mBA->num_out_channels == 3) { |
| struct qcms_modular_transform *lut_transform; |
| lut_transform = qcms_modular_transform_create_mAB(out->mBA); |
| if (!lut_transform) |
| goto fail; |
| append_transform(lut_transform, &next_transform); |
| } else if (out->redTRC && out->greenTRC && out->blueTRC) { |
| struct qcms_modular_transform *transform; |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix = matrix_invert(build_colorant_matrix(out)); |
| transform->transform_module_fn = qcms_transform_module_matrix; |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| transform->matrix.m[0][0] = 1.999969482421875f; |
| transform->matrix.m[0][1] = 0.f; |
| transform->matrix.m[0][2] = 0.f; |
| transform->matrix.m[1][0] = 0.f; |
| transform->matrix.m[1][1] = 1.999969482421875f; |
| transform->matrix.m[1][2] = 0.f; |
| transform->matrix.m[2][0] = 0.f; |
| transform->matrix.m[2][1] = 0.f; |
| transform->matrix.m[2][2] = 1.999969482421875f; |
| transform->matrix.invalid = false; |
| transform->transform_module_fn = qcms_transform_module_matrix; |
| |
| transform = qcms_modular_transform_alloc(); |
| if (!transform) |
| goto fail; |
| append_transform(transform, &next_transform); |
| build_output_lut(out->redTRC, &transform->output_gamma_lut_r, |
| &transform->output_gamma_lut_r_length); |
| build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, |
| &transform->output_gamma_lut_g_length); |
| build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, |
| &transform->output_gamma_lut_b_length); |
| transform->transform_module_fn = qcms_transform_module_gamma_lut; |
| |
| if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || |
| !transform->output_gamma_lut_b) { |
| goto fail; |
| } |
| } else { |
| assert(0 && "Unsupported output profile workflow."); |
| return NULL; |
| } |
| |
| return first_transform; |
| fail: |
| qcms_modular_transform_release(first_transform); |
| return EMPTY_TRANSFORM_LIST; |
| } |
| |
| /* Not Completed |
| // Simplify the transformation chain to an equivalent transformation chain |
| static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform *curr_trans = transform; |
| struct qcms_modular_transform *prev_trans = NULL; |
| while (curr_trans) { |
| struct qcms_modular_transform *next_trans = curr_trans->next_transform; |
| if (curr_trans->transform_module_fn == qcms_transform_module_matrix) { |
| if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) { |
| curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix); |
| goto remove_next; |
| } |
| } |
| if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) { |
| bool isLinear = true; |
| uint16_t i; |
| for (i = 0; isLinear && i < 256; i++) { |
| isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i; |
| isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i; |
| isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i; |
| } |
| goto remove_current; |
| } |
| |
| next_transform: |
| if (!next_trans) break; |
| prev_trans = curr_trans; |
| curr_trans = next_trans; |
| continue; |
| remove_current: |
| if (curr_trans == transform) { |
| //Update head |
| transform = next_trans; |
| } else { |
| prev_trans->next_transform = next_trans; |
| } |
| curr_trans->next_transform = NULL; |
| qcms_modular_transform_release(curr_trans); |
| //return transform; |
| return qcms_modular_transform_reduce(transform); |
| remove_next: |
| curr_trans->next_transform = next_trans->next_transform; |
| next_trans->next_transform = NULL; |
| qcms_modular_transform_release(next_trans); |
| continue; |
| } |
| return transform; |
| } |
| */ |
| |
| static struct qcms_modular_transform* qcms_modular_transform_create(qcms_profile *in, qcms_profile *out) |
| { |
| struct qcms_modular_transform *first_transform = NULL; |
| struct qcms_modular_transform **next_transform = &first_transform; |
| qcms_bool transform_to_pcs_xyz_only = (out == NULL); |
| |
| if (in->color_space == RGB_SIGNATURE) { |
| struct qcms_modular_transform* rgb_to_pcs; |
| rgb_to_pcs = qcms_modular_transform_create_input(in); |
| if (!rgb_to_pcs) |
| goto fail; |
| append_transform(rgb_to_pcs, &next_transform); |
| } else { |
| assert(0 && "input color space not supported"); |
| goto fail; |
| } |
| |
| if (in->pcs == LAB_SIGNATURE && (transform_to_pcs_xyz_only || out->pcs == XYZ_SIGNATURE)) { |
| struct qcms_modular_transform* lab_to_pcs; |
| lab_to_pcs = qcms_modular_transform_alloc(); |
| if (!lab_to_pcs) |
| goto fail; |
| append_transform(lab_to_pcs, &next_transform); |
| lab_to_pcs->transform_module_fn = qcms_transform_module_LAB_to_XYZ; |
| } |
| |
| if (transform_to_pcs_xyz_only) |
| return first_transform; |
| |
| // This does not improve accuracy in practice, something is wrong here. |
| //if (in->chromaticAdaption.invalid == false) { |
| // struct qcms_modular_transform* chromaticAdaption; |
| // chromaticAdaption = qcms_modular_transform_alloc(); |
| // if (!chromaticAdaption) |
| // goto fail; |
| // append_transform(chromaticAdaption, &next_transform); |
| // chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption); |
| // chromaticAdaption->transform_module_fn = qcms_transform_module_matrix; |
| //} |
| |
| if (in->pcs == XYZ_SIGNATURE && out->pcs == LAB_SIGNATURE) { |
| struct qcms_modular_transform* pcs_to_lab; |
| pcs_to_lab = qcms_modular_transform_alloc(); |
| if (!pcs_to_lab) |
| goto fail; |
| append_transform(pcs_to_lab, &next_transform); |
| pcs_to_lab->transform_module_fn = qcms_transform_module_XYZ_to_LAB; |
| } |
| |
| if (out->color_space == RGB_SIGNATURE) { |
| struct qcms_modular_transform* pcs_to_rgb; |
| pcs_to_rgb = qcms_modular_transform_create_output(out); |
| if (!pcs_to_rgb) |
| goto fail; |
| append_transform(pcs_to_rgb, &next_transform); |
| } else { |
| assert(0 && "output color space not supported"); |
| goto fail; |
| } |
| // Not Completed |
| //return qcms_modular_transform_reduce(first_transform); |
| return first_transform; |
| fail: |
| qcms_modular_transform_release(first_transform); |
| return EMPTY_TRANSFORM_LIST; |
| } |
| |
| static float* qcms_modular_transform_data(struct qcms_modular_transform *transform, float *src, float *dest, size_t len) |
| { |
| while (transform != NULL) { |
| // Keep swaping src/dest when performing a transform to use less memory. |
| float *new_src = dest; |
| const transform_module_fn_t transform_fn = transform->transform_module_fn; |
| if (transform_fn != qcms_transform_module_gamma_table && |
| transform_fn != qcms_transform_module_gamma_lut && |
| transform_fn != qcms_transform_module_clut && |
| transform_fn != qcms_transform_module_clut_only && |
| transform_fn != qcms_transform_module_matrix && |
| transform_fn != qcms_transform_module_matrix_translate && |
| transform_fn != qcms_transform_module_LAB_to_XYZ && |
| transform_fn != qcms_transform_module_XYZ_to_LAB) { |
| assert(0 && "Unsupported transform module"); |
| return NULL; |
| } |
| transform->transform_module_fn(transform,src,dest,len); |
| dest = src; |
| src = new_src; |
| transform = transform->next_transform; |
| } |
| // The results end up in the src buffer because of the switching |
| return src; |
| } |
| |
| float* qcms_chain_transform(qcms_profile *in, qcms_profile *out, float *src, float *dest, size_t lutSize) |
| { |
| struct qcms_modular_transform *transform_list = qcms_modular_transform_create(in, out); |
| if (transform_list != NULL) { |
| float *lut = qcms_modular_transform_data(transform_list, src, dest, lutSize/3); |
| qcms_modular_transform_release(transform_list); |
| return lut; |
| } |
| return NULL; |
| } |
| |
| qcms_bool qcms_profile_white_transform(qcms_profile *profile, float XYZ[3]) |
| { |
| const float inverse_internal_scale = 1.999969482421875f; |
| |
| // Set the output profile to NULL to request a color transform to PCS XYZ only. |
| struct qcms_modular_transform *transform_list = qcms_modular_transform_create(profile, NULL); |
| |
| // Now calculate how the profile transforms white input color to PCS XYZ space. |
| if (transform_list != NULL) { |
| XYZ[0] = XYZ[1] = XYZ[2] = 1.0f; // white input |
| qcms_modular_transform_data(transform_list, XYZ, XYZ, 1); |
| // qcms_modular_transform_create internally scales input by 1/1.999969482421875f |
| // but no qcms changelog describes why / how that number was choosen. junov@ "it |
| // might be related to the epsilon of the fixed-point type 2*(1-1/(2^16)), but |
| // there is no explanation, which is disconcerting." Meanwhile, undo the internal |
| // scaling so we return a normalized CIEXYZ value viz., where Y is scaled to 1.0. |
| // A properly created color profile should produce Y=~1.0 in PCS XYZ with white |
| // input (the D50 test). If it does not, then the profile is likely bogus. |
| XYZ[0] *= inverse_internal_scale; |
| XYZ[1] *= inverse_internal_scale; |
| XYZ[2] *= inverse_internal_scale; |
| qcms_modular_transform_release(transform_list); |
| return true; |
| } |
| |
| return false; |
| } |