blob: e115ea06e50249471ad33f221526cfd1ec968e0b [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkCaps.h"
#include "GrBackendSurface.h"
#include "GrRenderTargetProxy.h"
#include "GrRenderTarget.h"
#include "GrShaderCaps.h"
#include "GrVkInterface.h"
#include "GrVkUtil.h"
#include "SkGr.h"
#include "vk/GrVkBackendContext.h"
#include "vk/GrVkExtensions.h"
GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
uint32_t instanceVersion, const GrVkExtensions& extensions)
: INHERITED(contextOptions) {
/**************************************************************************
* GrCaps fields
**************************************************************************/
fMipMapSupport = true; // always available in Vulkan
fSRGBSupport = true; // always available in Vulkan
fNPOTTextureTileSupport = true; // always available in Vulkan
fDiscardRenderTargetSupport = true;
fReuseScratchTextures = true; //TODO: figure this out
fGpuTracingSupport = false; //TODO: figure this out
fCompressedTexSubImageSupport = true;
fOversizedStencilSupport = false; //TODO: figure this out
fInstanceAttribSupport = true;
fFenceSyncSupport = true; // always available in Vulkan
fCrossContextTextureSupport = true;
fHalfFloatVertexAttributeSupport = true;
fMapBufferFlags = kNone_MapFlags; //TODO: figure this out
fBufferMapThreshold = SK_MaxS32; //TODO: figure this out
fMaxRenderTargetSize = 4096; // minimum required by spec
fMaxTextureSize = 4096; // minimum required by spec
fDynamicStateArrayGeometryProcessorTextureSupport = true;
fShaderCaps.reset(new GrShaderCaps(contextOptions));
this->init(contextOptions, vkInterface, physDev, features, extensions);
}
bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc,
GrSurfaceOrigin* origin, bool* rectsMustMatch,
bool* disallowSubrect) const {
// Vk doesn't use rectsMustMatch or disallowSubrect. Always return false.
*rectsMustMatch = false;
*disallowSubrect = false;
// We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa).
// For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a
// render target as well.
*origin = src->origin();
desc->fConfig = src->config();
if (src->numColorSamples() > 1 || src->asTextureProxy()) {
desc->fFlags = kRenderTarget_GrSurfaceFlag;
} else {
// Just going to use CopyImage here
desc->fFlags = kNone_GrSurfaceFlags;
}
return true;
}
bool GrVkCaps::canCopyImage(GrPixelConfig dstConfig, int dstSampleCnt, GrSurfaceOrigin dstOrigin,
GrPixelConfig srcConfig, int srcSampleCnt,
GrSurfaceOrigin srcOrigin) const {
if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
return false;
}
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (srcOrigin != dstOrigin || GrBytesPerPixel(srcConfig) != GrBytesPerPixel(dstConfig)) {
return false;
}
if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
this->shaderCaps()->configOutputSwizzle(dstConfig)) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsBlit(GrPixelConfig dstConfig, int dstSampleCnt, bool dstIsLinear,
GrPixelConfig srcConfig, int srcSampleCnt, bool srcIsLinear) const {
// We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
// as image usage flags.
if (!this->configCanBeDstofBlit(dstConfig, dstIsLinear) ||
!this->configCanBeSrcofBlit(srcConfig, srcIsLinear)) {
return false;
}
if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
this->shaderCaps()->configOutputSwizzle(dstConfig)) {
return false;
}
// We cannot blit images that are multisampled. Will need to figure out if we can blit the
// resolved msaa though.
if (dstSampleCnt > 1 || srcSampleCnt > 1) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsResolve(GrPixelConfig dstConfig, int dstSampleCnt,
GrSurfaceOrigin dstOrigin, GrPixelConfig srcConfig,
int srcSampleCnt, GrSurfaceOrigin srcOrigin) const {
// The src surface must be multisampled.
if (srcSampleCnt <= 1) {
return false;
}
// The dst must not be multisampled.
if (dstSampleCnt > 1) {
return false;
}
// Surfaces must have the same format.
if (dstConfig != srcConfig) {
return false;
}
// Surfaces must have the same origin.
if (srcOrigin != dstOrigin) {
return false;
}
return true;
}
bool GrVkCaps::canCopyAsDraw(GrPixelConfig dstConfig, bool dstIsRenderable,
GrPixelConfig srcConfig, bool srcIsTextureable) const {
// TODO: Make copySurfaceAsDraw handle the swizzle
if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
this->shaderCaps()->configOutputSwizzle(dstConfig)) {
return false;
}
// Make sure the dst is a render target and the src is a texture.
if (!dstIsRenderable || !srcIsTextureable) {
return false;
}
return true;
}
bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
const SkIRect& srcRect, const SkIPoint& dstPoint) const {
GrSurfaceOrigin dstOrigin = dst->origin();
GrSurfaceOrigin srcOrigin = src->origin();
GrPixelConfig dstConfig = dst->config();
GrPixelConfig srcConfig = src->config();
// TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
// PromiseImage which won't get instantiated right away. Does this need a similar thing like the
// tracking of external or rectangle textures in GL? For now we don't create linear textures
// internally, and I don't believe anyone is wrapping them.
bool srcIsLinear = false;
bool dstIsLinear = false;
int dstSampleCnt = 0;
int srcSampleCnt = 0;
if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
dstSampleCnt = rtProxy->numColorSamples();
}
if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
// Copying to or from render targets that wrap a secondary command buffer is not allowed
// since they would require us to know the VkImage, which we don't have, as well as need us
// to stop and start the VkRenderPass which we don't have access to.
if (rtProxy->wrapsVkSecondaryCB()) {
return false;
}
srcSampleCnt = rtProxy->numColorSamples();
}
SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
return this->canCopyImage(dstConfig, dstSampleCnt, dstOrigin,
srcConfig, srcSampleCnt, srcOrigin) ||
this->canCopyAsBlit(dstConfig, dstSampleCnt, dstIsLinear,
srcConfig, srcSampleCnt, srcIsLinear) ||
this->canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin,
srcConfig, srcSampleCnt, srcOrigin) ||
this->canCopyAsDraw(dstConfig, dstSampleCnt > 0,
srcConfig, SkToBool(src->asTextureProxy()));
}
template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
VkStructureType type) {
// All Vulkan structs that could be part of the features chain will start with the
// structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
// so we can get access to the pNext for the next struct.
struct CommonVulkanHeader {
VkStructureType sType;
void* pNext;
};
void* pNext = features.pNext;
while (pNext) {
CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
if (header->sType == type) {
return static_cast<T*>(pNext);
}
pNext = header->pNext;
}
return nullptr;
}
void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
const GrVkExtensions& extensions) {
VkPhysicalDeviceProperties properties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
VkPhysicalDeviceMemoryProperties memoryProperties;
GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
uint32_t physicalDeviceVersion = properties.apiVersion;
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
fSupportsPhysicalDeviceProperties2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
fSupportsMemoryRequirements2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
fSupportsBindMemory2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
fSupportsMaintenance1 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
fSupportsMaintenance2 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
fSupportsMaintenance3 = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
this->supportsMemoryRequirements2())) {
fSupportsDedicatedAllocation = true;
}
if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
this->supportsPhysicalDeviceProperties2() &&
extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
this->supportsDedicatedAllocation())) {
fSupportsExternalMemory = true;
}
#ifdef SK_BUILD_FOR_ANDROID
// Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
// do we don't explicitly require it here even the spec says it is required.
if (extensions.hasExtension(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
/* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
this->supportsExternalMemory() &&
this->supportsBindMemory2()) {
fSupportsAndroidHWBExternalMemory = true;
fSupportsAHardwareBufferImages = true;
}
#endif
auto ycbcrFeatures =
get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
features,
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
fSupportsAndroidHWBExternalMemory &&
(physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
(extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
this->supportsMaintenance1() &&
this->supportsBindMemory2() &&
this->supportsMemoryRequirements2() &&
this->supportsPhysicalDeviceProperties2()))) {
fSupportsYcbcrConversion = true;
}
// We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
// will return a key of 0.
fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
this->initShaderCaps(properties, features);
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
#if defined(SK_CPU_X86)
// We need to do this before initing the config table since it uses fSRGBSupport
if (kImagination_VkVendor == properties.vendorID) {
fSRGBSupport = false;
}
#endif
}
if (kQualcomm_VkVendor == properties.vendorID) {
// A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
// scissored clear.
// On NVIDIA and Intel, the discard load followed by clear is faster.
// TODO: Evaluate on ARM, Imagination, and ATI.
fPreferFullscreenClears = true;
}
this->initConfigTable(vkInterface, physDev, properties);
this->initStencilFormat(vkInterface, physDev);
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
this->applyDriverCorrectnessWorkarounds(properties);
}
// On nexus player we disable suballocating VkImage memory since we've seen large slow downs on
// bot run times.
if (kImagination_VkVendor == properties.vendorID) {
fShouldAlwaysUseDedicatedImageMemory = true;
}
this->applyOptionsOverrides(contextOptions);
fShaderCaps->applyOptionsOverrides(contextOptions);
}
void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
if (kQualcomm_VkVendor == properties.vendorID) {
fMustDoCopiesFromOrigin = true;
}
#if defined(SK_BUILD_FOR_WIN)
if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
fMustSleepOnTearDown = true;
}
#elif defined(SK_BUILD_FOR_ANDROID)
if (kImagination_VkVendor == properties.vendorID) {
fMustSleepOnTearDown = true;
}
#endif
// AMD seems to have issues binding new VkPipelines inside a secondary command buffer.
// Current workaround is to use a different secondary command buffer for each new VkPipeline.
if (kAMD_VkVendor == properties.vendorID) {
fNewCBOnPipelineChange = true;
}
// On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
if (kARM_VkVendor == properties.vendorID) {
fShouldAlwaysUseDedicatedImageMemory = true;
}
////////////////////////////////////////////////////////////////////////////
// GrCaps workarounds
////////////////////////////////////////////////////////////////////////////
if (kARM_VkVendor == properties.vendorID) {
fInstanceAttribSupport = false;
fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
}
// AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
if (kAMD_VkVendor == properties.vendorID) {
fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32);
}
////////////////////////////////////////////////////////////////////////////
// GrShaderCaps workarounds
////////////////////////////////////////////////////////////////////////////
if (kImagination_VkVendor == properties.vendorID) {
fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
}
}
int get_max_sample_count(VkSampleCountFlags flags) {
SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT);
if (!(flags & VK_SAMPLE_COUNT_2_BIT)) {
return 0;
}
if (!(flags & VK_SAMPLE_COUNT_4_BIT)) {
return 2;
}
if (!(flags & VK_SAMPLE_COUNT_8_BIT)) {
return 4;
}
if (!(flags & VK_SAMPLE_COUNT_16_BIT)) {
return 8;
}
if (!(flags & VK_SAMPLE_COUNT_32_BIT)) {
return 16;
}
if (!(flags & VK_SAMPLE_COUNT_64_BIT)) {
return 32;
}
return 64;
}
void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceMemoryProperties& memoryProperties,
const VkPhysicalDeviceFeatures2& features,
const GrVkExtensions& extensions) {
// So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
// need for us ever to support that amount, and it makes tests which tests all the vertex
// attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
// we ever find that need.
static const uint32_t kMaxVertexAttributes = 64;
fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
// We could actually query and get a max size for each config, however maxImageDimension2D will
// give the minimum max size across all configs. So for simplicity we will use that for now.
fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
fMaxTextureSize = SkTMin(fMaxTextureSize, 4096);
}
// Our render targets are always created with textures as the color
// attachment, hence this min:
fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize);
// TODO: check if RT's larger than 4k incur a performance cost on ARM.
fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
// Assuming since we will always map in the end to upload the data we might as well just map
// from the get go. There is no hard data to suggest this is faster or slower.
fBufferMapThreshold = 0;
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
fOversizedStencilSupport = true;
if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
this->supportsPhysicalDeviceProperties2()) {
VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
blendProps.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
blendProps.pNext = nullptr;
VkPhysicalDeviceProperties2 props;
props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
props.pNext = &blendProps;
GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
if (blendProps.advancedBlendAllOperations == VK_TRUE) {
fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
auto blendFeatures =
get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
features,
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
} else {
// TODO: Currently non coherent blends are not supported in our vulkan backend. They
// require us to support self dependencies in our render passes.
// fBlendEquationSupport = kAdvanced_BlendEquationSupport;
}
}
}
}
void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures2& features) {
GrShaderCaps* shaderCaps = fShaderCaps.get();
shaderCaps->fVersionDeclString = "#version 330\n";
// fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config.
for (int i = 0; i < kGrPixelConfigCnt; ++i) {
GrPixelConfig config = static_cast<GrPixelConfig>(i);
// Vulkan doesn't support a single channel format stored in alpha.
if (GrPixelConfigIsAlphaOnly(config) &&
kAlpha_8_as_Alpha_GrPixelConfig != config) {
shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR();
shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA();
} else {
if (kGray_8_GrPixelConfig == config ||
kGray_8_as_Red_GrPixelConfig == config) {
shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA();
} else if (kRGBA_4444_GrPixelConfig == config) {
// The vulkan spec does not require R4G4B4A4 to be supported for texturing so we
// store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads
// or writing to outputs. Since we're not actually changing the data at all, the
// only extra work is the swizzle in the shader for all operations.
shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA();
shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA();
} else {
shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA();
}
}
}
// Vulkan is based off ES 3.0 so the following should all be supported
shaderCaps->fUsesPrecisionModifiers = true;
shaderCaps->fFlatInterpolationSupport = true;
// Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
// to be true with Vulkan as well.
shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
// GrShaderCaps
shaderCaps->fShaderDerivativeSupport = true;
// FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
// shaderCaps->fGeometryShaderSupport =
// shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
shaderCaps->fIntegerSupport = true;
shaderCaps->fVertexIDSupport = true;
shaderCaps->fFPManipulationSupport = true;
// Assume the minimum precisions mandated by the SPIR-V spec.
shaderCaps->fFloatIs32Bits = true;
shaderCaps->fHalfIs32Bits = false;
// SPIR-V supports unsigned integers.
shaderCaps->fUnsignedSupport = true;
shaderCaps->fMaxFragmentSamplers = SkTMin(
SkTMin(properties.limits.maxPerStageDescriptorSampledImages,
properties.limits.maxPerStageDescriptorSamplers),
(uint32_t)INT_MAX);
}
bool stencil_format_supported(const GrVkInterface* interface,
VkPhysicalDevice physDev,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
}
void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
// List of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least. We are guaranteed to have either
// VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
// can optionally have 24 unused bits at the end so we assume the total bits is 64.
static const StencilFormat
// internal Format stencil bits total bits packed?
gS8 = { VK_FORMAT_S8_UINT, 8, 8, false },
gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true },
gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true };
if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
fPreferredStencilFormat = gS8;
} else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
fPreferredStencilFormat = gD24S8;
} else {
SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
fPreferredStencilFormat = gD32S8;
}
}
void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties) {
for (int i = 0; i < kGrPixelConfigCnt; ++i) {
VkFormat format;
if (GrPixelConfigToVkFormat(static_cast<GrPixelConfig>(i), &format)) {
if (!GrPixelConfigIsSRGB(static_cast<GrPixelConfig>(i)) || fSRGBSupport) {
fConfigTable[i].init(interface, physDev, properties, format);
}
}
}
}
void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
*flags = *flags | kTextureable_Flag;
// Ganesh assumes that all renderable surfaces are also texturable
if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
*flags = *flags | kRenderable_Flag;
}
}
if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
*flags = *flags | kBlitSrc_Flag;
}
if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
*flags = *flags | kBlitDst_Flag;
}
}
void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& physProps,
VkFormat format) {
VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkImageFormatProperties properties;
GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
format,
VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL,
usage,
0, // createFlags
&properties));
VkSampleCountFlags flags = properties.sampleCounts;
if (flags & VK_SAMPLE_COUNT_1_BIT) {
fColorSampleCounts.push_back(1);
}
if (kImagination_VkVendor == physProps.vendorID) {
// MSAA does not work on imagination
return;
}
if (flags & VK_SAMPLE_COUNT_2_BIT) {
fColorSampleCounts.push_back(2);
}
if (flags & VK_SAMPLE_COUNT_4_BIT) {
fColorSampleCounts.push_back(4);
}
if (flags & VK_SAMPLE_COUNT_8_BIT) {
fColorSampleCounts.push_back(8);
}
if (flags & VK_SAMPLE_COUNT_16_BIT) {
fColorSampleCounts.push_back(16);
}
if (flags & VK_SAMPLE_COUNT_32_BIT) {
fColorSampleCounts.push_back(32);
}
if (flags & VK_SAMPLE_COUNT_64_BIT) {
fColorSampleCounts.push_back(64);
}
}
void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface,
VkPhysicalDevice physDev,
const VkPhysicalDeviceProperties& properties,
VkFormat format) {
VkFormatProperties props;
memset(&props, 0, sizeof(VkFormatProperties));
GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
InitConfigFlags(props.linearTilingFeatures, &fLinearFlags);
InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags);
if (fOptimalFlags & kRenderable_Flag) {
this->initSampleCounts(interface, physDev, properties, format);
}
}
int GrVkCaps::getRenderTargetSampleCount(int requestedCount, GrPixelConfig config) const {
requestedCount = SkTMax(1, requestedCount);
int count = fConfigTable[config].fColorSampleCounts.count();
if (!count) {
return 0;
}
if (1 == requestedCount) {
SkASSERT(fConfigTable[config].fColorSampleCounts.count() &&
fConfigTable[config].fColorSampleCounts[0] == 1);
return 1;
}
for (int i = 0; i < count; ++i) {
if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) {
return fConfigTable[config].fColorSampleCounts[i];
}
}
return 0;
}
int GrVkCaps::maxRenderTargetSampleCount(GrPixelConfig config) const {
const auto& table = fConfigTable[config].fColorSampleCounts;
if (!table.count()) {
return 0;
}
return table[table.count() - 1];
}
bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
if (auto rt = surface->asRenderTarget()) {
return rt->numColorSamples() <= 1 && SkToBool(surface->asTexture());
}
return true;
}
GrPixelConfig validate_image_info(VkFormat format, SkColorType ct, bool hasYcbcrConversion) {
if (format == VK_FORMAT_UNDEFINED) {
// If the format is undefined then it is only valid as an external image which requires that
// we have a valid VkYcbcrConversion.
if (hasYcbcrConversion) {
// We don't actually care what the color type or config are since we won't use those
// values for external textures, but since our code requires setting a config here
// just default it to RGBA.
return kRGBA_8888_GrPixelConfig;
} else {
return kUnknown_GrPixelConfig;
}
}
if (hasYcbcrConversion) {
// We only support having a ycbcr conversion for external images.
return kUnknown_GrPixelConfig;
}
switch (ct) {
case kUnknown_SkColorType:
break;
case kAlpha_8_SkColorType:
if (VK_FORMAT_R8_UNORM == format) {
return kAlpha_8_as_Red_GrPixelConfig;
}
break;
case kRGB_565_SkColorType:
if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) {
return kRGB_565_GrPixelConfig;
}
break;
case kARGB_4444_SkColorType:
if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format) {
return kRGBA_4444_GrPixelConfig;
}
break;
case kRGBA_8888_SkColorType:
if (VK_FORMAT_R8G8B8A8_UNORM == format) {
return kRGBA_8888_GrPixelConfig;
} else if (VK_FORMAT_R8G8B8A8_SRGB == format) {
return kSRGBA_8888_GrPixelConfig;
}
break;
case kRGB_888x_SkColorType:
if (VK_FORMAT_R8G8B8_UNORM == format) {
return kRGB_888_GrPixelConfig;
}
break;
case kBGRA_8888_SkColorType:
if (VK_FORMAT_B8G8R8A8_UNORM == format) {
return kBGRA_8888_GrPixelConfig;
} else if (VK_FORMAT_B8G8R8A8_SRGB == format) {
return kSBGRA_8888_GrPixelConfig;
}
break;
case kRGBA_1010102_SkColorType:
if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) {
return kRGBA_1010102_GrPixelConfig;
}
break;
case kRGB_101010x_SkColorType:
return kUnknown_GrPixelConfig;
case kGray_8_SkColorType:
if (VK_FORMAT_R8_UNORM == format) {
return kGray_8_as_Red_GrPixelConfig;
}
break;
case kRGBA_F16_SkColorType:
if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
return kRGBA_half_GrPixelConfig;
}
break;
case kRGBA_F32_SkColorType:
if (VK_FORMAT_R32G32B32A32_SFLOAT == format) {
return kRGBA_float_GrPixelConfig;
}
break;
}
return kUnknown_GrPixelConfig;
}
GrPixelConfig GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt,
SkColorType ct) const {
GrVkImageInfo imageInfo;
if (!rt.getVkImageInfo(&imageInfo)) {
return kUnknown_GrPixelConfig;
}
return validate_image_info(imageInfo.fFormat, ct, imageInfo.fYcbcrConversionInfo.isValid());
}
GrPixelConfig GrVkCaps::getConfigFromBackendFormat(const GrBackendFormat& format,
SkColorType ct) const {
const VkFormat* vkFormat = format.getVkFormat();
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
if (!vkFormat || !ycbcrInfo) {
return kUnknown_GrPixelConfig;
}
return validate_image_info(*vkFormat, ct, ycbcrInfo->isValid());
}
static GrPixelConfig get_yuva_config(VkFormat vkFormat) {
switch (vkFormat) {
case VK_FORMAT_R8_UNORM:
return kAlpha_8_as_Red_GrPixelConfig;
case VK_FORMAT_R8G8B8A8_UNORM:
return kRGBA_8888_GrPixelConfig;
case VK_FORMAT_R8G8B8_UNORM:
return kRGB_888_GrPixelConfig;
case VK_FORMAT_R8G8_UNORM:
return kRG_88_GrPixelConfig;
case VK_FORMAT_B8G8R8A8_UNORM:
return kBGRA_8888_GrPixelConfig;
default:
return kUnknown_GrPixelConfig;
}
}
GrPixelConfig GrVkCaps::getYUVAConfigFromBackendFormat(const GrBackendFormat& format) const {
const VkFormat* vkFormat = format.getVkFormat();
if (!vkFormat) {
return kUnknown_GrPixelConfig;
}
return get_yuva_config(*vkFormat);
}
GrBackendFormat GrVkCaps::getBackendFormatFromGrColorType(GrColorType ct,
GrSRGBEncoded srgbEncoded) const {
GrPixelConfig config = GrColorTypeToPixelConfig(ct, srgbEncoded);
if (config == kUnknown_GrPixelConfig) {
return GrBackendFormat();
}
VkFormat format;
if (!GrPixelConfigToVkFormat(config, &format)) {
return GrBackendFormat();
}
return GrBackendFormat::MakeVk(format);
}