/* | |
* Copyright 2011 Google Inc. | |
* | |
* Use of this source code is governed by a BSD-style license that can be | |
* found in the LICENSE file. | |
*/ | |
#include "SkAutoMalloc.h" | |
#include "SkCanvas.h" | |
#include "SkGeometry.h" | |
#include "SkNullCanvas.h" | |
#include "SkPaint.h" | |
#include "SkParse.h" | |
#include "SkParsePath.h" | |
#include "SkPathEffect.h" | |
#include "SkPathPriv.h" | |
#include "SkRRect.h" | |
#include "SkRandom.h" | |
#include "SkReader32.h" | |
#include "SkSize.h" | |
#include "SkStream.h" | |
#include "SkStrokeRec.h" | |
#include "SkSurface.h" | |
#include "SkWriter32.h" | |
#include "Test.h" | |
#include <cmath> | |
static void set_radii(SkVector radii[4], int index, float rad) { | |
sk_bzero(radii, sizeof(SkVector) * 4); | |
radii[index].set(rad, rad); | |
} | |
static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds, | |
const SkVector radii[4]) { | |
SkRRect rrect; | |
rrect.setRectRadii(bounds, radii); | |
REPORTER_ASSERT(reporter, bounds == rrect.rect()); | |
SkPath path; | |
// this line should not assert in the debug build (from validate) | |
path.addRRect(rrect); | |
REPORTER_ASSERT(reporter, bounds == path.getBounds()); | |
} | |
static void test_skbug_3469(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(20, 20); | |
path.quadTo(20, 50, 80, 50); | |
path.quadTo(20, 50, 20, 80); | |
REPORTER_ASSERT(reporter, !path.isConvex()); | |
} | |
static void test_skbug_3239(skiatest::Reporter* reporter) { | |
const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */ | |
const float max = SkBits2Float(0x4b7f1c1d); /* 16718877.000000 */ | |
const float big = SkBits2Float(0x4b7f1bd7); /* 16718807.000000 */ | |
const float rad = 33436320; | |
const SkRect rectx = SkRect::MakeLTRB(min, min, max, big); | |
const SkRect recty = SkRect::MakeLTRB(min, min, big, max); | |
SkVector radii[4]; | |
for (int i = 0; i < 4; ++i) { | |
set_radii(radii, i, rad); | |
test_add_rrect(reporter, rectx, radii); | |
test_add_rrect(reporter, recty, radii); | |
} | |
} | |
static void make_path_crbug364224(SkPath* path) { | |
path->reset(); | |
path->moveTo(3.747501373f, 2.724499941f); | |
path->lineTo(3.747501373f, 3.75f); | |
path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f); | |
path->lineTo(0.7475013733f, 4.0f); | |
path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f); | |
path->lineTo(0.4975013733f, 1.0f); | |
path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f); | |
path->lineTo(3.497501373f, 0.75f); | |
path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f); | |
path->lineTo(3.715001345f, 0.5512499809f); | |
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); | |
path->lineTo(0.7475013733f, 0.4999999702f); | |
path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f); | |
path->lineTo(0.2475013733f, 3.75f); | |
path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f); | |
path->lineTo(3.497501373f, 4.25f); | |
path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f); | |
path->lineTo(3.997501373f, 2.474750042f); | |
path->lineTo(3.747501373f, 2.724499941f); | |
path->close(); | |
} | |
static void make_path_crbug364224_simplified(SkPath* path) { | |
path->moveTo(3.747501373f, 2.724499941f); | |
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f); | |
path->close(); | |
} | |
static void test_sect_with_horizontal_needs_pinning() { | |
// Test that sect_with_horizontal in SkLineClipper.cpp needs to pin after computing the | |
// intersection. | |
SkPath path; | |
path.reset(); | |
path.moveTo(-540000, -720000); | |
path.lineTo(-9.10000017e-05f, 9.99999996e-13f); | |
path.lineTo(1, 1); | |
// Without the pinning code in sect_with_horizontal(), this would assert in the lineclipper | |
SkPaint paint; | |
SkSurface::MakeRasterN32Premul(10, 10)->getCanvas()->drawPath(path, paint); | |
} | |
static void test_path_crbug364224() { | |
SkPath path; | |
SkPaint paint; | |
auto surface(SkSurface::MakeRasterN32Premul(84, 88)); | |
SkCanvas* canvas = surface->getCanvas(); | |
make_path_crbug364224_simplified(&path); | |
canvas->drawPath(path, paint); | |
make_path_crbug364224(&path); | |
canvas->drawPath(path, paint); | |
} | |
// this is a unit test instead of a GM because it doesn't draw anything | |
static void test_fuzz_crbug_638223() { | |
auto surface(SkSurface::MakeRasterN32Premul(250, 250)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x47452a00), SkBits2Float(0x43211d01)); // 50474, 161.113f | |
path.conicTo(SkBits2Float(0x401c0000), SkBits2Float(0x40680000), | |
SkBits2Float(0x02c25a81), SkBits2Float(0x981a1fa0), | |
SkBits2Float(0x6bf9abea)); // 2.4375f, 3.625f, 2.85577e-37f, -1.992e-24f, 6.03669e+26f | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
canvas->drawPath(path, paint); | |
} | |
static void test_fuzz_crbug_643933() { | |
auto surface(SkSurface::MakeRasterN32Premul(250, 250)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(0, 0); | |
path.conicTo(SkBits2Float(0x002001f2), SkBits2Float(0x4161ffff), // 2.93943e-39f, 14.125f | |
SkBits2Float(0x49f7224d), SkBits2Float(0x45eec8df), // 2.02452e+06f, 7641.11f | |
SkBits2Float(0x721aee0c)); // 3.0687e+30f | |
canvas->drawPath(path, paint); | |
path.reset(); | |
path.moveTo(0, 0); | |
path.conicTo(SkBits2Float(0x00007ff2), SkBits2Float(0x4169ffff), // 4.58981e-41f, 14.625f | |
SkBits2Float(0x43ff2261), SkBits2Float(0x41eeea04), // 510.269f, 29.8643f | |
SkBits2Float(0x5d06eff8)); // 6.07704e+17f | |
canvas->drawPath(path, paint); | |
} | |
static void test_fuzz_crbug_647922() { | |
auto surface(SkSurface::MakeRasterN32Premul(250, 250)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(0, 0); | |
path.conicTo(SkBits2Float(0x00003939), SkBits2Float(0x42487fff), // 2.05276e-41f, 50.125f | |
SkBits2Float(0x48082361), SkBits2Float(0x4408e8e9), // 139406, 547.639f | |
SkBits2Float(0x4d1ade0f)); // 1.6239e+08f | |
canvas->drawPath(path, paint); | |
} | |
static void test_fuzz_crbug_662780() { | |
auto surface(SkSurface::MakeRasterN32Premul(250, 250)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 | |
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x42f00000)); // 8, 120 | |
// 8, 8, 8.00002f, 8, 0.707107f | |
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x41000000), | |
SkBits2Float(0x41000010), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); | |
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000)); // 308, 8 | |
// 308, 8, 308, 8, 0.707107f | |
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000), | |
SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3)); | |
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000)); // 308, 158 | |
// 308, 158, 308, 158, 0.707107f | |
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), | |
SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); | |
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158 | |
// 8, 158, 8, 158, 0.707107f | |
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000), | |
SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3)); | |
path.close(); | |
canvas->clipPath(path, true); | |
canvas->drawRect(SkRect::MakeWH(250, 250), paint); | |
} | |
static void test_mask_overflow() { | |
auto surface(SkSurface::MakeRasterN32Premul(500, 500)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 | |
path.lineTo(SkBits2Float(0x43de6000), SkBits2Float(0x43aa8000)); // 444.75f, 341 | |
// 440.47f, 341, 437, 344.47f, 437, 348.75f | |
path.cubicTo(SkBits2Float(0x43dc3c29), SkBits2Float(0x43aa8000), | |
SkBits2Float(0x43da8000), SkBits2Float(0x43ac3c29), | |
SkBits2Float(0x43da8000), SkBits2Float(0x43ae6000)); | |
path.lineTo(SkBits2Float(0x43da8000), SkBits2Float(0x43b18000)); // 437, 355 | |
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43b18000)); // 453, 355 | |
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341 | |
canvas->drawPath(path, paint); | |
} | |
static void test_fuzz_crbug_668907() { | |
auto surface(SkSurface::MakeRasterN32Premul(400, 500)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f | |
path.quadTo(SkBits2Float(0x41410041), SkBits2Float(0xc1414141), SkBits2Float(0x41414141), | |
SkBits2Float(0x414100ff)); // 12.0626f, -12.0784f, 12.0784f, 12.0627f | |
path.lineTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f | |
path.close(); | |
canvas->drawPath(path, paint); | |
} | |
/** | |
* In debug mode, this path was causing an assertion to fail in | |
* SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value. | |
*/ | |
static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) { | |
SkPoint orig, p1, p2, p3; | |
orig = SkPoint::Make(1.f, 1.f); | |
p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f); | |
p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero); | |
p3 = SkPoint::Make(2.f, 2.f); | |
path->reset(); | |
path->moveTo(orig); | |
path->cubicTo(p1, p2, p3); | |
path->close(); | |
} | |
static void test_path_crbugskia2820(skiatest::Reporter* reporter) {//GrContext* context) { | |
SkPath path; | |
make_path_crbugskia2820(&path, reporter); | |
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); | |
stroke.setStrokeStyle(2 * SK_Scalar1); | |
stroke.applyToPath(&path, path); | |
} | |
static void test_path_crbugskia5995() { | |
auto surface(SkSurface::MakeRasterN32Premul(500, 500)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x40303030), SkBits2Float(0x3e303030)); // 2.75294f, 0.172059f | |
path.quadTo(SkBits2Float(0x41d63030), SkBits2Float(0x30303030), SkBits2Float(0x41013030), | |
SkBits2Float(0x00000000)); // 26.7735f, 6.40969e-10f, 8.07426f, 0 | |
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 | |
canvas->drawPath(path, paint); | |
} | |
static void make_path0(SkPath* path) { | |
// from * https://code.google.com/p/skia/issues/detail?id=1706 | |
path->moveTo(146.939f, 1012.84f); | |
path->lineTo(181.747f, 1009.18f); | |
path->lineTo(182.165f, 1013.16f); | |
path->lineTo(147.357f, 1016.82f); | |
path->lineTo(146.939f, 1012.84f); | |
path->close(); | |
} | |
static void make_path1(SkPath* path) { | |
path->addRect(SkRect::MakeXYWH(10, 10, 10, 1)); | |
} | |
typedef void (*PathProc)(SkPath*); | |
/* | |
* Regression test: we used to crash (overwrite internal storage) during | |
* construction of the region when the path was INVERSE. That is now fixed, | |
* so test these regions (which used to assert/crash). | |
* | |
* https://code.google.com/p/skia/issues/detail?id=1706 | |
*/ | |
static void test_path_to_region(skiatest::Reporter* reporter) { | |
PathProc procs[] = { | |
make_path0, | |
make_path1, | |
}; | |
SkRegion clip; | |
clip.setRect(0, 0, 1255, 1925); | |
for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) { | |
SkPath path; | |
procs[i](&path); | |
SkRegion rgn; | |
rgn.setPath(path, clip); | |
path.toggleInverseFillType(); | |
rgn.setPath(path, clip); | |
} | |
} | |
#ifdef SK_BUILD_FOR_WIN | |
#define SUPPRESS_VISIBILITY_WARNING | |
#else | |
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden"))) | |
#endif | |
static void test_path_close_issue1474(skiatest::Reporter* reporter) { | |
// This test checks that r{Line,Quad,Conic,Cubic}To following a close() | |
// are relative to the point we close to, not relative to the point we close from. | |
SkPath path; | |
SkPoint last; | |
// Test rLineTo(). | |
path.rLineTo(0, 100); | |
path.rLineTo(100, 0); | |
path.close(); // Returns us back to 0,0. | |
path.rLineTo(50, 50); // This should go to 50,50. | |
path.getLastPt(&last); | |
REPORTER_ASSERT(reporter, 50 == last.fX); | |
REPORTER_ASSERT(reporter, 50 == last.fY); | |
// Test rQuadTo(). | |
path.rewind(); | |
path.rLineTo(0, 100); | |
path.rLineTo(100, 0); | |
path.close(); | |
path.rQuadTo(50, 50, 75, 75); | |
path.getLastPt(&last); | |
REPORTER_ASSERT(reporter, 75 == last.fX); | |
REPORTER_ASSERT(reporter, 75 == last.fY); | |
// Test rConicTo(). | |
path.rewind(); | |
path.rLineTo(0, 100); | |
path.rLineTo(100, 0); | |
path.close(); | |
path.rConicTo(50, 50, 85, 85, 2); | |
path.getLastPt(&last); | |
REPORTER_ASSERT(reporter, 85 == last.fX); | |
REPORTER_ASSERT(reporter, 85 == last.fY); | |
// Test rCubicTo(). | |
path.rewind(); | |
path.rLineTo(0, 100); | |
path.rLineTo(100, 0); | |
path.close(); | |
path.rCubicTo(50, 50, 85, 85, 95, 95); | |
path.getLastPt(&last); | |
REPORTER_ASSERT(reporter, 95 == last.fX); | |
REPORTER_ASSERT(reporter, 95 == last.fY); | |
} | |
static void test_gen_id(skiatest::Reporter* reporter) { | |
SkPath a, b; | |
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); | |
a.moveTo(0, 0); | |
const uint32_t z = a.getGenerationID(); | |
REPORTER_ASSERT(reporter, z != b.getGenerationID()); | |
a.reset(); | |
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID()); | |
a.moveTo(1, 1); | |
const uint32_t y = a.getGenerationID(); | |
REPORTER_ASSERT(reporter, z != y); | |
b.moveTo(2, 2); | |
const uint32_t x = b.getGenerationID(); | |
REPORTER_ASSERT(reporter, x != y && x != z); | |
a.swap(b); | |
REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x); | |
b = a; | |
REPORTER_ASSERT(reporter, b.getGenerationID() == x); | |
SkPath c(a); | |
REPORTER_ASSERT(reporter, c.getGenerationID() == x); | |
c.lineTo(3, 3); | |
const uint32_t w = c.getGenerationID(); | |
REPORTER_ASSERT(reporter, b.getGenerationID() == x); | |
REPORTER_ASSERT(reporter, a.getGenerationID() == x); | |
REPORTER_ASSERT(reporter, w != x); | |
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK | |
static bool kExpectGenIDToIgnoreFill = false; | |
#else | |
static bool kExpectGenIDToIgnoreFill = true; | |
#endif | |
c.toggleInverseFillType(); | |
const uint32_t v = c.getGenerationID(); | |
REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill); | |
c.rewind(); | |
REPORTER_ASSERT(reporter, v != c.getGenerationID()); | |
} | |
// This used to assert in the debug build, as the edges did not all line-up. | |
static void test_bad_cubic_crbug234190() { | |
SkPath path; | |
path.moveTo(13.8509f, 3.16858f); | |
path.cubicTo(-2.35893e+08f, -4.21044e+08f, | |
-2.38991e+08f, -4.26573e+08f, | |
-2.41016e+08f, -4.30188e+08f); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
auto surface(SkSurface::MakeRasterN32Premul(84, 88)); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
static void test_bad_cubic_crbug229478() { | |
const SkPoint pts[] = { | |
{ 4595.91064f, -11596.9873f }, | |
{ 4597.2168f, -11595.9414f }, | |
{ 4598.52344f, -11594.8955f }, | |
{ 4599.83008f, -11593.8496f }, | |
}; | |
SkPath path; | |
path.moveTo(pts[0]); | |
path.cubicTo(pts[1], pts[2], pts[3]); | |
SkPaint paint; | |
paint.setStyle(SkPaint::kStroke_Style); | |
paint.setStrokeWidth(20); | |
SkPath dst; | |
// Before the fix, this would infinite-recurse, and run out of stack | |
// because we would keep trying to subdivide a degenerate cubic segment. | |
paint.getFillPath(path, &dst, nullptr); | |
} | |
static void build_path_170666(SkPath& path) { | |
path.moveTo(17.9459f, 21.6344f); | |
path.lineTo(139.545f, -47.8105f); | |
path.lineTo(139.545f, -47.8105f); | |
path.lineTo(131.07f, -47.3888f); | |
path.lineTo(131.07f, -47.3888f); | |
path.lineTo(122.586f, -46.9532f); | |
path.lineTo(122.586f, -46.9532f); | |
path.lineTo(18076.6f, 31390.9f); | |
path.lineTo(18076.6f, 31390.9f); | |
path.lineTo(18085.1f, 31390.5f); | |
path.lineTo(18085.1f, 31390.5f); | |
path.lineTo(18076.6f, 31390.9f); | |
path.lineTo(18076.6f, 31390.9f); | |
path.lineTo(17955, 31460.3f); | |
path.lineTo(17955, 31460.3f); | |
path.lineTo(17963.5f, 31459.9f); | |
path.lineTo(17963.5f, 31459.9f); | |
path.lineTo(17971.9f, 31459.5f); | |
path.lineTo(17971.9f, 31459.5f); | |
path.lineTo(17.9551f, 21.6205f); | |
path.lineTo(17.9551f, 21.6205f); | |
path.lineTo(9.47091f, 22.0561f); | |
path.lineTo(9.47091f, 22.0561f); | |
path.lineTo(17.9459f, 21.6344f); | |
path.lineTo(17.9459f, 21.6344f); | |
path.close();path.moveTo(0.995934f, 22.4779f); | |
path.lineTo(0.986725f, 22.4918f); | |
path.lineTo(0.986725f, 22.4918f); | |
path.lineTo(17955, 31460.4f); | |
path.lineTo(17955, 31460.4f); | |
path.lineTo(17971.9f, 31459.5f); | |
path.lineTo(17971.9f, 31459.5f); | |
path.lineTo(18093.6f, 31390.1f); | |
path.lineTo(18093.6f, 31390.1f); | |
path.lineTo(18093.6f, 31390); | |
path.lineTo(18093.6f, 31390); | |
path.lineTo(139.555f, -47.8244f); | |
path.lineTo(139.555f, -47.8244f); | |
path.lineTo(122.595f, -46.9671f); | |
path.lineTo(122.595f, -46.9671f); | |
path.lineTo(0.995934f, 22.4779f); | |
path.lineTo(0.995934f, 22.4779f); | |
path.close(); | |
path.moveTo(5.43941f, 25.5223f); | |
path.lineTo(798267, -28871.1f); | |
path.lineTo(798267, -28871.1f); | |
path.lineTo(3.12512e+06f, -113102); | |
path.lineTo(3.12512e+06f, -113102); | |
path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813); | |
path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f); | |
path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f); | |
path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f); | |
path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f); | |
path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f); | |
path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f); | |
path.lineTo(2.78271e+08f, -1.00733e+07f); | |
path.lineTo(2.78271e+08f, -1.00733e+07f); | |
path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f); | |
path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f); | |
path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f); | |
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | |
path.lineTo(2.77473e+08f, -1.00444e+07f); | |
path.lineTo(2.77473e+08f, -1.00444e+07f); | |
path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f); | |
path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f); | |
path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f); | |
path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f); | |
path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f); | |
path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814); | |
path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103); | |
path.lineTo(798284, -28872); | |
path.lineTo(798284, -28872); | |
path.lineTo(22.4044f, 24.6677f); | |
path.lineTo(22.4044f, 24.6677f); | |
path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f); | |
path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f); | |
path.close(); | |
} | |
static void build_path_simple_170666(SkPath& path) { | |
path.moveTo(126.677f, 24.1591f); | |
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f); | |
} | |
// This used to assert in the SK_DEBUG build, as the clip step would fail with | |
// too-few interations in our cubic-line intersection code. That code now runs | |
// 24 interations (instead of 16). | |
static void test_crbug_170666() { | |
SkPath path; | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
auto surface(SkSurface::MakeRasterN32Premul(1000, 1000)); | |
build_path_simple_170666(path); | |
surface->getCanvas()->drawPath(path, paint); | |
build_path_170666(path); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
static void test_tiny_path_convexity(skiatest::Reporter* reporter, const char* pathBug, | |
SkScalar tx, SkScalar ty, SkScalar scale) { | |
SkPath smallPath; | |
SkAssertResult(SkParsePath::FromSVGString(pathBug, &smallPath)); | |
bool smallConvex = smallPath.isConvex(); | |
SkPath largePath; | |
SkAssertResult(SkParsePath::FromSVGString(pathBug, &largePath)); | |
SkMatrix matrix; | |
matrix.reset(); | |
matrix.preTranslate(100, 100); | |
matrix.preScale(scale, scale); | |
largePath.transform(matrix); | |
bool largeConvex = largePath.isConvex(); | |
REPORTER_ASSERT(reporter, smallConvex == largeConvex); | |
} | |
static void test_crbug_493450(skiatest::Reporter* reporter) { | |
const char reducedCase[] = | |
"M0,0" | |
"L0.0002, 0" | |
"L0.0002, 0.0002" | |
"L0.0001, 0.0001" | |
"L0,0.0002" | |
"Z"; | |
test_tiny_path_convexity(reporter, reducedCase, 100, 100, 100000); | |
const char originalFiddleData[] = | |
"M-0.3383152268862998,-0.11217565719203619L-0.33846085183212765,-0.11212264406895281" | |
"L-0.338509393480737,-0.11210607966681395L-0.33857792286700894,-0.1121889121487573" | |
"L-0.3383866116636664,-0.11228834570924921L-0.33842087635680235,-0.11246078673250548" | |
"L-0.33809536177201055,-0.11245415228342878L-0.33797257995493996,-0.11216571641452182" | |
"L-0.33802112160354925,-0.11201996164188659L-0.33819815585141844,-0.11218559834671019Z"; | |
test_tiny_path_convexity(reporter, originalFiddleData, 280081.4116670522f, 93268.04618493588f, | |
826357.3384828606f); | |
} | |
static void test_crbug_495894(skiatest::Reporter* reporter) { | |
const char originalFiddleData[] = | |
"M-0.34004273849857214,-0.11332803232216355L-0.34008271397389744,-0.11324483772714951" | |
"L-0.3401940742265893,-0.11324483772714951L-0.34017694188002134,-0.11329807920275889" | |
"L-0.3402026403998733,-0.11333468903941245L-0.34029972369709194,-0.11334134592705701" | |
"L-0.3403054344792813,-0.11344121970007795L-0.3403140006525653,-0.11351115418399343" | |
"L-0.34024261587519866,-0.11353446986281181L-0.3402197727464413,-0.11360442946144192" | |
"L-0.34013696640469604,-0.11359110237029302L-0.34009128014718143,-0.1135877707043939" | |
"L-0.3400598708451401,-0.11360776134112742L-0.34004273849857214,-0.11355112520064405" | |
"L-0.3400113291965308,-0.11355112520064405L-0.3399970522410575,-0.11359110237029302" | |
"L-0.33997135372120546,-0.11355112520064405L-0.3399627875479215,-0.11353780084493197" | |
"L-0.3399485105924481,-0.11350782354357004L-0.3400027630232468,-0.11346452910331437" | |
"L-0.3399485105924481,-0.11340126558629839L-0.33993994441916414,-0.11340126558629839" | |
"L-0.33988283659727087,-0.11331804756574679L-0.33989140277055485,-0.11324483772714951" | |
"L-0.33997991989448945,-0.11324483772714951L-0.3399856306766788,-0.11324483772714951" | |
"L-0.34002560615200417,-0.11334467443478255ZM-0.3400684370184241,-0.11338461985124307" | |
"L-0.340154098751264,-0.11341791238732665L-0.340162664924548,-0.1134378899559977" | |
"L-0.34017979727111597,-0.11340126558629839L-0.3401655203156427,-0.11338129083212668" | |
"L-0.34012268944922275,-0.11332137577529414L-0.34007414780061346,-0.11334467443478255Z" | |
"M-0.3400027630232468,-0.11290567901106024L-0.3400113291965308,-0.11298876531245433" | |
"L-0.33997991989448945,-0.11301535852306784L-0.33990282433493346,-0.11296217481488612" | |
"L-0.33993994441916414,-0.11288906492739594Z"; | |
test_tiny_path_convexity(reporter, originalFiddleData, 22682.240000000005f,7819.72220766405f, | |
65536); | |
} | |
static void test_crbug_613918() { | |
SkPath path; | |
path.conicTo(-6.62478e-08f, 4.13885e-08f, -6.36935e-08f, 3.97927e-08f, 0.729058f); | |
path.quadTo(2.28206e-09f, -1.42572e-09f, 3.91919e-09f, -2.44852e-09f); | |
path.cubicTo(-16752.2f, -26792.9f, -21.4673f, 10.9347f, -8.57322f, -7.22739f); | |
// This call could lead to an assert or uninitialized read due to a failure | |
// to check the return value from SkCubicClipper::ChopMonoAtY. | |
path.contains(-1.84817e-08f, 1.15465e-08f); | |
} | |
static void test_addrect(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.lineTo(0, 0); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, path.isRect(nullptr)); | |
path.reset(); | |
path.lineTo(FLT_EPSILON, FLT_EPSILON); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, !path.isRect(nullptr)); | |
path.reset(); | |
path.quadTo(0, 0, 0, 0); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, !path.isRect(nullptr)); | |
path.reset(); | |
path.conicTo(0, 0, 0, 0, 0.5f); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, !path.isRect(nullptr)); | |
path.reset(); | |
path.cubicTo(0, 0, 0, 0, 0, 0); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, !path.isRect(nullptr)); | |
} | |
// Make sure we stay non-finite once we get there (unless we reset or rewind). | |
static void test_addrect_isfinite(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
path.moveTo(0, 0); | |
path.lineTo(SK_ScalarInfinity, 42); | |
REPORTER_ASSERT(reporter, !path.isFinite()); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, !path.isFinite()); | |
path.reset(); | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
path.addRect(SkRect::MakeWH(50, 100)); | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
} | |
static void build_big_path(SkPath* path, bool reducedCase) { | |
if (reducedCase) { | |
path->moveTo(577330, 1971.72f); | |
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | |
} else { | |
path->moveTo(60.1631f, 7.70567f); | |
path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f); | |
path->lineTo(577379, 1977.77f); | |
path->quadTo(577364, 1979.57f, 577325, 1980.26f); | |
path->quadTo(577286, 1980.95f, 577245, 1980.13f); | |
path->quadTo(577205, 1979.3f, 577187, 1977.45f); | |
path->quadTo(577168, 1975.6f, 577183, 1973.8f); | |
path->quadTo(577198, 1972, 577238, 1971.31f); | |
path->quadTo(577277, 1970.62f, 577317, 1971.45f); | |
path->quadTo(577330, 1971.72f, 577341, 1972.11f); | |
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f); | |
path->moveTo(306.718f, -32.912f); | |
path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f); | |
} | |
} | |
static void test_clipped_cubic() { | |
auto surface(SkSurface::MakeRasterN32Premul(640, 480)); | |
// This path used to assert, because our cubic-chopping code incorrectly | |
// moved control points after the chop. This test should be run in SK_DEBUG | |
// mode to ensure that we no long assert. | |
SkPath path; | |
for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) { | |
build_big_path(&path, SkToBool(doReducedCase)); | |
SkPaint paint; | |
for (int doAA = 0; doAA <= 1; ++doAA) { | |
paint.setAntiAlias(SkToBool(doAA)); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
} | |
} | |
static void dump_if_ne(skiatest::Reporter* reporter, const SkRect& expected, const SkRect& bounds) { | |
if (expected != bounds) { | |
ERRORF(reporter, "path.getBounds() returned [%g %g %g %g], but expected [%g %g %g %g]", | |
bounds.left(), bounds.top(), bounds.right(), bounds.bottom(), | |
expected.left(), expected.top(), expected.right(), expected.bottom()); | |
} | |
} | |
static void test_bounds_crbug_513799(skiatest::Reporter* reporter) { | |
SkPath path; | |
#if 0 | |
// As written these tests were failing on LLVM 4.2 MacMini Release mysteriously, so we've | |
// rewritten them to avoid this (compiler-bug?). | |
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(0, 0, 0, 0) == path.getBounds()); | |
path.moveTo(-5, -8); | |
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, -5, -8) == path.getBounds()); | |
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); | |
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); | |
path.moveTo(1, 2); | |
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds()); | |
#else | |
dump_if_ne(reporter, SkRect::MakeLTRB(0, 0, 0, 0), path.getBounds()); | |
path.moveTo(-5, -8); // should set the bounds | |
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, -5, -8), path.getBounds()); | |
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); // should extend the bounds | |
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); | |
path.moveTo(1, 2); // don't expect this to have changed the bounds | |
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds()); | |
#endif | |
} | |
#include "SkSurface.h" | |
static void test_fuzz_crbug_627414(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(0, 0); | |
path.conicTo(3.58732e-43f, 2.72084f, 3.00392f, 3.00392f, 8.46e+37f); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
auto surf = SkSurface::MakeRasterN32Premul(100, 100); | |
surf->getCanvas()->drawPath(path, paint); | |
} | |
// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ | |
// which triggered an assert, from a tricky cubic. This test replicates that | |
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't | |
// assert in the SK_DEBUG build. | |
static void test_tricky_cubic() { | |
const SkPoint pts[] = { | |
{ SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) }, | |
{ SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) }, | |
{ SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) }, | |
{ SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) }, | |
}; | |
SkPath path; | |
path.moveTo(pts[0]); | |
path.cubicTo(pts[1], pts[2], pts[3]); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkSurface::MakeRasterN32Premul(19, 130)->getCanvas()->drawPath(path, paint); | |
} | |
// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 | |
// | |
static void test_isfinite_after_transform(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.quadTo(157, 366, 286, 208); | |
path.arcTo(37, 442, 315, 163, 957494590897113.0f); | |
SkMatrix matrix; | |
matrix.setScale(1000*1000, 1000*1000); | |
// Be sure that path::transform correctly updates isFinite and the bounds | |
// if the transformation overflows. The previous bug was that isFinite was | |
// set to true in this case, but the bounds were not set to empty (which | |
// they should be). | |
while (path.isFinite()) { | |
REPORTER_ASSERT(reporter, path.getBounds().isFinite()); | |
REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); | |
path.transform(matrix); | |
} | |
REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | |
matrix.setTranslate(SK_Scalar1, SK_Scalar1); | |
path.transform(matrix); | |
// we need to still be non-finite | |
REPORTER_ASSERT(reporter, !path.isFinite()); | |
REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); | |
} | |
static void add_corner_arc(SkPath* path, const SkRect& rect, | |
SkScalar xIn, SkScalar yIn, | |
int startAngle) | |
{ | |
SkScalar rx = SkMinScalar(rect.width(), xIn); | |
SkScalar ry = SkMinScalar(rect.height(), yIn); | |
SkRect arcRect; | |
arcRect.set(-rx, -ry, rx, ry); | |
switch (startAngle) { | |
case 0: | |
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); | |
break; | |
case 90: | |
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); | |
break; | |
case 180: | |
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); | |
break; | |
case 270: | |
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); | |
break; | |
default: | |
break; | |
} | |
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); | |
} | |
static void make_arb_round_rect(SkPath* path, const SkRect& r, | |
SkScalar xCorner, SkScalar yCorner) { | |
// we are lazy here and use the same x & y for each corner | |
add_corner_arc(path, r, xCorner, yCorner, 270); | |
add_corner_arc(path, r, xCorner, yCorner, 0); | |
add_corner_arc(path, r, xCorner, yCorner, 90); | |
add_corner_arc(path, r, xCorner, yCorner, 180); | |
path->close(); | |
} | |
// Chrome creates its own round rects with each corner possibly being different. | |
// Performance will suffer if they are not convex. | |
// Note: PathBench::ArbRoundRectBench performs almost exactly | |
// the same test (but with drawing) | |
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { | |
SkRandom rand; | |
SkRect r; | |
for (int i = 0; i < 5000; ++i) { | |
SkScalar size = rand.nextUScalar1() * 30; | |
if (size < SK_Scalar1) { | |
continue; | |
} | |
r.fLeft = rand.nextUScalar1() * 300; | |
r.fTop = rand.nextUScalar1() * 300; | |
r.fRight = r.fLeft + 2 * size; | |
r.fBottom = r.fTop + 2 * size; | |
SkPath temp; | |
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); | |
REPORTER_ASSERT(reporter, temp.isConvex()); | |
} | |
} | |
// Chrome will sometimes create a 0 radius round rect. The degenerate | |
// quads prevent the path from being converted to a rect | |
// Note: PathBench::ArbRoundRectBench performs almost exactly | |
// the same test (but with drawing) | |
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { | |
SkRandom rand; | |
SkRect r; | |
for (int i = 0; i < 5000; ++i) { | |
SkScalar size = rand.nextUScalar1() * 30; | |
if (size < SK_Scalar1) { | |
continue; | |
} | |
r.fLeft = rand.nextUScalar1() * 300; | |
r.fTop = rand.nextUScalar1() * 300; | |
r.fRight = r.fLeft + 2 * size; | |
r.fBottom = r.fTop + 2 * size; | |
SkPath temp; | |
make_arb_round_rect(&temp, r, 0, 0); | |
SkRect result; | |
REPORTER_ASSERT(reporter, temp.isRect(&result)); | |
REPORTER_ASSERT(reporter, r == result); | |
} | |
} | |
static void test_rect_isfinite(skiatest::Reporter* reporter) { | |
const SkScalar inf = SK_ScalarInfinity; | |
const SkScalar negInf = SK_ScalarNegativeInfinity; | |
const SkScalar nan = SK_ScalarNaN; | |
SkRect r; | |
r.setEmpty(); | |
REPORTER_ASSERT(reporter, r.isFinite()); | |
r.set(0, 0, inf, negInf); | |
REPORTER_ASSERT(reporter, !r.isFinite()); | |
r.set(0, 0, nan, 0); | |
REPORTER_ASSERT(reporter, !r.isFinite()); | |
SkPoint pts[] = { | |
{ 0, 0 }, | |
{ SK_Scalar1, 0 }, | |
{ 0, SK_Scalar1 }, | |
}; | |
bool isFine = r.setBoundsCheck(pts, 3); | |
REPORTER_ASSERT(reporter, isFine); | |
REPORTER_ASSERT(reporter, !r.isEmpty()); | |
pts[1].set(inf, 0); | |
isFine = r.setBoundsCheck(pts, 3); | |
REPORTER_ASSERT(reporter, !isFine); | |
REPORTER_ASSERT(reporter, r.isEmpty()); | |
pts[1].set(nan, 0); | |
isFine = r.setBoundsCheck(pts, 3); | |
REPORTER_ASSERT(reporter, !isFine); | |
REPORTER_ASSERT(reporter, r.isEmpty()); | |
} | |
static void test_path_isfinite(skiatest::Reporter* reporter) { | |
const SkScalar inf = SK_ScalarInfinity; | |
const SkScalar negInf = SK_ScalarNegativeInfinity; | |
const SkScalar nan = SK_ScalarNaN; | |
SkPath path; | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
path.reset(); | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
path.reset(); | |
path.moveTo(SK_Scalar1, 0); | |
REPORTER_ASSERT(reporter, path.isFinite()); | |
path.reset(); | |
path.moveTo(inf, negInf); | |
REPORTER_ASSERT(reporter, !path.isFinite()); | |
path.reset(); | |
path.moveTo(nan, 0); | |
REPORTER_ASSERT(reporter, !path.isFinite()); | |
} | |
static void test_isfinite(skiatest::Reporter* reporter) { | |
test_rect_isfinite(reporter); | |
test_path_isfinite(reporter); | |
} | |
static void test_islastcontourclosed(skiatest::Reporter* reporter) { | |
SkPath path; | |
REPORTER_ASSERT(reporter, !path.isLastContourClosed()); | |
path.moveTo(0, 0); | |
REPORTER_ASSERT(reporter, !path.isLastContourClosed()); | |
path.close(); | |
REPORTER_ASSERT(reporter, path.isLastContourClosed()); | |
path.lineTo(100, 100); | |
REPORTER_ASSERT(reporter, !path.isLastContourClosed()); | |
path.moveTo(200, 200); | |
REPORTER_ASSERT(reporter, !path.isLastContourClosed()); | |
path.close(); | |
REPORTER_ASSERT(reporter, path.isLastContourClosed()); | |
path.moveTo(0, 0); | |
REPORTER_ASSERT(reporter, !path.isLastContourClosed()); | |
} | |
// assert that we always | |
// start with a moveTo | |
// only have 1 moveTo | |
// only have Lines after that | |
// end with a single close | |
// only have (at most) 1 close | |
// | |
static void test_poly(skiatest::Reporter* reporter, const SkPath& path, | |
const SkPoint srcPts[], bool expectClose) { | |
SkPath::RawIter iter(path); | |
SkPoint pts[4]; | |
bool firstTime = true; | |
bool foundClose = false; | |
for (;;) { | |
switch (iter.next(pts)) { | |
case SkPath::kMove_Verb: | |
REPORTER_ASSERT(reporter, firstTime); | |
REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); | |
srcPts++; | |
firstTime = false; | |
break; | |
case SkPath::kLine_Verb: | |
REPORTER_ASSERT(reporter, !firstTime); | |
REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); | |
srcPts++; | |
break; | |
case SkPath::kQuad_Verb: | |
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected quad verb"); | |
break; | |
case SkPath::kConic_Verb: | |
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected conic verb"); | |
break; | |
case SkPath::kCubic_Verb: | |
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected cubic verb"); | |
break; | |
case SkPath::kClose_Verb: | |
REPORTER_ASSERT(reporter, !firstTime); | |
REPORTER_ASSERT(reporter, !foundClose); | |
REPORTER_ASSERT(reporter, expectClose); | |
foundClose = true; | |
break; | |
case SkPath::kDone_Verb: | |
goto DONE; | |
} | |
} | |
DONE: | |
REPORTER_ASSERT(reporter, foundClose == expectClose); | |
} | |
static void test_addPoly(skiatest::Reporter* reporter) { | |
SkPoint pts[32]; | |
SkRandom rand; | |
for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { | |
pts[i].fX = rand.nextSScalar1(); | |
pts[i].fY = rand.nextSScalar1(); | |
} | |
for (int doClose = 0; doClose <= 1; ++doClose) { | |
for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { | |
SkPath path; | |
path.addPoly(pts, SkToInt(count), SkToBool(doClose)); | |
test_poly(reporter, path, pts, SkToBool(doClose)); | |
} | |
} | |
} | |
static void test_strokerec(skiatest::Reporter* reporter) { | |
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); | |
REPORTER_ASSERT(reporter, rec.isFillStyle()); | |
rec.setHairlineStyle(); | |
REPORTER_ASSERT(reporter, rec.isHairlineStyle()); | |
rec.setStrokeStyle(SK_Scalar1, false); | |
REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); | |
rec.setStrokeStyle(SK_Scalar1, true); | |
REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); | |
rec.setStrokeStyle(0, false); | |
REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); | |
rec.setStrokeStyle(0, true); | |
REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); | |
} | |
// Set this for paths that don't have a consistent direction such as a bowtie. | |
// (cheapComputeDirection is not expected to catch these.) | |
const SkPathPriv::FirstDirection kDontCheckDir = static_cast<SkPathPriv::FirstDirection>(-1); | |
static void check_direction(skiatest::Reporter* reporter, const SkPath& path, | |
SkPathPriv::FirstDirection expected) { | |
if (expected == kDontCheckDir) { | |
return; | |
} | |
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | |
SkPathPriv::FirstDirection dir; | |
if (SkPathPriv::CheapComputeFirstDirection(copy, &dir)) { | |
REPORTER_ASSERT(reporter, dir == expected); | |
} else { | |
REPORTER_ASSERT(reporter, SkPathPriv::kUnknown_FirstDirection == expected); | |
} | |
} | |
static void test_direction(skiatest::Reporter* reporter) { | |
size_t i; | |
SkPath path; | |
REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); | |
REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); | |
REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kUnknown_FirstDirection)); | |
static const char* gDegen[] = { | |
"M 10 10", | |
"M 10 10 M 20 20", | |
"M 10 10 L 20 20", | |
"M 10 10 L 10 10 L 10 10", | |
"M 10 10 Q 10 10 10 10", | |
"M 10 10 C 10 10 10 10 10 10", | |
}; | |
for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { | |
path.reset(); | |
bool valid = SkParsePath::FromSVGString(gDegen[i], &path); | |
REPORTER_ASSERT(reporter, valid); | |
REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr)); | |
} | |
static const char* gCW[] = { | |
"M 10 10 L 10 10 Q 20 10 20 20", | |
"M 10 10 C 20 10 20 20 20 20", | |
"M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max | |
// rect with top two corners replaced by cubics with identical middle | |
// control points | |
"M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10", | |
"M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif | |
}; | |
for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { | |
path.reset(); | |
bool valid = SkParsePath::FromSVGString(gCW[i], &path); | |
REPORTER_ASSERT(reporter, valid); | |
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); | |
} | |
static const char* gCCW[] = { | |
"M 10 10 L 10 10 Q 20 10 20 -20", | |
"M 10 10 C 20 10 20 -20 20 -20", | |
"M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max | |
// rect with top two corners replaced by cubics with identical middle | |
// control points | |
"M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10", | |
"M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif | |
}; | |
for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { | |
path.reset(); | |
bool valid = SkParsePath::FromSVGString(gCCW[i], &path); | |
REPORTER_ASSERT(reporter, valid); | |
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); | |
} | |
// Test two donuts, each wound a different direction. Only the outer contour | |
// determines the cheap direction | |
path.reset(); | |
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); | |
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); | |
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); | |
path.reset(); | |
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); | |
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); | |
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); | |
// triangle with one point really far from the origin. | |
path.reset(); | |
// the first point is roughly 1.05e10, 1.05e10 | |
path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652)); | |
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); | |
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); | |
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); | |
path.reset(); | |
path.conicTo(20, 0, 20, 20, 0.5f); | |
path.close(); | |
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection); | |
path.reset(); | |
path.lineTo(1, 1e7f); | |
path.lineTo(1e7f, 2e7f); | |
path.close(); | |
REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity()); | |
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection); | |
} | |
static void add_rect(SkPath* path, const SkRect& r) { | |
path->moveTo(r.fLeft, r.fTop); | |
path->lineTo(r.fRight, r.fTop); | |
path->lineTo(r.fRight, r.fBottom); | |
path->lineTo(r.fLeft, r.fBottom); | |
path->close(); | |
} | |
static void test_bounds(skiatest::Reporter* reporter) { | |
static const SkRect rects[] = { | |
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, | |
{ SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, | |
{ SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, | |
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, | |
}; | |
SkPath path0, path1; | |
for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { | |
path0.addRect(rects[i]); | |
add_rect(&path1, rects[i]); | |
} | |
REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); | |
} | |
static void stroke_cubic(const SkPoint pts[4]) { | |
SkPath path; | |
path.moveTo(pts[0]); | |
path.cubicTo(pts[1], pts[2], pts[3]); | |
SkPaint paint; | |
paint.setStyle(SkPaint::kStroke_Style); | |
paint.setStrokeWidth(SK_Scalar1 * 2); | |
SkPath fill; | |
paint.getFillPath(path, &fill); | |
} | |
// just ensure this can run w/o any SkASSERTS firing in the debug build | |
// we used to assert due to differences in how we determine a degenerate vector | |
// but that was fixed with the introduction of SkPoint::CanNormalize | |
static void stroke_tiny_cubic() { | |
SkPoint p0[] = { | |
{ 372.0f, 92.0f }, | |
{ 372.0f, 92.0f }, | |
{ 372.0f, 92.0f }, | |
{ 372.0f, 92.0f }, | |
}; | |
stroke_cubic(p0); | |
SkPoint p1[] = { | |
{ 372.0f, 92.0f }, | |
{ 372.0007f, 92.000755f }, | |
{ 371.99927f, 92.003922f }, | |
{ 371.99826f, 92.003899f }, | |
}; | |
stroke_cubic(p1); | |
} | |
static void check_close(skiatest::Reporter* reporter, const SkPath& path) { | |
for (int i = 0; i < 2; ++i) { | |
SkPath::Iter iter(path, SkToBool(i)); | |
SkPoint mv; | |
SkPoint pts[4]; | |
SkPath::Verb v; | |
int nMT = 0; | |
int nCL = 0; | |
mv.set(0, 0); | |
while (SkPath::kDone_Verb != (v = iter.next(pts))) { | |
switch (v) { | |
case SkPath::kMove_Verb: | |
mv = pts[0]; | |
++nMT; | |
break; | |
case SkPath::kClose_Verb: | |
REPORTER_ASSERT(reporter, mv == pts[0]); | |
++nCL; | |
break; | |
default: | |
break; | |
} | |
} | |
// if we force a close on the interator we should have a close | |
// for every moveTo | |
REPORTER_ASSERT(reporter, !i || nMT == nCL); | |
} | |
} | |
static void test_close(skiatest::Reporter* reporter) { | |
SkPath closePt; | |
closePt.moveTo(0, 0); | |
closePt.close(); | |
check_close(reporter, closePt); | |
SkPath openPt; | |
openPt.moveTo(0, 0); | |
check_close(reporter, openPt); | |
SkPath empty; | |
check_close(reporter, empty); | |
empty.close(); | |
check_close(reporter, empty); | |
SkPath rect; | |
rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | |
check_close(reporter, rect); | |
rect.close(); | |
check_close(reporter, rect); | |
SkPath quad; | |
quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | |
check_close(reporter, quad); | |
quad.close(); | |
check_close(reporter, quad); | |
SkPath cubic; | |
quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, | |
10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); | |
check_close(reporter, cubic); | |
cubic.close(); | |
check_close(reporter, cubic); | |
SkPath line; | |
line.moveTo(SK_Scalar1, SK_Scalar1); | |
line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); | |
check_close(reporter, line); | |
line.close(); | |
check_close(reporter, line); | |
SkPath rect2; | |
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | |
rect2.close(); | |
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); | |
check_close(reporter, rect2); | |
rect2.close(); | |
check_close(reporter, rect2); | |
SkPath oval3; | |
oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); | |
oval3.close(); | |
oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); | |
check_close(reporter, oval3); | |
oval3.close(); | |
check_close(reporter, oval3); | |
SkPath moves; | |
moves.moveTo(SK_Scalar1, SK_Scalar1); | |
moves.moveTo(5 * SK_Scalar1, SK_Scalar1); | |
moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); | |
moves.moveTo(10 *SK_Scalar1, SK_Scalar1); | |
check_close(reporter, moves); | |
stroke_tiny_cubic(); | |
} | |
static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, | |
SkPath::Convexity expected) { | |
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path. | |
SkPath::Convexity c = copy.getConvexity(); | |
REPORTER_ASSERT(reporter, c == expected); | |
} | |
static void test_path_crbug389050(skiatest::Reporter* reporter) { | |
SkPath tinyConvexPolygon; | |
tinyConvexPolygon.moveTo(600.131559f, 800.112512f); | |
tinyConvexPolygon.lineTo(600.161735f, 800.118627f); | |
tinyConvexPolygon.lineTo(600.148962f, 800.142338f); | |
tinyConvexPolygon.lineTo(600.134891f, 800.137724f); | |
tinyConvexPolygon.close(); | |
tinyConvexPolygon.getConvexity(); | |
check_convexity(reporter, tinyConvexPolygon, SkPath::kConvex_Convexity); | |
check_direction(reporter, tinyConvexPolygon, SkPathPriv::kCW_FirstDirection); | |
SkPath platTriangle; | |
platTriangle.moveTo(0, 0); | |
platTriangle.lineTo(200, 0); | |
platTriangle.lineTo(100, 0.04f); | |
platTriangle.close(); | |
platTriangle.getConvexity(); | |
check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); | |
platTriangle.reset(); | |
platTriangle.moveTo(0, 0); | |
platTriangle.lineTo(200, 0); | |
platTriangle.lineTo(100, 0.03f); | |
platTriangle.close(); | |
platTriangle.getConvexity(); | |
check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection); | |
} | |
static void test_convexity2(skiatest::Reporter* reporter) { | |
SkPath pt; | |
pt.moveTo(0, 0); | |
pt.close(); | |
check_convexity(reporter, pt, SkPath::kConvex_Convexity); | |
check_direction(reporter, pt, SkPathPriv::kUnknown_FirstDirection); | |
SkPath line; | |
line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); | |
line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); | |
line.close(); | |
check_convexity(reporter, line, SkPath::kConvex_Convexity); | |
check_direction(reporter, line, SkPathPriv::kUnknown_FirstDirection); | |
SkPath triLeft; | |
triLeft.moveTo(0, 0); | |
triLeft.lineTo(SK_Scalar1, 0); | |
triLeft.lineTo(SK_Scalar1, SK_Scalar1); | |
triLeft.close(); | |
check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); | |
check_direction(reporter, triLeft, SkPathPriv::kCW_FirstDirection); | |
SkPath triRight; | |
triRight.moveTo(0, 0); | |
triRight.lineTo(-SK_Scalar1, 0); | |
triRight.lineTo(SK_Scalar1, SK_Scalar1); | |
triRight.close(); | |
check_convexity(reporter, triRight, SkPath::kConvex_Convexity); | |
check_direction(reporter, triRight, SkPathPriv::kCCW_FirstDirection); | |
SkPath square; | |
square.moveTo(0, 0); | |
square.lineTo(SK_Scalar1, 0); | |
square.lineTo(SK_Scalar1, SK_Scalar1); | |
square.lineTo(0, SK_Scalar1); | |
square.close(); | |
check_convexity(reporter, square, SkPath::kConvex_Convexity); | |
check_direction(reporter, square, SkPathPriv::kCW_FirstDirection); | |
SkPath redundantSquare; | |
redundantSquare.moveTo(0, 0); | |
redundantSquare.lineTo(0, 0); | |
redundantSquare.lineTo(0, 0); | |
redundantSquare.lineTo(SK_Scalar1, 0); | |
redundantSquare.lineTo(SK_Scalar1, 0); | |
redundantSquare.lineTo(SK_Scalar1, 0); | |
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | |
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | |
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); | |
redundantSquare.lineTo(0, SK_Scalar1); | |
redundantSquare.lineTo(0, SK_Scalar1); | |
redundantSquare.lineTo(0, SK_Scalar1); | |
redundantSquare.close(); | |
check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); | |
check_direction(reporter, redundantSquare, SkPathPriv::kCW_FirstDirection); | |
SkPath bowTie; | |
bowTie.moveTo(0, 0); | |
bowTie.lineTo(0, 0); | |
bowTie.lineTo(0, 0); | |
bowTie.lineTo(SK_Scalar1, SK_Scalar1); | |
bowTie.lineTo(SK_Scalar1, SK_Scalar1); | |
bowTie.lineTo(SK_Scalar1, SK_Scalar1); | |
bowTie.lineTo(SK_Scalar1, 0); | |
bowTie.lineTo(SK_Scalar1, 0); | |
bowTie.lineTo(SK_Scalar1, 0); | |
bowTie.lineTo(0, SK_Scalar1); | |
bowTie.lineTo(0, SK_Scalar1); | |
bowTie.lineTo(0, SK_Scalar1); | |
bowTie.close(); | |
check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); | |
check_direction(reporter, bowTie, kDontCheckDir); | |
SkPath spiral; | |
spiral.moveTo(0, 0); | |
spiral.lineTo(100*SK_Scalar1, 0); | |
spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | |
spiral.lineTo(0, 100*SK_Scalar1); | |
spiral.lineTo(0, 50*SK_Scalar1); | |
spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); | |
spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); | |
spiral.close(); | |
check_convexity(reporter, spiral, SkPath::kConcave_Convexity); | |
check_direction(reporter, spiral, kDontCheckDir); | |
SkPath dent; | |
dent.moveTo(0, 0); | |
dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); | |
dent.lineTo(0, 100*SK_Scalar1); | |
dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); | |
dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); | |
dent.close(); | |
check_convexity(reporter, dent, SkPath::kConcave_Convexity); | |
check_direction(reporter, dent, SkPathPriv::kCW_FirstDirection); | |
// https://bug.skia.org/2235 | |
SkPath strokedSin; | |
for (int i = 0; i < 2000; i++) { | |
SkScalar x = SkIntToScalar(i) / 2; | |
SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3; | |
if (0 == i) { | |
strokedSin.moveTo(x, y); | |
} else { | |
strokedSin.lineTo(x, y); | |
} | |
} | |
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle); | |
stroke.setStrokeStyle(2 * SK_Scalar1); | |
stroke.applyToPath(&strokedSin, strokedSin); | |
check_convexity(reporter, strokedSin, SkPath::kConcave_Convexity); | |
check_direction(reporter, strokedSin, kDontCheckDir); | |
// http://crbug.com/412640 | |
SkPath degenerateConcave; | |
degenerateConcave.moveTo(148.67912f, 191.875f); | |
degenerateConcave.lineTo(470.37695f, 7.5f); | |
degenerateConcave.lineTo(148.67912f, 191.875f); | |
degenerateConcave.lineTo(41.446522f, 376.25f); | |
degenerateConcave.lineTo(-55.971577f, 460.0f); | |
degenerateConcave.lineTo(41.446522f, 376.25f); | |
check_convexity(reporter, degenerateConcave, SkPath::kConcave_Convexity); | |
check_direction(reporter, degenerateConcave, SkPathPriv::kUnknown_FirstDirection); | |
// http://crbug.com/433683 | |
SkPath badFirstVector; | |
badFirstVector.moveTo(501.087708f, 319.610352f); | |
badFirstVector.lineTo(501.087708f, 319.610352f); | |
badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f); | |
badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f); | |
badFirstVector.lineTo(301.557678f, 98.044601f); | |
badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f); | |
badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f); | |
badFirstVector.lineTo(504.912292f, 316.389648f); | |
badFirstVector.lineTo(501.087708f, 319.610352f); | |
badFirstVector.close(); | |
check_convexity(reporter, badFirstVector, SkPath::kConcave_Convexity); | |
} | |
static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, | |
const SkRect& bounds) { | |
REPORTER_ASSERT(reporter, p.isConvex()); | |
REPORTER_ASSERT(reporter, p.getBounds() == bounds); | |
SkPath p2(p); | |
REPORTER_ASSERT(reporter, p2.isConvex()); | |
REPORTER_ASSERT(reporter, p2.getBounds() == bounds); | |
SkPath other; | |
other.swap(p2); | |
REPORTER_ASSERT(reporter, other.isConvex()); | |
REPORTER_ASSERT(reporter, other.getBounds() == bounds); | |
} | |
static void setFromString(SkPath* path, const char str[]) { | |
bool first = true; | |
while (str) { | |
SkScalar x, y; | |
str = SkParse::FindScalar(str, &x); | |
if (nullptr == str) { | |
break; | |
} | |
str = SkParse::FindScalar(str, &y); | |
SkASSERT(str); | |
if (first) { | |
path->moveTo(x, y); | |
first = false; | |
} else { | |
path->lineTo(x, y); | |
} | |
} | |
} | |
static void test_convexity(skiatest::Reporter* reporter) { | |
SkPath path; | |
check_convexity(reporter, path, SkPath::kConvex_Convexity); | |
path.addCircle(0, 0, SkIntToScalar(10)); | |
check_convexity(reporter, path, SkPath::kConvex_Convexity); | |
path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle | |
check_convexity(reporter, path, SkPath::kConcave_Convexity); | |
path.reset(); | |
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); | |
check_convexity(reporter, path, SkPath::kConvex_Convexity); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection)); | |
path.reset(); | |
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); | |
check_convexity(reporter, path, SkPath::kConvex_Convexity); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection)); | |
path.reset(); | |
path.quadTo(100, 100, 50, 50); // This is a convex path from GM:convexpaths | |
check_convexity(reporter, path, SkPath::kConvex_Convexity); | |
static const struct { | |
const char* fPathStr; | |
SkPath::Convexity fExpectedConvexity; | |
SkPathPriv::FirstDirection fExpectedDirection; | |
} gRec[] = { | |
{ "", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, | |
{ "0 0", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, | |
{ "0 0 10 10", SkPath::kConvex_Convexity, SkPathPriv::kUnknown_FirstDirection }, | |
{ "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPathPriv::kUnknown_FirstDirection }, | |
{ "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPathPriv::kCW_FirstDirection }, | |
{ "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPathPriv::kCCW_FirstDirection }, | |
{ "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir }, | |
{ "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPathPriv::kCW_FirstDirection }, | |
}; | |
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { | |
SkPath path; | |
setFromString(&path, gRec[i].fPathStr); | |
check_convexity(reporter, path, gRec[i].fExpectedConvexity); | |
check_direction(reporter, path, gRec[i].fExpectedDirection); | |
// check after setting the initial convex and direction | |
if (kDontCheckDir != gRec[i].fExpectedDirection) { | |
SkPath copy(path); | |
SkPathPriv::FirstDirection dir; | |
bool foundDir = SkPathPriv::CheapComputeFirstDirection(copy, &dir); | |
REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPathPriv::kUnknown_FirstDirection) | |
^ foundDir); | |
REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir); | |
check_convexity(reporter, copy, gRec[i].fExpectedConvexity); | |
} | |
REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity()); | |
check_direction(reporter, path, gRec[i].fExpectedDirection); | |
} | |
static const SkPoint nonFinitePts[] = { | |
{ SK_ScalarInfinity, 0 }, | |
{ 0, SK_ScalarInfinity }, | |
{ SK_ScalarInfinity, SK_ScalarInfinity }, | |
{ SK_ScalarNegativeInfinity, 0}, | |
{ 0, SK_ScalarNegativeInfinity }, | |
{ SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity }, | |
{ SK_ScalarNegativeInfinity, SK_ScalarInfinity }, | |
{ SK_ScalarInfinity, SK_ScalarNegativeInfinity }, | |
{ SK_ScalarNaN, 0 }, | |
{ 0, SK_ScalarNaN }, | |
{ SK_ScalarNaN, SK_ScalarNaN }, | |
}; | |
const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]); | |
static const SkPoint finitePts[] = { | |
{ SK_ScalarMax, 0 }, | |
{ 0, SK_ScalarMax }, | |
{ SK_ScalarMax, SK_ScalarMax }, | |
{ SK_ScalarMin, 0 }, | |
{ 0, SK_ScalarMin }, | |
{ SK_ScalarMin, SK_ScalarMin }, | |
}; | |
const size_t finitePtsCount = sizeof(finitePts) / sizeof(finitePts[0]); | |
for (int index = 0; index < (int) (13 * nonFinitePtsCount * finitePtsCount); ++index) { | |
int i = (int) (index % nonFinitePtsCount); | |
int f = (int) (index % finitePtsCount); | |
int g = (int) ((f + 1) % finitePtsCount); | |
path.reset(); | |
switch (index % 13) { | |
case 0: path.lineTo(nonFinitePts[i]); break; | |
case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break; | |
case 2: path.quadTo(nonFinitePts[i], finitePts[f]); break; | |
case 3: path.quadTo(finitePts[f], nonFinitePts[i]); break; | |
case 4: path.cubicTo(nonFinitePts[i], finitePts[f], finitePts[f]); break; | |
case 5: path.cubicTo(finitePts[f], nonFinitePts[i], finitePts[f]); break; | |
case 6: path.cubicTo(finitePts[f], finitePts[f], nonFinitePts[i]); break; | |
case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], finitePts[f]); break; | |
case 8: path.cubicTo(nonFinitePts[i], finitePts[f], nonFinitePts[i]); break; | |
case 9: path.cubicTo(finitePts[f], nonFinitePts[i], nonFinitePts[i]); break; | |
case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break; | |
case 11: path.cubicTo(nonFinitePts[i], finitePts[f], finitePts[g]); break; | |
case 12: path.moveTo(nonFinitePts[i]); break; | |
} | |
check_convexity(reporter, path, SkPath::kUnknown_Convexity); | |
} | |
for (int index = 0; index < (int) (11 * finitePtsCount); ++index) { | |
int f = (int) (index % finitePtsCount); | |
int g = (int) ((f + 1) % finitePtsCount); | |
path.reset(); | |
int curveSelect = index % 11; | |
switch (curveSelect) { | |
case 0: path.moveTo(finitePts[f]); break; | |
case 1: path.lineTo(finitePts[f]); break; | |
case 2: path.quadTo(finitePts[f], finitePts[f]); break; | |
case 3: path.quadTo(finitePts[f], finitePts[g]); break; | |
case 4: path.quadTo(finitePts[g], finitePts[f]); break; | |
case 5: path.cubicTo(finitePts[f], finitePts[f], finitePts[f]); break; | |
case 6: path.cubicTo(finitePts[f], finitePts[f], finitePts[g]); break; | |
case 7: path.cubicTo(finitePts[f], finitePts[g], finitePts[f]); break; | |
case 8: path.cubicTo(finitePts[f], finitePts[g], finitePts[g]); break; | |
case 9: path.cubicTo(finitePts[g], finitePts[f], finitePts[f]); break; | |
case 10: path.cubicTo(finitePts[g], finitePts[f], finitePts[g]); break; | |
} | |
check_convexity(reporter, path, curveSelect == 0 ? SkPath::kConvex_Convexity | |
: SkPath::kUnknown_Convexity); | |
} | |
path.reset(); | |
path.moveTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f | |
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eea38)); // -0.284072f, -0.0622351f | |
path.lineTo(SkBits2Float(0xbe9171a0), SkBits2Float(0xbd7ee5a7)); // -0.28407f, -0.0622307f | |
path.lineTo(SkBits2Float(0xbe917147), SkBits2Float(0xbd7ed886)); // -0.284067f, -0.0622182f | |
path.lineTo(SkBits2Float(0xbe917378), SkBits2Float(0xbd7ee1a9)); // -0.284084f, -0.0622269f | |
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f | |
path.close(); | |
check_convexity(reporter, path, SkPath::kConcave_Convexity); | |
} | |
static void test_isLine(skiatest::Reporter* reporter) { | |
SkPath path; | |
SkPoint pts[2]; | |
const SkScalar value = SkIntToScalar(5); | |
REPORTER_ASSERT(reporter, !path.isLine(nullptr)); | |
// set some non-zero values | |
pts[0].set(value, value); | |
pts[1].set(value, value); | |
REPORTER_ASSERT(reporter, !path.isLine(pts)); | |
// check that pts was untouched | |
REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | |
REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | |
const SkScalar moveX = SkIntToScalar(1); | |
const SkScalar moveY = SkIntToScalar(2); | |
REPORTER_ASSERT(reporter, value != moveX && value != moveY); | |
path.moveTo(moveX, moveY); | |
REPORTER_ASSERT(reporter, !path.isLine(nullptr)); | |
REPORTER_ASSERT(reporter, !path.isLine(pts)); | |
// check that pts was untouched | |
REPORTER_ASSERT(reporter, pts[0].equals(value, value)); | |
REPORTER_ASSERT(reporter, pts[1].equals(value, value)); | |
const SkScalar lineX = SkIntToScalar(2); | |
const SkScalar lineY = SkIntToScalar(2); | |
REPORTER_ASSERT(reporter, value != lineX && value != lineY); | |
path.lineTo(lineX, lineY); | |
REPORTER_ASSERT(reporter, path.isLine(nullptr)); | |
REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); | |
REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); | |
REPORTER_ASSERT(reporter, path.isLine(pts)); | |
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | |
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | |
path.lineTo(0, 0); // too many points/verbs | |
REPORTER_ASSERT(reporter, !path.isLine(nullptr)); | |
REPORTER_ASSERT(reporter, !path.isLine(pts)); | |
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); | |
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); | |
path.reset(); | |
path.quadTo(1, 1, 2, 2); | |
REPORTER_ASSERT(reporter, !path.isLine(nullptr)); | |
} | |
static void test_conservativelyContains(skiatest::Reporter* reporter) { | |
SkPath path; | |
// kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect. | |
static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); | |
// A circle that bounds kBaseRect (with a significant amount of slop) | |
SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height()); | |
circleR *= 1.75f / 2; | |
static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()}; | |
// round-rect radii | |
static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)}; | |
static const struct SUPPRESS_VISIBILITY_WARNING { | |
SkRect fQueryRect; | |
bool fInRect; | |
bool fInCircle; | |
bool fInRR; | |
bool fInCubicRR; | |
} kQueries[] = { | |
{kBaseRect, true, true, false, false}, | |
// rect well inside of kBaseRect | |
{SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(), | |
kBaseRect.fTop + 0.25f*kBaseRect.height(), | |
kBaseRect.fRight - 0.25f*kBaseRect.width(), | |
kBaseRect.fBottom - 0.25f*kBaseRect.height()), | |
true, true, true, true}, | |
// rects with edges off by one from kBaseRect's edges | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | |
kBaseRect.width(), kBaseRect.height() + 1), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | |
kBaseRect.width() + 1, kBaseRect.height()), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, | |
kBaseRect.width() + 1, kBaseRect.height() + 1), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | |
kBaseRect.width(), kBaseRect.height()), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | |
kBaseRect.width(), kBaseRect.height()), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop, | |
kBaseRect.width() + 2, kBaseRect.height()), | |
false, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1, | |
kBaseRect.width() + 2, kBaseRect.height()), | |
false, true, false, false}, | |
// zero-w/h rects at each corner of kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false}, | |
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true}, | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true}, | |
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true}, | |
// far away rect | |
{SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom, | |
SkIntToScalar(10), SkIntToScalar(10)), | |
false, false, false, false}, | |
// very large rect containing kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(), | |
kBaseRect.fTop - 5 * kBaseRect.height(), | |
11 * kBaseRect.width(), 11 * kBaseRect.height()), | |
false, false, false, false}, | |
// skinny rect that spans same y-range as kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | |
SkIntToScalar(1), kBaseRect.height()), | |
true, true, true, true}, | |
// short rect that spans same x-range as kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)), | |
true, true, true, true}, | |
// skinny rect that spans slightly larger y-range than kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop, | |
SkIntToScalar(1), kBaseRect.height() + 1), | |
false, true, false, false}, | |
// short rect that spans slightly larger x-range than kBaseRect | |
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), | |
kBaseRect.width() + 1, SkScalar(1)), | |
false, true, false, false}, | |
}; | |
for (int inv = 0; inv < 4; ++inv) { | |
for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) { | |
SkRect qRect = kQueries[q].fQueryRect; | |
if (inv & 0x1) { | |
SkTSwap(qRect.fLeft, qRect.fRight); | |
} | |
if (inv & 0x2) { | |
SkTSwap(qRect.fTop, qRect.fBottom); | |
} | |
for (int d = 0; d < 2; ++d) { | |
SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction; | |
path.reset(); | |
path.addRect(kBaseRect, dir); | |
REPORTER_ASSERT(reporter, kQueries[q].fInRect == | |
path.conservativelyContainsRect(qRect)); | |
path.reset(); | |
path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir); | |
REPORTER_ASSERT(reporter, kQueries[q].fInCircle == | |
path.conservativelyContainsRect(qRect)); | |
path.reset(); | |
path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir); | |
REPORTER_ASSERT(reporter, kQueries[q].fInRR == | |
path.conservativelyContainsRect(qRect)); | |
path.reset(); | |
path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop); | |
path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop, | |
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2, | |
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]); | |
path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom); | |
path.lineTo(kBaseRect.fRight, kBaseRect.fBottom); | |
path.lineTo(kBaseRect.fRight, kBaseRect.fTop); | |
path.close(); | |
REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR == | |
path.conservativelyContainsRect(qRect)); | |
} | |
// Slightly non-convex shape, shouldn't contain any rects. | |
path.reset(); | |
path.moveTo(0, 0); | |
path.lineTo(SkIntToScalar(50), 0.05f); | |
path.lineTo(SkIntToScalar(100), 0); | |
path.lineTo(SkIntToScalar(100), SkIntToScalar(100)); | |
path.lineTo(0, SkIntToScalar(100)); | |
path.close(); | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect)); | |
} | |
} | |
// make sure a minimal convex shape works, a right tri with edges along pos x and y axes. | |
path.reset(); | |
path.moveTo(0, 0); | |
path.lineTo(SkIntToScalar(100), 0); | |
path.lineTo(0, SkIntToScalar(100)); | |
// inside, on along top edge | |
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
// above | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( | |
SkRect::MakeXYWH(SkIntToScalar(50), | |
SkIntToScalar(-10), | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
// to the left | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10), | |
SkIntToScalar(5), | |
SkIntToScalar(5), | |
SkIntToScalar(5)))); | |
// outside the diagonal edge | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10), | |
SkIntToScalar(200), | |
SkIntToScalar(20), | |
SkIntToScalar(5)))); | |
// Test that multiple move commands do not cause asserts. | |
// At the time of writing, this would not modify cached convexity. This caused an assert while | |
// checking conservative containment again. https://bug.skia.org/1460 | |
path.moveTo(SkIntToScalar(100), SkIntToScalar(100)); | |
#if 0 | |
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
#endif | |
// Same as above path and first test but with an extra moveTo. | |
path.reset(); | |
path.moveTo(100, 100); | |
path.moveTo(0, 0); | |
path.lineTo(SkIntToScalar(100), 0); | |
path.lineTo(0, SkIntToScalar(100)); | |
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
// Same as above path and first test but with the extra moveTo making a degenerate sub-path | |
// following the non-empty sub-path. Verifies that this does not trigger assertions. | |
path.reset(); | |
path.moveTo(0, 0); | |
path.lineTo(SkIntToScalar(100), 0); | |
path.lineTo(0, SkIntToScalar(100)); | |
path.moveTo(100, 100); | |
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0, | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
// Test that multiple move commands do not cause asserts and that the function | |
// is not confused by the multiple moves. | |
path.reset(); | |
path.moveTo(0, 0); | |
path.lineTo(SkIntToScalar(100), 0); | |
path.lineTo(0, SkIntToScalar(100)); | |
path.moveTo(0, SkIntToScalar(200)); | |
path.lineTo(SkIntToScalar(100), SkIntToScalar(200)); | |
path.lineTo(0, SkIntToScalar(300)); | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect( | |
SkRect::MakeXYWH(SkIntToScalar(50), 0, | |
SkIntToScalar(10), | |
SkIntToScalar(10)))); | |
path.reset(); | |
path.lineTo(100, 100); | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1))); | |
// An empty path should not contain any rectangle. It's questionable whether an empty path | |
// contains an empty rectangle. However, since it is a conservative test it is ok to | |
// return false. | |
path.reset(); | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(1,1))); | |
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(0,0))); | |
} | |
static void test_isRect_open_close(skiatest::Reporter* reporter) { | |
SkPath path; | |
bool isClosed; | |
path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1); | |
path.close(); | |
REPORTER_ASSERT(reporter, path.isRect(nullptr, &isClosed, nullptr)); | |
REPORTER_ASSERT(reporter, isClosed); | |
} | |
// Simple isRect test is inline TestPath, below. | |
// test_isRect provides more extensive testing. | |
static void test_isRect(skiatest::Reporter* reporter) { | |
test_isRect_open_close(reporter); | |
// passing tests (all moveTo / lineTo... | |
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; | |
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | |
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | |
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | |
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; | |
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | |
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | |
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | |
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | |
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; | |
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; | |
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; | |
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; | |
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; | |
SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}}; | |
// failing tests | |
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | |
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | |
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | |
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | |
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | |
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | |
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | |
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | |
SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps | |
SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap | |
SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short | |
// no close, but we should detect them as fillably the same as a rect | |
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; | |
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; | |
SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start | |
// like c2, but we double-back on ourselves | |
SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}}; | |
// like c2, but we overshoot the start point | |
SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}}; | |
SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}}; | |
struct IsRectTest { | |
SkPoint *fPoints; | |
int fPointCount; | |
bool fClose; | |
bool fIsRect; | |
} tests[] = { | |
{ r1, SK_ARRAY_COUNT(r1), true, true }, | |
{ r2, SK_ARRAY_COUNT(r2), true, true }, | |
{ r3, SK_ARRAY_COUNT(r3), true, true }, | |
{ r4, SK_ARRAY_COUNT(r4), true, true }, | |
{ r5, SK_ARRAY_COUNT(r5), true, true }, | |
{ r6, SK_ARRAY_COUNT(r6), true, true }, | |
{ r7, SK_ARRAY_COUNT(r7), true, true }, | |
{ r8, SK_ARRAY_COUNT(r8), true, true }, | |
{ r9, SK_ARRAY_COUNT(r9), true, true }, | |
{ ra, SK_ARRAY_COUNT(ra), true, true }, | |
{ rb, SK_ARRAY_COUNT(rb), true, true }, | |
{ rc, SK_ARRAY_COUNT(rc), true, true }, | |
{ rd, SK_ARRAY_COUNT(rd), true, true }, | |
{ re, SK_ARRAY_COUNT(re), true, true }, | |
{ rf, SK_ARRAY_COUNT(rf), true, true }, | |
{ f1, SK_ARRAY_COUNT(f1), true, false }, | |
{ f2, SK_ARRAY_COUNT(f2), true, false }, | |
{ f3, SK_ARRAY_COUNT(f3), true, false }, | |
{ f4, SK_ARRAY_COUNT(f4), true, false }, | |
{ f5, SK_ARRAY_COUNT(f5), true, false }, | |
{ f6, SK_ARRAY_COUNT(f6), true, false }, | |
{ f7, SK_ARRAY_COUNT(f7), true, false }, | |
{ f8, SK_ARRAY_COUNT(f8), true, false }, | |
{ f9, SK_ARRAY_COUNT(f9), true, false }, | |
{ fa, SK_ARRAY_COUNT(fa), true, false }, | |
{ fb, SK_ARRAY_COUNT(fb), true, false }, | |
{ c1, SK_ARRAY_COUNT(c1), false, true }, | |
{ c2, SK_ARRAY_COUNT(c2), false, true }, | |
{ c3, SK_ARRAY_COUNT(c3), false, true }, | |
{ d1, SK_ARRAY_COUNT(d1), false, false }, | |
{ d2, SK_ARRAY_COUNT(d2), false, false }, | |
{ d3, SK_ARRAY_COUNT(d3), false, false }, | |
}; | |
const size_t testCount = SK_ARRAY_COUNT(tests); | |
int index; | |
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | |
SkPath path; | |
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); | |
for (index = 1; index < tests[testIndex].fPointCount; ++index) { | |
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); | |
} | |
if (tests[testIndex].fClose) { | |
path.close(); | |
} | |
REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(nullptr)); | |
if (tests[testIndex].fIsRect) { | |
SkRect computed, expected; | |
bool isClosed; | |
SkPath::Direction direction; | |
SkPathPriv::FirstDirection cheapDirection; | |
expected.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapComputeFirstDirection(path, &cheapDirection)); | |
REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction)); | |
REPORTER_ASSERT(reporter, expected == computed); | |
REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose); | |
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(direction) == cheapDirection); | |
} else { | |
SkRect computed; | |
computed.set(123, 456, 789, 1011); | |
bool isClosed = (bool)-1; | |
SkPath::Direction direction = (SkPath::Direction) - 1; | |
REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction)); | |
REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456); | |
REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011); | |
REPORTER_ASSERT(reporter, isClosed == (bool) -1); | |
REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1); | |
} | |
} | |
// fail, close then line | |
SkPath path1; | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
path1.lineTo(1, 0); | |
REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); | |
// fail, move in the middle | |
path1.reset(); | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.moveTo(1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); | |
// fail, move on the edge | |
path1.reset(); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); | |
// fail, quad | |
path1.reset(); | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.quadTo(1, .5f, 1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); | |
// fail, cubic | |
path1.reset(); | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
REPORTER_ASSERT(reporter, !path1.isRect(nullptr)); | |
} | |
static void check_simple_closed_rect(skiatest::Reporter* reporter, const SkPath& path, | |
const SkRect& rect, SkPath::Direction dir, unsigned start) { | |
SkRect r = SkRect::MakeEmpty(); | |
SkPath::Direction d = SkPath::kCCW_Direction; | |
unsigned s = ~0U; | |
REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleClosedRect(path, &r, &d, &s)); | |
REPORTER_ASSERT(reporter, r == rect); | |
REPORTER_ASSERT(reporter, d == dir); | |
REPORTER_ASSERT(reporter, s == start); | |
} | |
static void test_is_simple_closed_rect(skiatest::Reporter* reporter) { | |
SkRect r = SkRect::MakeEmpty(); | |
SkPath::Direction d = SkPath::kCCW_Direction; | |
unsigned s = ~0U; | |
const SkRect testRect = SkRect::MakeXYWH(10, 10, 50, 70); | |
const SkRect emptyRect = SkRect::MakeEmpty(); | |
SkPath path; | |
for (int start = 0; start < 4; ++start) { | |
for (auto dir : {SkPath::kCCW_Direction, SkPath::kCW_Direction}) { | |
SkPath path; | |
path.addRect(testRect, dir, start); | |
check_simple_closed_rect(reporter, path, testRect, dir, start); | |
path.close(); | |
check_simple_closed_rect(reporter, path, testRect, dir, start); | |
SkPath path2 = path; | |
path2.lineTo(10, 10); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
path2 = path; | |
path2.moveTo(10, 10); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
path2 = path; | |
path2.addRect(testRect, dir, start); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
// Make the path by hand, manually closing it. | |
path2.reset(); | |
SkPath::RawIter iter(path); | |
SkPath::Verb v; | |
SkPoint verbPts[4]; | |
SkPoint firstPt = {0.f, 0.f}; | |
while ((v = iter.next(verbPts)) != SkPath::kDone_Verb) { | |
switch(v) { | |
case SkPath::kMove_Verb: | |
firstPt = verbPts[0]; | |
path2.moveTo(verbPts[0]); | |
break; | |
case SkPath::kLine_Verb: | |
path2.lineTo(verbPts[1]); | |
break; | |
default: | |
break; | |
} | |
} | |
// We haven't closed it yet... | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
// ... now we do and test again. | |
path2.lineTo(firstPt); | |
check_simple_closed_rect(reporter, path2, testRect, dir, start); | |
// A redundant close shouldn't cause a failure. | |
path2.close(); | |
check_simple_closed_rect(reporter, path2, testRect, dir, start); | |
// Degenerate point and line rects are not allowed | |
path2.reset(); | |
path2.addRect(emptyRect, dir, start); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
SkRect degenRect = testRect; | |
degenRect.fLeft = degenRect.fRight; | |
path2.reset(); | |
path2.addRect(degenRect, dir, start); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
degenRect = testRect; | |
degenRect.fTop = degenRect.fBottom; | |
path2.reset(); | |
path2.addRect(degenRect, dir, start); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s)); | |
// An inverted rect makes a rect path, but changes the winding dir and start point. | |
SkPath::Direction swapDir = (dir == SkPath::kCW_Direction) | |
? SkPath::kCCW_Direction | |
: SkPath::kCW_Direction; | |
static constexpr unsigned kXSwapStarts[] = { 1, 0, 3, 2 }; | |
static constexpr unsigned kYSwapStarts[] = { 3, 2, 1, 0 }; | |
SkRect swapRect = testRect; | |
SkTSwap(swapRect.fLeft, swapRect.fRight); | |
path2.reset(); | |
path2.addRect(swapRect, dir, start); | |
check_simple_closed_rect(reporter, path2, testRect, swapDir, kXSwapStarts[start]); | |
swapRect = testRect; | |
SkTSwap(swapRect.fTop, swapRect.fBottom); | |
path2.reset(); | |
path2.addRect(swapRect, dir, start); | |
check_simple_closed_rect(reporter, path2, testRect, swapDir, kYSwapStarts[start]); | |
} | |
} | |
// down, up, left, close | |
path.reset(); | |
path.moveTo(1, 1); | |
path.lineTo(1, 2); | |
path.lineTo(1, 1); | |
path.lineTo(0, 1); | |
SkRect rect; | |
SkPath::Direction dir; | |
unsigned start; | |
path.close(); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); | |
// right, left, up, close | |
path.reset(); | |
path.moveTo(1, 1); | |
path.lineTo(2, 1); | |
path.lineTo(1, 1); | |
path.lineTo(1, 0); | |
path.close(); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); | |
// parallelogram with horizontal edges | |
path.reset(); | |
path.moveTo(1, 0); | |
path.lineTo(3, 0); | |
path.lineTo(2, 1); | |
path.lineTo(0, 1); | |
path.close(); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); | |
// parallelogram with vertical edges | |
path.reset(); | |
path.moveTo(0, 1); | |
path.lineTo(0, 3); | |
path.lineTo(1, 2); | |
path.lineTo(1, 0); | |
path.close(); | |
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start)); | |
} | |
static void test_isNestedFillRects(skiatest::Reporter* reporter) { | |
// passing tests (all moveTo / lineTo... | |
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | |
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; | |
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; | |
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; | |
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW | |
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | |
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; | |
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; | |
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; | |
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW | |
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW | |
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW | |
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW | |
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW | |
// failing tests | |
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points | |
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal | |
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps | |
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up | |
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots | |
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots | |
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots | |
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' | |
// success, no close is OK | |
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match | |
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto | |
struct IsNestedRectTest { | |
SkPoint *fPoints; | |
int fPointCount; | |
SkPathPriv::FirstDirection fDirection; | |
bool fClose; | |
bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2); | |
} tests[] = { | |
{ r1, SK_ARRAY_COUNT(r1), SkPathPriv::kCW_FirstDirection , true, true }, | |
{ r2, SK_ARRAY_COUNT(r2), SkPathPriv::kCW_FirstDirection , true, true }, | |
{ r3, SK_ARRAY_COUNT(r3), SkPathPriv::kCW_FirstDirection , true, true }, | |
{ r4, SK_ARRAY_COUNT(r4), SkPathPriv::kCW_FirstDirection , true, true }, | |
{ r5, SK_ARRAY_COUNT(r5), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ r6, SK_ARRAY_COUNT(r6), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ r7, SK_ARRAY_COUNT(r7), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ r8, SK_ARRAY_COUNT(r8), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ r9, SK_ARRAY_COUNT(r9), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ ra, SK_ARRAY_COUNT(ra), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ rb, SK_ARRAY_COUNT(rb), SkPathPriv::kCW_FirstDirection, true, true }, | |
{ rc, SK_ARRAY_COUNT(rc), SkPathPriv::kCW_FirstDirection, true, true }, | |
{ rd, SK_ARRAY_COUNT(rd), SkPathPriv::kCCW_FirstDirection, true, true }, | |
{ re, SK_ARRAY_COUNT(re), SkPathPriv::kCW_FirstDirection, true, true }, | |
{ f1, SK_ARRAY_COUNT(f1), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f2, SK_ARRAY_COUNT(f2), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f3, SK_ARRAY_COUNT(f3), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f4, SK_ARRAY_COUNT(f4), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f5, SK_ARRAY_COUNT(f5), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f6, SK_ARRAY_COUNT(f6), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f7, SK_ARRAY_COUNT(f7), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ f8, SK_ARRAY_COUNT(f8), SkPathPriv::kUnknown_FirstDirection, true, false }, | |
{ c1, SK_ARRAY_COUNT(c1), SkPathPriv::kCW_FirstDirection, false, true }, | |
{ c2, SK_ARRAY_COUNT(c2), SkPathPriv::kCW_FirstDirection, false, true }, | |
}; | |
const size_t testCount = SK_ARRAY_COUNT(tests); | |
int index; | |
for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) { | |
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { | |
SkPath path; | |
if (rectFirst) { | |
path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY); | |
for (index = 1; index < tests[testIndex].fPointCount; ++index) { | |
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY); | |
} | |
if (tests[testIndex].fClose) { | |
path.close(); | |
} | |
if (!rectFirst) { | |
path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, | |
tests[testIndex].fIsNestedRect == path.isNestedFillRects(nullptr)); | |
if (tests[testIndex].fIsNestedRect) { | |
SkRect expected[2], computed[2]; | |
SkPathPriv::FirstDirection expectedDirs[2]; | |
SkPath::Direction computedDirs[2]; | |
SkRect testBounds; | |
testBounds.set(tests[testIndex].fPoints, tests[testIndex].fPointCount); | |
expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2); | |
expected[1] = testBounds; | |
if (rectFirst) { | |
expectedDirs[0] = SkPathPriv::kCW_FirstDirection; | |
} else { | |
expectedDirs[0] = SkPathPriv::kCCW_FirstDirection; | |
} | |
expectedDirs[1] = tests[testIndex].fDirection; | |
REPORTER_ASSERT(reporter, path.isNestedFillRects(computed, computedDirs)); | |
REPORTER_ASSERT(reporter, expected[0] == computed[0]); | |
REPORTER_ASSERT(reporter, expected[1] == computed[1]); | |
REPORTER_ASSERT(reporter, expectedDirs[0] == SkPathPriv::AsFirstDirection(computedDirs[0])); | |
REPORTER_ASSERT(reporter, expectedDirs[1] == SkPathPriv::AsFirstDirection(computedDirs[1])); | |
} | |
} | |
// fail, close then line | |
SkPath path1; | |
if (rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
path1.lineTo(1, 0); | |
if (!rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
// fail, move in the middle | |
path1.reset(); | |
if (rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.moveTo(1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
if (!rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
// fail, move on the edge | |
path1.reset(); | |
if (rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
if (!rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
// fail, quad | |
path1.reset(); | |
if (rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.quadTo(1, .5f, 1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
if (!rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
// fail, cubic | |
path1.reset(); | |
if (rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction); | |
} | |
path1.moveTo(r1[0].fX, r1[0].fY); | |
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) { | |
if (index == 2) { | |
path1.cubicTo(1, .5f, 1, .5f, 1, .5f); | |
} | |
path1.lineTo(r1[index].fX, r1[index].fY); | |
} | |
path1.close(); | |
if (!rectFirst) { | |
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction); | |
} | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
// fail, not nested | |
path1.reset(); | |
path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction); | |
path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction); | |
REPORTER_ASSERT(reporter, !path1.isNestedFillRects(nullptr)); | |
} | |
// pass, constructed explicitly from manually closed rects specified as moves/lines. | |
SkPath path; | |
path.moveTo(0, 0); | |
path.lineTo(10, 0); | |
path.lineTo(10, 10); | |
path.lineTo(0, 10); | |
path.lineTo(0, 0); | |
path.moveTo(1, 1); | |
path.lineTo(9, 1); | |
path.lineTo(9, 9); | |
path.lineTo(1, 9); | |
path.lineTo(1, 1); | |
REPORTER_ASSERT(reporter, path.isNestedFillRects(nullptr)); | |
// pass, stroke rect | |
SkPath src, dst; | |
src.addRect(1, 1, 7, 7, SkPath::kCW_Direction); | |
SkPaint strokePaint; | |
strokePaint.setStyle(SkPaint::kStroke_Style); | |
strokePaint.setStrokeWidth(2); | |
strokePaint.getFillPath(src, &dst); | |
REPORTER_ASSERT(reporter, dst.isNestedFillRects(nullptr)); | |
} | |
static void write_and_read_back(skiatest::Reporter* reporter, | |
const SkPath& p) { | |
SkWriter32 writer; | |
writer.writePath(p); | |
size_t size = writer.bytesWritten(); | |
SkAutoMalloc storage(size); | |
writer.flatten(storage.get()); | |
SkReader32 reader(storage.get(), size); | |
SkPath readBack; | |
REPORTER_ASSERT(reporter, readBack != p); | |
reader.readPath(&readBack); | |
REPORTER_ASSERT(reporter, readBack == p); | |
REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == | |
p.getConvexityOrUnknown()); | |
SkRect oval0, oval1; | |
SkPath::Direction dir0, dir1; | |
unsigned start0, start1; | |
REPORTER_ASSERT(reporter, readBack.isOval(nullptr) == p.isOval(nullptr)); | |
if (p.isOval(&oval0, &dir0, &start0) && readBack.isOval(&oval1, &dir1, &start1)) { | |
REPORTER_ASSERT(reporter, oval0 == oval1); | |
REPORTER_ASSERT(reporter, dir0 == dir1); | |
REPORTER_ASSERT(reporter, start0 == start1); | |
} | |
REPORTER_ASSERT(reporter, readBack.isRRect(nullptr) == p.isRRect(nullptr)); | |
SkRRect rrect0, rrect1; | |
if (p.isRRect(&rrect0, &dir0, &start0) && readBack.isRRect(&rrect1, &dir1, &start1)) { | |
REPORTER_ASSERT(reporter, rrect0 == rrect1); | |
REPORTER_ASSERT(reporter, dir0 == dir1); | |
REPORTER_ASSERT(reporter, start0 == start1); | |
} | |
const SkRect& origBounds = p.getBounds(); | |
const SkRect& readBackBounds = readBack.getBounds(); | |
REPORTER_ASSERT(reporter, origBounds == readBackBounds); | |
} | |
static void test_corrupt_flattening(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(1, 2); | |
path.lineTo(1, 2); | |
path.quadTo(1, 2, 3, 4); | |
path.conicTo(1, 2, 3, 4, 0.5f); | |
path.cubicTo(1, 2, 3, 4, 5, 6); | |
uint8_t buffer[1024]; | |
SkDEBUGCODE(size_t size =) path.writeToMemory(buffer); | |
SkASSERT(size <= sizeof(buffer)); | |
// find where the counts and verbs are stored : from the impl in SkPathRef.cpp | |
int32_t* vCount = (int32_t*)&buffer[16]; | |
SkASSERT(*vCount == 5); | |
int32_t* pCount = (int32_t*)&buffer[20]; | |
SkASSERT(*pCount == 9); | |
int32_t* cCount = (int32_t*)&buffer[24]; | |
SkASSERT(*cCount == 1); | |
uint8_t* verbs = &buffer[28]; | |
REPORTER_ASSERT(reporter, path.readFromMemory(buffer, sizeof(buffer))); | |
// check that we detect under/over-flow of counts | |
*vCount += 1; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
*vCount -= 1; // restore | |
*pCount += 1; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
*pCount -= 2; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
*pCount += 1; // restore | |
*cCount += 1; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
*cCount -= 2; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
*cCount += 1; // restore | |
// Check that we detect when the verbs indicate more or fewer pts/conics | |
uint8_t save = verbs[0]; | |
SkASSERT(save == SkPath::kCubic_Verb); | |
verbs[0] = SkPath::kQuad_Verb; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
verbs[0] = save; | |
save = verbs[1]; | |
SkASSERT(save == SkPath::kConic_Verb); | |
verbs[1] = SkPath::kQuad_Verb; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
verbs[1] = SkPath::kCubic_Verb; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
verbs[1] = save; | |
// Check that we detect invalid verbs | |
save = verbs[1]; | |
verbs[1] = 17; | |
REPORTER_ASSERT(reporter, !path.readFromMemory(buffer, sizeof(buffer))); | |
verbs[1] = save; | |
} | |
static void test_flattening(skiatest::Reporter* reporter) { | |
SkPath p; | |
static const SkPoint pts[] = { | |
{ 0, 0 }, | |
{ SkIntToScalar(10), SkIntToScalar(10) }, | |
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, | |
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } | |
}; | |
p.moveTo(pts[0]); | |
p.lineTo(pts[1]); | |
p.quadTo(pts[2], pts[3]); | |
p.cubicTo(pts[4], pts[5], pts[6]); | |
write_and_read_back(reporter, p); | |
// create a buffer that should be much larger than the path so we don't | |
// kill our stack if writer goes too far. | |
char buffer[1024]; | |
size_t size1 = p.writeToMemory(nullptr); | |
size_t size2 = p.writeToMemory(buffer); | |
REPORTER_ASSERT(reporter, size1 == size2); | |
SkPath p2; | |
size_t size3 = p2.readFromMemory(buffer, 1024); | |
REPORTER_ASSERT(reporter, size1 == size3); | |
REPORTER_ASSERT(reporter, p == p2); | |
size3 = p2.readFromMemory(buffer, 0); | |
REPORTER_ASSERT(reporter, !size3); | |
SkPath tooShort; | |
size3 = tooShort.readFromMemory(buffer, size1 - 1); | |
REPORTER_ASSERT(reporter, tooShort.isEmpty()); | |
char buffer2[1024]; | |
size3 = p2.writeToMemory(buffer2); | |
REPORTER_ASSERT(reporter, size1 == size3); | |
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); | |
// test persistence of the oval flag & convexity | |
{ | |
SkPath oval; | |
SkRect rect = SkRect::MakeWH(10, 10); | |
oval.addOval(rect); | |
write_and_read_back(reporter, oval); | |
} | |
test_corrupt_flattening(reporter); | |
} | |
static void test_transform(skiatest::Reporter* reporter) { | |
SkPath p; | |
#define CONIC_PERSPECTIVE_BUG_FIXED 0 | |
static const SkPoint pts[] = { | |
{ 0, 0 }, // move | |
{ SkIntToScalar(10), SkIntToScalar(10) }, // line | |
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad | |
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic | |
#if CONIC_PERSPECTIVE_BUG_FIXED | |
{ 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic | |
#endif | |
}; | |
const int kPtCount = SK_ARRAY_COUNT(pts); | |
p.moveTo(pts[0]); | |
p.lineTo(pts[1]); | |
p.quadTo(pts[2], pts[3]); | |
p.cubicTo(pts[4], pts[5], pts[6]); | |
#if CONIC_PERSPECTIVE_BUG_FIXED | |
p.conicTo(pts[4], pts[5], 0.5f); | |
#endif | |
p.close(); | |
{ | |
SkMatrix matrix; | |
matrix.reset(); | |
SkPath p1; | |
p.transform(matrix, &p1); | |
REPORTER_ASSERT(reporter, p == p1); | |
} | |
{ | |
SkMatrix matrix; | |
matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); | |
SkPath p1; // Leave p1 non-unique (i.e., the empty path) | |
p.transform(matrix, &p1); | |
SkPoint pts1[kPtCount]; | |
int count = p1.getPoints(pts1, kPtCount); | |
REPORTER_ASSERT(reporter, kPtCount == count); | |
for (int i = 0; i < count; ++i) { | |
SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); | |
REPORTER_ASSERT(reporter, newPt == pts1[i]); | |
} | |
} | |
{ | |
SkMatrix matrix; | |
matrix.reset(); | |
matrix.setPerspX(4); | |
SkPath p1; | |
p1.moveTo(SkPoint::Make(0, 0)); | |
p.transform(matrix, &p1); | |
REPORTER_ASSERT(reporter, matrix.invert(&matrix)); | |
p1.transform(matrix, nullptr); | |
SkRect pBounds = p.getBounds(); | |
SkRect p1Bounds = p1.getBounds(); | |
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft)); | |
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop)); | |
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight)); | |
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom)); | |
} | |
p.reset(); | |
p.addCircle(0, 0, 1, SkPath::kCW_Direction); | |
{ | |
SkMatrix matrix; | |
matrix.reset(); | |
SkPath p1; | |
p1.moveTo(SkPoint::Make(0, 0)); | |
p.transform(matrix, &p1); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCW_FirstDirection)); | |
} | |
{ | |
SkMatrix matrix; | |
matrix.reset(); | |
matrix.setScaleX(-1); | |
SkPath p1; | |
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) | |
p.transform(matrix, &p1); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCCW_FirstDirection)); | |
} | |
{ | |
SkMatrix matrix; | |
matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1); | |
SkPath p1; | |
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path) | |
p.transform(matrix, &p1); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kUnknown_FirstDirection)); | |
} | |
} | |
static void test_zero_length_paths(skiatest::Reporter* reporter) { | |
SkPath p; | |
uint8_t verbs[32]; | |
struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData { | |
const char* testPath; | |
const size_t numResultPts; | |
const SkRect resultBound; | |
const SkPath::Verb* resultVerbs; | |
const size_t numResultVerbs; | |
}; | |
static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; | |
static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; | |
static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; | |
static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; | |
static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; | |
static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; | |
static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; | |
static const SkPath::Verb resultVerbs8[] = { | |
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb | |
}; | |
static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; | |
static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; | |
static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; | |
static const SkPath::Verb resultVerbs12[] = { | |
SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb | |
}; | |
static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; | |
static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; | |
static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; | |
static const SkPath::Verb resultVerbs16[] = { | |
SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb | |
}; | |
static const struct zeroPathTestData gZeroLengthTests[] = { | |
{ "M 1 1", 1, {1, 1, 1, 1}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | |
{ "M 1 1 z", 1, {1, 1, 1, 1}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | |
{ "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | |
{ "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, | |
{ "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, | |
{ "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, | |
{ "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, | |
{ "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, | |
{ "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, | |
{ "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, | |
{ "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, | |
{ "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, | |
{ "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, | |
SK_ARRAY_COUNT(resultVerbs14) | |
}, | |
{ "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, | |
{ "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, | |
SK_ARRAY_COUNT(resultVerbs16) | |
} | |
}; | |
for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { | |
p.reset(); | |
bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); | |
REPORTER_ASSERT(reporter, valid); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); | |
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); | |
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); | |
for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { | |
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); | |
} | |
} | |
} | |
struct SegmentInfo { | |
SkPath fPath; | |
int fPointCount; | |
}; | |
#define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) | |
static void test_segment_masks(skiatest::Reporter* reporter) { | |
SkPath p, p2; | |
p.moveTo(0, 0); | |
p.quadTo(100, 100, 200, 200); | |
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
p2 = p; | |
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | |
p.cubicTo(100, 100, 200, 200, 300, 300); | |
REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
p2 = p; | |
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | |
p.reset(); | |
p.moveTo(0, 0); | |
p.cubicTo(100, 100, 200, 200, 300, 300); | |
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); | |
p2 = p; | |
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
} | |
static void test_iter(skiatest::Reporter* reporter) { | |
SkPath p; | |
SkPoint pts[4]; | |
// Test an iterator with no path | |
SkPath::Iter noPathIter; | |
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | |
// Test that setting an empty path works | |
noPathIter.setPath(p, false); | |
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | |
// Test that close path makes no difference for an empty path | |
noPathIter.setPath(p, true); | |
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | |
// Test an iterator with an initial empty path | |
SkPath::Iter iter(p, false); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// Test that close path makes no difference | |
iter.setPath(p, true); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
struct iterTestData { | |
const char* testPath; | |
const bool forceClose; | |
const bool consumeDegenerates; | |
const size_t* numResultPtsPerVerb; | |
const SkPoint* resultPts; | |
const SkPath::Verb* resultVerbs; | |
const size_t numResultVerbs; | |
}; | |
static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; | |
static const SkPath::Verb resultVerbs2[] = { | |
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb | |
}; | |
static const SkPath::Verb resultVerbs3[] = { | |
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | |
}; | |
static const SkPath::Verb resultVerbs4[] = { | |
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | |
}; | |
static const SkPath::Verb resultVerbs5[] = { | |
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb | |
}; | |
static const size_t resultPtsSizes1[] = { 0 }; | |
static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 }; | |
static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 }; | |
static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 }; | |
static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 }; | |
static const SkPoint* resultPts1 = nullptr; | |
static const SkPoint resultPts2[] = { | |
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 } | |
}; | |
static const SkPoint resultPts3[] = { | |
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }, | |
{ 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 } | |
}; | |
static const SkPoint resultPts4[] = { | |
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | |
}; | |
static const SkPoint resultPts5[] = { | |
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } | |
}; | |
static const struct iterTestData gIterTests[] = { | |
{ "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, | |
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, | |
{ "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, | |
{ "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, | |
{ "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) } | |
}; | |
for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { | |
p.reset(); | |
bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); | |
REPORTER_ASSERT(reporter, valid); | |
iter.setPath(p, gIterTests[i].forceClose); | |
int j = 0, l = 0; | |
do { | |
REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]); | |
for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { | |
REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); | |
} | |
} while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); | |
REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); | |
} | |
p.reset(); | |
iter.setPath(p, false); | |
REPORTER_ASSERT(reporter, !iter.isClosedContour()); | |
p.lineTo(1, 1); | |
p.close(); | |
iter.setPath(p, false); | |
REPORTER_ASSERT(reporter, iter.isClosedContour()); | |
p.reset(); | |
iter.setPath(p, true); | |
REPORTER_ASSERT(reporter, !iter.isClosedContour()); | |
p.lineTo(1, 1); | |
iter.setPath(p, true); | |
REPORTER_ASSERT(reporter, iter.isClosedContour()); | |
p.moveTo(0, 0); | |
p.lineTo(2, 2); | |
iter.setPath(p, false); | |
REPORTER_ASSERT(reporter, !iter.isClosedContour()); | |
// this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not | |
// check to see if the result is correct. | |
for (int setNaN = 0; setNaN < 4; ++setNaN) { | |
p.reset(); | |
p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0); | |
p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1); | |
iter.setPath(p, true); | |
iter.next(pts, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts, false)); | |
} | |
p.reset(); | |
p.quadTo(0, 0, 0, 0); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts, false)); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | |
p.reset(); | |
p.conicTo(0, 0, 0, 0, 0.5f); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts, false)); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | |
p.reset(); | |
p.cubicTo(0, 0, 0, 0, 0, 0); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | |
p.moveTo(1, 1); // add a trailing moveto | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false)); | |
iter.setPath(p, false); | |
iter.next(pts, false); | |
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true)); | |
// The GM degeneratesegments.cpp test is more extensive | |
// Test out mixed degenerate and non-degenerate geometry with Conics | |
const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } }; | |
SkRect r = SkRect::MakeWH(100, 100); | |
SkRRect rr; | |
rr.setRectRadii(r, radii); | |
p.reset(); | |
p.addRRect(rr); | |
iter.setPath(p, false); | |
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts)); | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts)); | |
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts)); | |
REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight()); | |
} | |
static void test_raw_iter(skiatest::Reporter* reporter) { | |
SkPath p; | |
SkPoint pts[4]; | |
// Test an iterator with no path | |
SkPath::RawIter noPathIter; | |
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | |
// Test that setting an empty path works | |
noPathIter.setPath(p); | |
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); | |
// Test an iterator with an initial empty path | |
SkPath::RawIter iter(p); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// Test that a move-only path returns the move. | |
p.moveTo(SK_Scalar1, 0); | |
iter.setPath(p); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | |
REPORTER_ASSERT(reporter, pts[0].fY == 0); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// No matter how many moves we add, we should get them all back | |
p.moveTo(SK_Scalar1*2, SK_Scalar1); | |
p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | |
iter.setPath(p); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | |
REPORTER_ASSERT(reporter, pts[0].fY == 0); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | |
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | |
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// Initial close is never ever stored | |
p.reset(); | |
p.close(); | |
iter.setPath(p); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// Move/close sequences | |
p.reset(); | |
p.close(); // Not stored, no purpose | |
p.moveTo(SK_Scalar1, 0); | |
p.close(); | |
p.close(); // Not stored, no purpose | |
p.moveTo(SK_Scalar1*2, SK_Scalar1); | |
p.close(); | |
p.moveTo(SK_Scalar1*3, SK_Scalar1*2); | |
p.moveTo(SK_Scalar1*4, SK_Scalar1*3); | |
p.close(); | |
iter.setPath(p); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); | |
REPORTER_ASSERT(reporter, pts[0].fY == 0); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); | |
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); | |
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); | |
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); | |
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); | |
// Generate random paths and verify | |
SkPoint randomPts[25]; | |
for (int i = 0; i < 5; ++i) { | |
for (int j = 0; j < 5; ++j) { | |
randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); | |
} | |
} | |
// Max of 10 segments, max 3 points per segment | |
SkRandom rand(9876543); | |
SkPoint expectedPts[31]; // May have leading moveTo | |
SkPath::Verb expectedVerbs[22]; // May have leading moveTo | |
SkPath::Verb nextVerb; | |
for (int i = 0; i < 500; ++i) { | |
p.reset(); | |
bool lastWasClose = true; | |
bool haveMoveTo = false; | |
SkPoint lastMoveToPt = { 0, 0 }; | |
int numPoints = 0; | |
int numVerbs = (rand.nextU() >> 16) % 10; | |
int numIterVerbs = 0; | |
for (int j = 0; j < numVerbs; ++j) { | |
do { | |
nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb); | |
} while (lastWasClose && nextVerb == SkPath::kClose_Verb); | |
switch (nextVerb) { | |
case SkPath::kMove_Verb: | |
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | |
p.moveTo(expectedPts[numPoints]); | |
lastMoveToPt = expectedPts[numPoints]; | |
numPoints += 1; | |
lastWasClose = false; | |
haveMoveTo = true; | |
break; | |
case SkPath::kLine_Verb: | |
if (!haveMoveTo) { | |
expectedPts[numPoints++] = lastMoveToPt; | |
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | |
haveMoveTo = true; | |
} | |
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | |
p.lineTo(expectedPts[numPoints]); | |
numPoints += 1; | |
lastWasClose = false; | |
break; | |
case SkPath::kQuad_Verb: | |
if (!haveMoveTo) { | |
expectedPts[numPoints++] = lastMoveToPt; | |
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | |
haveMoveTo = true; | |
} | |
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | |
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | |
p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); | |
numPoints += 2; | |
lastWasClose = false; | |
break; | |
case SkPath::kConic_Verb: | |
if (!haveMoveTo) { | |
expectedPts[numPoints++] = lastMoveToPt; | |
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | |
haveMoveTo = true; | |
} | |
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | |
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | |
p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | |
rand.nextUScalar1() * 4); | |
numPoints += 2; | |
lastWasClose = false; | |
break; | |
case SkPath::kCubic_Verb: | |
if (!haveMoveTo) { | |
expectedPts[numPoints++] = lastMoveToPt; | |
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; | |
haveMoveTo = true; | |
} | |
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; | |
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; | |
expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; | |
p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], | |
expectedPts[numPoints + 2]); | |
numPoints += 3; | |
lastWasClose = false; | |
break; | |
case SkPath::kClose_Verb: | |
p.close(); | |
haveMoveTo = false; | |
lastWasClose = true; | |
break; | |
default: | |
SkDEBUGFAIL("unexpected verb"); | |
} | |
expectedVerbs[numIterVerbs++] = nextVerb; | |
} | |
iter.setPath(p); | |
numVerbs = numIterVerbs; | |
numIterVerbs = 0; | |
int numIterPts = 0; | |
SkPoint lastMoveTo; | |
SkPoint lastPt; | |
lastMoveTo.set(0, 0); | |
lastPt.set(0, 0); | |
while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { | |
REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); | |
numIterVerbs++; | |
switch (nextVerb) { | |
case SkPath::kMove_Verb: | |
REPORTER_ASSERT(reporter, numIterPts < numPoints); | |
REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); | |
lastPt = lastMoveTo = pts[0]; | |
numIterPts += 1; | |
break; | |
case SkPath::kLine_Verb: | |
REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); | |
REPORTER_ASSERT(reporter, pts[0] == lastPt); | |
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | |
lastPt = pts[1]; | |
numIterPts += 1; | |
break; | |
case SkPath::kQuad_Verb: | |
case SkPath::kConic_Verb: | |
REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); | |
REPORTER_ASSERT(reporter, pts[0] == lastPt); | |
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | |
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | |
lastPt = pts[2]; | |
numIterPts += 2; | |
break; | |
case SkPath::kCubic_Verb: | |
REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); | |
REPORTER_ASSERT(reporter, pts[0] == lastPt); | |
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); | |
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); | |
REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); | |
lastPt = pts[3]; | |
numIterPts += 3; | |
break; | |
case SkPath::kClose_Verb: | |
lastPt = lastMoveTo; | |
break; | |
default: | |
SkDEBUGFAIL("unexpected verb"); | |
} | |
} | |
REPORTER_ASSERT(reporter, numIterPts == numPoints); | |
REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); | |
} | |
} | |
static void check_for_circle(skiatest::Reporter* reporter, | |
const SkPath& path, | |
bool expectedCircle, | |
SkPathPriv::FirstDirection expectedDir) { | |
SkRect rect = SkRect::MakeEmpty(); | |
REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle); | |
SkPath::Direction isOvalDir; | |
unsigned isOvalStart; | |
if (path.isOval(&rect, &isOvalDir, &isOvalStart)) { | |
REPORTER_ASSERT(reporter, rect.height() == rect.width()); | |
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(isOvalDir) == expectedDir); | |
SkPath tmpPath; | |
tmpPath.addOval(rect, isOvalDir, isOvalStart); | |
REPORTER_ASSERT(reporter, path == tmpPath); | |
} | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, expectedDir)); | |
} | |
static void test_circle_skew(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
SkPath tmp; | |
SkMatrix m; | |
m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); | |
path.transform(m, &tmp); | |
// this matrix reverses the direction. | |
if (SkPathPriv::kCCW_FirstDirection == dir) { | |
dir = SkPathPriv::kCW_FirstDirection; | |
} else { | |
REPORTER_ASSERT(reporter, SkPathPriv::kCW_FirstDirection == dir); | |
dir = SkPathPriv::kCCW_FirstDirection; | |
} | |
check_for_circle(reporter, tmp, false, dir); | |
} | |
static void test_circle_translate(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
SkPath tmp; | |
// translate at small offset | |
SkMatrix m; | |
m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); | |
path.transform(m, &tmp); | |
check_for_circle(reporter, tmp, true, dir); | |
tmp.reset(); | |
m.reset(); | |
// translate at a relatively big offset | |
m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); | |
path.transform(m, &tmp); | |
check_for_circle(reporter, tmp, true, dir); | |
} | |
static void test_circle_rotate(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
for (int angle = 0; angle < 360; ++angle) { | |
SkPath tmp; | |
SkMatrix m; | |
m.setRotate(SkIntToScalar(angle)); | |
path.transform(m, &tmp); | |
// TODO: a rotated circle whose rotated angle is not a multiple of 90 | |
// degrees is not an oval anymore, this can be improved. we made this | |
// for the simplicity of our implementation. | |
if (angle % 90 == 0) { | |
check_for_circle(reporter, tmp, true, dir); | |
} else { | |
check_for_circle(reporter, tmp, false, dir); | |
} | |
} | |
} | |
static void test_circle_mirror_x(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
SkPath tmp; | |
SkMatrix m; | |
m.reset(); | |
m.setScaleX(-SK_Scalar1); | |
path.transform(m, &tmp); | |
if (SkPathPriv::kCW_FirstDirection == dir) { | |
dir = SkPathPriv::kCCW_FirstDirection; | |
} else { | |
REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); | |
dir = SkPathPriv::kCW_FirstDirection; | |
} | |
check_for_circle(reporter, tmp, true, dir); | |
} | |
static void test_circle_mirror_y(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
SkPath tmp; | |
SkMatrix m; | |
m.reset(); | |
m.setScaleY(-SK_Scalar1); | |
path.transform(m, &tmp); | |
if (SkPathPriv::kCW_FirstDirection == dir) { | |
dir = SkPathPriv::kCCW_FirstDirection; | |
} else { | |
REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir); | |
dir = SkPathPriv::kCW_FirstDirection; | |
} | |
check_for_circle(reporter, tmp, true, dir); | |
} | |
static void test_circle_mirror_xy(skiatest::Reporter* reporter, | |
const SkPath& path, | |
SkPathPriv::FirstDirection dir) { | |
SkPath tmp; | |
SkMatrix m; | |
m.reset(); | |
m.setScaleX(-SK_Scalar1); | |
m.setScaleY(-SK_Scalar1); | |
path.transform(m, &tmp); | |
check_for_circle(reporter, tmp, true, dir); | |
} | |
static void test_circle_with_direction(skiatest::Reporter* reporter, | |
SkPath::Direction inDir) { | |
const SkPathPriv::FirstDirection dir = SkPathPriv::AsFirstDirection(inDir); | |
SkPath path; | |
// circle at origin | |
path.addCircle(0, 0, SkIntToScalar(20), inDir); | |
check_for_circle(reporter, path, true, dir); | |
test_circle_rotate(reporter, path, dir); | |
test_circle_translate(reporter, path, dir); | |
test_circle_skew(reporter, path, dir); | |
test_circle_mirror_x(reporter, path, dir); | |
test_circle_mirror_y(reporter, path, dir); | |
test_circle_mirror_xy(reporter, path, dir); | |
// circle at an offset at (10, 10) | |
path.reset(); | |
path.addCircle(SkIntToScalar(10), SkIntToScalar(10), | |
SkIntToScalar(20), inDir); | |
check_for_circle(reporter, path, true, dir); | |
test_circle_rotate(reporter, path, dir); | |
test_circle_translate(reporter, path, dir); | |
test_circle_skew(reporter, path, dir); | |
test_circle_mirror_x(reporter, path, dir); | |
test_circle_mirror_y(reporter, path, dir); | |
test_circle_mirror_xy(reporter, path, dir); | |
// Try different starting points for the contour. | |
for (unsigned start = 0; start < 4; ++start) { | |
path.reset(); | |
path.addOval(SkRect::MakeXYWH(20, 10, 5, 5), inDir, start); | |
test_circle_rotate(reporter, path, dir); | |
test_circle_translate(reporter, path, dir); | |
test_circle_skew(reporter, path, dir); | |
test_circle_mirror_x(reporter, path, dir); | |
test_circle_mirror_y(reporter, path, dir); | |
test_circle_mirror_xy(reporter, path, dir); | |
} | |
} | |
static void test_circle_with_add_paths(skiatest::Reporter* reporter) { | |
SkPath path; | |
SkPath circle; | |
SkPath rect; | |
SkPath empty; | |
const SkPath::Direction kCircleDir = SkPath::kCW_Direction; | |
const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction; | |
circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir); | |
rect.addRect(SkIntToScalar(5), SkIntToScalar(5), | |
SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); | |
SkMatrix translate; | |
translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); | |
// Although all the path concatenation related operations leave | |
// the path a circle, most mark it as a non-circle for simplicity | |
// empty + circle (translate) | |
path = empty; | |
path.addPath(circle, translate); | |
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDir)); | |
// circle + empty (translate) | |
path = circle; | |
path.addPath(empty, translate); | |
check_for_circle(reporter, path, true, SkPathPriv::AsFirstDirection(kCircleDir)); | |
// test reverseAddPath | |
path = circle; | |
path.reverseAddPath(rect); | |
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDirOpposite)); | |
} | |
static void test_circle(skiatest::Reporter* reporter) { | |
test_circle_with_direction(reporter, SkPath::kCW_Direction); | |
test_circle_with_direction(reporter, SkPath::kCCW_Direction); | |
// multiple addCircle() | |
SkPath path; | |
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | |
path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); | |
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); | |
// some extra lineTo() would make isOval() fail | |
path.reset(); | |
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | |
path.lineTo(0, 0); | |
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); | |
// not back to the original point | |
path.reset(); | |
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); | |
path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); | |
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection); | |
test_circle_with_add_paths(reporter); | |
// test negative radius | |
path.reset(); | |
path.addCircle(0, 0, -1, SkPath::kCW_Direction); | |
REPORTER_ASSERT(reporter, path.isEmpty()); | |
} | |
static void test_oval(skiatest::Reporter* reporter) { | |
SkRect rect; | |
SkMatrix m; | |
SkPath path; | |
unsigned start = 0; | |
SkPath::Direction dir = SkPath::kCCW_Direction; | |
rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); | |
path.addOval(rect); | |
// Defaults to dir = CW and start = 1 | |
REPORTER_ASSERT(reporter, path.isOval(nullptr)); | |
m.setRotate(SkIntToScalar(90)); | |
SkPath tmp; | |
path.transform(m, &tmp); | |
// an oval rotated 90 degrees is still an oval. The start index changes from 1 to 2. Direction | |
// is unchanged. | |
REPORTER_ASSERT(reporter, tmp.isOval(nullptr, &dir, &start)); | |
REPORTER_ASSERT(reporter, 2 == start); | |
REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); | |
m.reset(); | |
m.setRotate(SkIntToScalar(30)); | |
tmp.reset(); | |
path.transform(m, &tmp); | |
// an oval rotated 30 degrees is not an oval anymore. | |
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); | |
// since empty path being transformed. | |
path.reset(); | |
tmp.reset(); | |
m.reset(); | |
path.transform(m, &tmp); | |
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); | |
// empty path is not an oval | |
tmp.reset(); | |
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); | |
// only has moveTo()s | |
tmp.reset(); | |
tmp.moveTo(0, 0); | |
tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); | |
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr)); | |
// mimic WebKit's calling convention, | |
// call moveTo() first and then call addOval() | |
path.reset(); | |
path.moveTo(0, 0); | |
path.addOval(rect); | |
REPORTER_ASSERT(reporter, path.isOval(nullptr)); | |
// copy path | |
path.reset(); | |
tmp.reset(); | |
tmp.addOval(rect); | |
path = tmp; | |
REPORTER_ASSERT(reporter, path.isOval(nullptr, &dir, &start)); | |
REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); | |
REPORTER_ASSERT(reporter, 1 == start); | |
} | |
static void test_empty(skiatest::Reporter* reporter, const SkPath& p) { | |
SkPath empty; | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
REPORTER_ASSERT(reporter, 0 == p.countPoints()); | |
REPORTER_ASSERT(reporter, 0 == p.countVerbs()); | |
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); | |
REPORTER_ASSERT(reporter, p.isConvex()); | |
REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); | |
REPORTER_ASSERT(reporter, !p.isInverseFillType()); | |
REPORTER_ASSERT(reporter, p == empty); | |
REPORTER_ASSERT(reporter, !(p != empty)); | |
} | |
static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path, | |
SkPath::Direction dir) { | |
REPORTER_ASSERT(reporter, path->isConvex()); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); | |
path->setConvexity(SkPath::kUnknown_Convexity); | |
REPORTER_ASSERT(reporter, path->isConvex()); | |
path->reset(); | |
} | |
static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path, | |
SkPath::Direction dir) { | |
REPORTER_ASSERT(reporter, path->isConvex()); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir))); | |
path->setConvexity(SkPath::kUnknown_Convexity); | |
REPORTER_ASSERT(reporter, path->getConvexity() == SkPath::kUnknown_Convexity); | |
path->reset(); | |
} | |
static void test_rrect(skiatest::Reporter* reporter) { | |
SkPath p; | |
SkRRect rr; | |
SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}; | |
SkRect r = {10, 20, 30, 40}; | |
rr.setRectRadii(r, radii); | |
p.addRRect(rr); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
p.addRRect(rr, SkPath::kCCW_Direction); | |
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | |
p.addRoundRect(r, &radii[0].fX); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction); | |
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | |
p.addRoundRect(r, radii[1].fX, radii[1].fY); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction); | |
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction); | |
for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) { | |
SkVector save = radii[i]; | |
radii[i].set(0, 0); | |
rr.setRectRadii(r, radii); | |
p.addRRect(rr); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
radii[i] = save; | |
} | |
p.addRoundRect(r, 0, 0); | |
SkRect returnedRect; | |
REPORTER_ASSERT(reporter, p.isRect(&returnedRect)); | |
REPORTER_ASSERT(reporter, returnedRect == r); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; | |
rr.setRectRadii(r, zeroRadii); | |
p.addRRect(rr); | |
bool closed; | |
SkPath::Direction dir; | |
REPORTER_ASSERT(reporter, p.isRect(nullptr, &closed, &dir)); | |
REPORTER_ASSERT(reporter, closed); | |
REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
p.addRRect(rr, SkPath::kCW_Direction); | |
p.addRRect(rr, SkPath::kCW_Direction); | |
REPORTER_ASSERT(reporter, !p.isConvex()); | |
p.reset(); | |
p.addRRect(rr, SkPath::kCCW_Direction); | |
p.addRRect(rr, SkPath::kCCW_Direction); | |
REPORTER_ASSERT(reporter, !p.isConvex()); | |
p.reset(); | |
SkRect emptyR = {10, 20, 10, 30}; | |
rr.setRectRadii(emptyR, radii); | |
p.addRRect(rr); | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax}; | |
rr.setRectRadii(largeR, radii); | |
p.addRRect(rr); | |
test_rrect_convexity_is_unknown(reporter, &p, SkPath::kCW_Direction); | |
// we check for non-finites | |
SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity}; | |
rr.setRectRadii(infR, radii); | |
REPORTER_ASSERT(reporter, rr.isEmpty()); | |
SkRect tinyR = {0, 0, 1e-9f, 1e-9f}; | |
p.addRoundRect(tinyR, 5e-11f, 5e-11f); | |
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction); | |
} | |
static void test_arc(skiatest::Reporter* reporter) { | |
SkPath p; | |
SkRect emptyOval = {10, 20, 30, 20}; | |
REPORTER_ASSERT(reporter, emptyOval.isEmpty()); | |
p.addArc(emptyOval, 1, 2); | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
p.reset(); | |
SkRect oval = {10, 20, 30, 40}; | |
p.addArc(oval, 1, 0); | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
p.reset(); | |
SkPath cwOval; | |
cwOval.addOval(oval); | |
p.addArc(oval, 0, 360); | |
REPORTER_ASSERT(reporter, p == cwOval); | |
p.reset(); | |
SkPath ccwOval; | |
ccwOval.addOval(oval, SkPath::kCCW_Direction); | |
p.addArc(oval, 0, -360); | |
REPORTER_ASSERT(reporter, p == ccwOval); | |
p.reset(); | |
p.addArc(oval, 1, 180); | |
REPORTER_ASSERT(reporter, p.isConvex()); | |
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p, SkPathPriv::kCW_FirstDirection)); | |
p.setConvexity(SkPath::kUnknown_Convexity); | |
REPORTER_ASSERT(reporter, p.isConvex()); | |
} | |
static inline SkScalar oval_start_index_to_angle(unsigned start) { | |
switch (start) { | |
case 0: | |
return 270.f; | |
case 1: | |
return 0.f; | |
case 2: | |
return 90.f; | |
case 3: | |
return 180.f; | |
default: | |
return -1.f; | |
} | |
} | |
static inline SkScalar canonical_start_angle(float angle) { | |
while (angle < 0.f) { | |
angle += 360.f; | |
} | |
while (angle >= 360.f) { | |
angle -= 360.f; | |
} | |
return angle; | |
} | |
static void check_oval_arc(skiatest::Reporter* reporter, SkScalar start, SkScalar sweep, | |
const SkPath& path) { | |
SkRect r = SkRect::MakeEmpty(); | |
SkPath::Direction d = SkPath::kCCW_Direction; | |
unsigned s = ~0U; | |
bool isOval = path.isOval(&r, &d, &s); | |
REPORTER_ASSERT(reporter, isOval); | |
SkPath recreatedPath; | |
recreatedPath.addOval(r, d, s); | |
REPORTER_ASSERT(reporter, path == recreatedPath); | |
REPORTER_ASSERT(reporter, oval_start_index_to_angle(s) == canonical_start_angle(start)); | |
REPORTER_ASSERT(reporter, (SkPath::kCW_Direction == d) == (sweep > 0.f)); | |
} | |
static void test_arc_ovals(skiatest::Reporter* reporter) { | |
SkRect oval = SkRect::MakeWH(10, 20); | |
for (SkScalar sweep : {-720.f, -540.f, -360.f, 360.f, 432.f, 720.f}) { | |
for (SkScalar start = -360.f; start <= 360.f; start += 1.f) { | |
SkPath path; | |
path.addArc(oval, start, sweep); | |
// SkPath's interfaces for inserting and extracting ovals only allow contours | |
// to start at multiples of 90 degrees. | |
if (std::fmod(start, 90.f) == 0) { | |
check_oval_arc(reporter, start, sweep, path); | |
} else { | |
REPORTER_ASSERT(reporter, !path.isOval(nullptr)); | |
} | |
} | |
// Test start angles that are nearly at valid oval start angles. | |
for (float start : {-180.f, -90.f, 90.f, 180.f}) { | |
for (float delta : {-SK_ScalarNearlyZero, SK_ScalarNearlyZero}) { | |
SkPath path; | |
path.addArc(oval, start + delta, sweep); | |
check_oval_arc(reporter, start, sweep, path); | |
} | |
} | |
} | |
} | |
static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter, | |
SkScalar x0, SkScalar y0) { | |
SkPoint pts[4]; | |
SkPath::Verb v = iter->next(pts); | |
REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, pts[0].fX == x0); | |
REPORTER_ASSERT(reporter, pts[0].fY == y0); | |
} | |
static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter, | |
SkScalar x1, SkScalar y1) { | |
SkPoint pts[4]; | |
SkPath::Verb v = iter->next(pts); | |
REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb); | |
REPORTER_ASSERT(reporter, pts[1].fX == x1); | |
REPORTER_ASSERT(reporter, pts[1].fY == y1); | |
} | |
static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter, | |
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | |
SkPoint pts[4]; | |
SkPath::Verb v = iter->next(pts); | |
REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb); | |
REPORTER_ASSERT(reporter, pts[1].fX == x1); | |
REPORTER_ASSERT(reporter, pts[1].fY == y1); | |
REPORTER_ASSERT(reporter, pts[2].fX == x2); | |
REPORTER_ASSERT(reporter, pts[2].fY == y2); | |
} | |
static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { | |
SkPoint pts[4]; | |
SkPath::Verb v = iter->next(pts); | |
REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb); | |
} | |
static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) { | |
check_done(reporter, p, iter); | |
p->reset(); | |
} | |
static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p, | |
SkScalar x0, SkScalar y0) { | |
SkPath::RawIter iter(*p); | |
check_move(reporter, &iter, x0, y0); | |
check_done_and_reset(reporter, p, &iter); | |
} | |
static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p, | |
SkScalar x1, SkScalar y1) { | |
SkPath::RawIter iter(*p); | |
check_move(reporter, &iter, 0, 0); | |
check_line(reporter, &iter, x1, y1); | |
check_done_and_reset(reporter, p, &iter); | |
} | |
static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p, | |
SkScalar x1, SkScalar y1) { | |
SkPath::RawIter iter(*p); | |
check_move(reporter, &iter, 0, 0); | |
check_line(reporter, &iter, x1, y1); | |
check_done(reporter, p, &iter); | |
} | |
static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p, | |
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | |
SkPath::RawIter iter(*p); | |
check_move(reporter, &iter, 0, 0); | |
check_line(reporter, &iter, x1, y1); | |
check_line(reporter, &iter, x2, y2); | |
check_done_and_reset(reporter, p, &iter); | |
} | |
static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p, | |
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) { | |
SkPath::RawIter iter(*p); | |
check_move(reporter, &iter, 0, 0); | |
check_quad(reporter, &iter, x1, y1, x2, y2); | |
check_done_and_reset(reporter, p, &iter); | |
} | |
static bool nearly_equal(const SkRect& a, const SkRect& b) { | |
return SkScalarNearlyEqual(a.fLeft, b.fLeft) && | |
SkScalarNearlyEqual(a.fTop, b.fTop) && | |
SkScalarNearlyEqual(a.fRight, b.fRight) && | |
SkScalarNearlyEqual(a.fBottom, b.fBottom); | |
} | |
static void test_arcTo(skiatest::Reporter* reporter) { | |
SkPath p; | |
p.arcTo(0, 0, 1, 2, 1); | |
check_path_is_line_and_reset(reporter, &p, 0, 0); | |
p.arcTo(1, 2, 1, 2, 1); | |
check_path_is_line_and_reset(reporter, &p, 1, 2); | |
p.arcTo(1, 2, 3, 4, 0); | |
check_path_is_line_and_reset(reporter, &p, 1, 2); | |
p.arcTo(1, 2, 0, 0, 1); | |
check_path_is_line_and_reset(reporter, &p, 1, 2); | |
p.arcTo(1, 0, 1, 1, 1); | |
SkPoint pt; | |
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1); | |
p.reset(); | |
p.arcTo(1, 0, 1, -1, 1); | |
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1); | |
p.reset(); | |
SkRect oval = {1, 2, 3, 4}; | |
p.arcTo(oval, 0, 0, true); | |
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | |
p.arcTo(oval, 0, 0, false); | |
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | |
p.arcTo(oval, 360, 0, true); | |
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | |
p.arcTo(oval, 360, 0, false); | |
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY()); | |
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) { | |
p.arcTo(oval, 0, sweep, false); | |
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); | |
sweep += delta; | |
delta /= 2; | |
} | |
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) { | |
p.arcTo(oval, 0, sweep, false); | |
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval)); | |
sweep -= delta; | |
delta /= 2; | |
} | |
SkRect noOvalWidth = {1, 2, 0, 3}; | |
p.reset(); | |
p.arcTo(noOvalWidth, 0, 360, false); | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
SkRect noOvalHeight = {1, 2, 3, 1}; | |
p.reset(); | |
p.arcTo(noOvalHeight, 0, 360, false); | |
REPORTER_ASSERT(reporter, p.isEmpty()); | |
} | |
static void test_addPath(skiatest::Reporter* reporter) { | |
SkPath p, q; | |
p.lineTo(1, 2); | |
q.moveTo(4, 4); | |
q.lineTo(7, 8); | |
q.conicTo(8, 7, 6, 5, 0.5f); | |
q.quadTo(6, 7, 8, 6); | |
q.cubicTo(5, 6, 7, 8, 7, 5); | |
q.close(); | |
p.addPath(q, -4, -4); | |
SkRect expected = {0, 0, 4, 4}; | |
REPORTER_ASSERT(reporter, p.getBounds() == expected); | |
p.reset(); | |
p.reverseAddPath(q); | |
SkRect reverseExpected = {4, 4, 8, 8}; | |
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); | |
} | |
static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) { | |
SkPath p, q; | |
if (explicitMoveTo) { | |
p.moveTo(1, 1); | |
} | |
p.lineTo(1, 2); | |
if (explicitMoveTo) { | |
q.moveTo(2, 1); | |
} | |
q.lineTo(2, 2); | |
p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode); | |
uint8_t verbs[4]; | |
int verbcount = p.getVerbs(verbs, 4); | |
REPORTER_ASSERT(reporter, verbcount == 4); | |
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); | |
REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb)); | |
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb); | |
} | |
static void test_extendClosedPath(skiatest::Reporter* reporter) { | |
SkPath p, q; | |
p.moveTo(1, 1); | |
p.lineTo(1, 2); | |
p.lineTo(2, 2); | |
p.close(); | |
q.moveTo(2, 1); | |
q.lineTo(2, 3); | |
p.addPath(q, SkPath::kExtend_AddPathMode); | |
uint8_t verbs[7]; | |
int verbcount = p.getVerbs(verbs, 7); | |
REPORTER_ASSERT(reporter, verbcount == 7); | |
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb); | |
REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb); | |
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb); | |
REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb); | |
REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb); | |
REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb); | |
SkPoint pt; | |
REPORTER_ASSERT(reporter, p.getLastPt(&pt)); | |
REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3)); | |
REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1)); | |
} | |
static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) { | |
SkPath p, q, r; | |
// case 1: dst is empty | |
p.moveTo(2, 1); | |
p.lineTo(2, 3); | |
q.addPath(p, mode); | |
REPORTER_ASSERT(reporter, q == p); | |
// case 2: src is empty | |
p.addPath(r, mode); | |
REPORTER_ASSERT(reporter, q == p); | |
// case 3: src and dst are empty | |
q.reset(); | |
q.addPath(r, mode); | |
REPORTER_ASSERT(reporter, q.isEmpty()); | |
} | |
static void test_conicTo_special_case(skiatest::Reporter* reporter) { | |
SkPath p; | |
p.conicTo(1, 2, 3, 4, -1); | |
check_path_is_line_and_reset(reporter, &p, 3, 4); | |
p.conicTo(1, 2, 3, 4, SK_ScalarInfinity); | |
check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4); | |
p.conicTo(1, 2, 3, 4, 1); | |
check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4); | |
} | |
static void test_get_point(skiatest::Reporter* reporter) { | |
SkPath p; | |
SkPoint pt = p.getPoint(0); | |
REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0)); | |
REPORTER_ASSERT(reporter, !p.getLastPt(nullptr)); | |
REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0)); | |
p.setLastPt(10, 10); | |
pt = p.getPoint(0); | |
REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10)); | |
REPORTER_ASSERT(reporter, p.getLastPt(nullptr)); | |
p.rMoveTo(10, 10); | |
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20)); | |
} | |
static void test_contains(skiatest::Reporter* reporter) { | |
SkPath p; | |
p.moveTo(SkBits2Float(0xe085e7b1), SkBits2Float(0x5f512c00)); // -7.7191e+19f, 1.50724e+19f | |
p.conicTo(SkBits2Float(0xdfdaa221), SkBits2Float(0x5eaac338), SkBits2Float(0x60342f13), SkBits2Float(0xdf0cbb58), SkBits2Float(0x3f3504f3)); // -3.15084e+19f, 6.15237e+18f, 5.19345e+19f, -1.01408e+19f, 0.707107f | |
p.conicTo(SkBits2Float(0x60ead799), SkBits2Float(0xdfb76c24), SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8), SkBits2Float(0x3f3504f4)); // 1.35377e+20f, -2.6434e+19f, 8.96947e+19f, -1.75139e+19f, 0.707107f | |
p.lineTo(SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8)); // 8.96947e+19f, -1.75139e+19f | |
p.conicTo(SkBits2Float(0x6018b296), SkBits2Float(0xdeee870d), SkBits2Float(0xe008cd8e), SkBits2Float(0x5ed5b2db), SkBits2Float(0x3f3504f3)); // 4.40121e+19f, -8.59386e+18f, -3.94308e+19f, 7.69931e+18f, 0.707107f | |
p.conicTo(SkBits2Float(0xe0d526d9), SkBits2Float(0x5fa67b31), SkBits2Float(0xe085e7b2), SkBits2Float(0x5f512c01), SkBits2Float(0x3f3504f3)); // -1.22874e+20f, 2.39925e+19f, -7.7191e+19f, 1.50724e+19f, 0.707107f | |
// this may return true or false, depending on the platform's numerics, but it should not crash | |
(void) p.contains(-77.2027664f, 15.3066053f); | |
p.reset(); | |
p.setFillType(SkPath::kInverseWinding_FillType); | |
REPORTER_ASSERT(reporter, p.contains(0, 0)); | |
p.setFillType(SkPath::kWinding_FillType); | |
REPORTER_ASSERT(reporter, !p.contains(0, 0)); | |
p.moveTo(4, 4); | |
p.lineTo(6, 8); | |
p.lineTo(8, 4); | |
// test on edge | |
REPORTER_ASSERT(reporter, p.contains(6, 4)); | |
REPORTER_ASSERT(reporter, p.contains(5, 6)); | |
REPORTER_ASSERT(reporter, p.contains(7, 6)); | |
// test quick reject | |
REPORTER_ASSERT(reporter, !p.contains(4, 0)); | |
REPORTER_ASSERT(reporter, !p.contains(0, 4)); | |
REPORTER_ASSERT(reporter, !p.contains(4, 10)); | |
REPORTER_ASSERT(reporter, !p.contains(10, 4)); | |
// test various crossings in x | |
REPORTER_ASSERT(reporter, !p.contains(5, 7)); | |
REPORTER_ASSERT(reporter, p.contains(6, 7)); | |
REPORTER_ASSERT(reporter, !p.contains(7, 7)); | |
p.reset(); | |
p.moveTo(4, 4); | |
p.lineTo(8, 6); | |
p.lineTo(4, 8); | |
// test on edge | |
REPORTER_ASSERT(reporter, p.contains(4, 6)); | |
REPORTER_ASSERT(reporter, p.contains(6, 5)); | |
REPORTER_ASSERT(reporter, p.contains(6, 7)); | |
// test various crossings in y | |
REPORTER_ASSERT(reporter, !p.contains(7, 5)); | |
REPORTER_ASSERT(reporter, p.contains(7, 6)); | |
REPORTER_ASSERT(reporter, !p.contains(7, 7)); | |
p.reset(); | |
p.moveTo(4, 4); | |
p.lineTo(8, 4); | |
p.lineTo(8, 8); | |
p.lineTo(4, 8); | |
// test on vertices | |
REPORTER_ASSERT(reporter, p.contains(4, 4)); | |
REPORTER_ASSERT(reporter, p.contains(8, 4)); | |
REPORTER_ASSERT(reporter, p.contains(8, 8)); | |
REPORTER_ASSERT(reporter, p.contains(4, 8)); | |
p.reset(); | |
p.moveTo(4, 4); | |
p.lineTo(6, 8); | |
p.lineTo(2, 8); | |
// test on edge | |
REPORTER_ASSERT(reporter, p.contains(5, 6)); | |
REPORTER_ASSERT(reporter, p.contains(4, 8)); | |
REPORTER_ASSERT(reporter, p.contains(3, 6)); | |
p.reset(); | |
p.moveTo(4, 4); | |
p.lineTo(0, 6); | |
p.lineTo(4, 8); | |
// test on edge | |
REPORTER_ASSERT(reporter, p.contains(2, 5)); | |
REPORTER_ASSERT(reporter, p.contains(2, 7)); | |
REPORTER_ASSERT(reporter, p.contains(4, 6)); | |
// test canceling coincident edge (a smaller triangle is coincident with a larger one) | |
p.reset(); | |
p.moveTo(4, 0); | |
p.lineTo(6, 4); | |
p.lineTo(2, 4); | |
p.moveTo(4, 0); | |
p.lineTo(0, 8); | |
p.lineTo(8, 8); | |
REPORTER_ASSERT(reporter, !p.contains(1, 2)); | |
REPORTER_ASSERT(reporter, !p.contains(3, 2)); | |
REPORTER_ASSERT(reporter, !p.contains(4, 0)); | |
REPORTER_ASSERT(reporter, p.contains(4, 4)); | |
// test quads | |
p.reset(); | |
p.moveTo(4, 4); | |
p.quadTo(6, 6, 8, 8); | |
p.quadTo(6, 8, 4, 8); | |
p.quadTo(4, 6, 4, 4); | |
REPORTER_ASSERT(reporter, p.contains(5, 6)); | |
REPORTER_ASSERT(reporter, !p.contains(6, 5)); | |
// test quad edge | |
REPORTER_ASSERT(reporter, p.contains(5, 5)); | |
REPORTER_ASSERT(reporter, p.contains(5, 8)); | |
REPORTER_ASSERT(reporter, p.contains(4, 5)); | |
// test quad endpoints | |
REPORTER_ASSERT(reporter, p.contains(4, 4)); | |
REPORTER_ASSERT(reporter, p.contains(8, 8)); | |
REPORTER_ASSERT(reporter, p.contains(4, 8)); | |
p.reset(); | |
const SkPoint qPts[] = {{6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}, {6, 6}}; | |
p.moveTo(qPts[0]); | |
for (int index = 1; index < (int) SK_ARRAY_COUNT(qPts); index += 2) { | |
p.quadTo(qPts[index], qPts[index + 1]); | |
} | |
REPORTER_ASSERT(reporter, p.contains(5, 6)); | |
REPORTER_ASSERT(reporter, !p.contains(6, 5)); | |
// test quad edge | |
SkPoint halfway; | |
for (int index = 0; index < (int) SK_ARRAY_COUNT(qPts) - 2; index += 2) { | |
SkEvalQuadAt(&qPts[index], 0.5f, &halfway, nullptr); | |
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); | |
} | |
// test conics | |
p.reset(); | |
const SkPoint kPts[] = {{4, 4}, {6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}}; | |
p.moveTo(kPts[0]); | |
for (int index = 1; index < (int) SK_ARRAY_COUNT(kPts); index += 2) { | |
p.conicTo(kPts[index], kPts[index + 1], 0.5f); | |
} | |
REPORTER_ASSERT(reporter, p.contains(5, 6)); | |
REPORTER_ASSERT(reporter, !p.contains(6, 5)); | |
// test conic edge | |
for (int index = 0; index < (int) SK_ARRAY_COUNT(kPts) - 2; index += 2) { | |
SkConic conic(&kPts[index], 0.5f); | |
halfway = conic.evalAt(0.5f); | |
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); | |
} | |
// test conic end points | |
REPORTER_ASSERT(reporter, p.contains(4, 4)); | |
REPORTER_ASSERT(reporter, p.contains(8, 8)); | |
REPORTER_ASSERT(reporter, p.contains(4, 8)); | |
// test cubics | |
SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}}; | |
for (int i = 0; i < 3; ++i) { | |
p.reset(); | |
p.setFillType(SkPath::kEvenOdd_FillType); | |
p.moveTo(pts[i].fX, pts[i].fY); | |
p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY); | |
p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY); | |
p.close(); | |
REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f)); | |
REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f)); | |
// test cubic edge | |
SkEvalCubicAt(&pts[i], 0.5f, &halfway, nullptr, nullptr); | |
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); | |
SkEvalCubicAt(&pts[i + 3], 0.5f, &halfway, nullptr, nullptr); | |
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY)); | |
// test cubic end points | |
REPORTER_ASSERT(reporter, p.contains(pts[i].fX, pts[i].fY)); | |
REPORTER_ASSERT(reporter, p.contains(pts[i + 3].fX, pts[i + 3].fY)); | |
REPORTER_ASSERT(reporter, p.contains(pts[i + 6].fX, pts[i + 6].fY)); | |
} | |
} | |
class PathRefTest_Private { | |
public: | |
static void TestPathRef(skiatest::Reporter* reporter) { | |
static const int kRepeatCnt = 10; | |
sk_sp<SkPathRef> pathRef(new SkPathRef); | |
SkPathRef::Editor ed(&pathRef); | |
{ | |
ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); | |
REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks()); | |
for (int i = 0; i < kRepeatCnt; ++i) { | |
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i)); | |
} | |
ed.resetToSize(0, 0, 0); | |
} | |
{ | |
ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints()); | |
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks()); | |
for (int i = 0; i < kRepeatCnt; ++i) { | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i)); | |
} | |
ed.resetToSize(0, 0, 0); | |
} | |
{ | |
ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | |
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); | |
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks()); | |
for (int i = 0; i < kRepeatCnt; ++i) { | |
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i)); | |
} | |
ed.resetToSize(0, 0, 0); | |
} | |
{ | |
SkScalar* weights = nullptr; | |
ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | |
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints()); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights()); | |
REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks()); | |
REPORTER_ASSERT(reporter, weights); | |
for (int i = 0; i < kRepeatCnt; ++i) { | |
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i)); | |
} | |
ed.resetToSize(0, 0, 0); | |
} | |
{ | |
ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt); | |
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs()); | |
REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints()); | |
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks()); | |
for (int i = 0; i < kRepeatCnt; ++i) { | |
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i)); | |
} | |
ed.resetToSize(0, 0, 0); | |
} | |
} | |
}; | |
static void test_operatorEqual(skiatest::Reporter* reporter) { | |
SkPath a; | |
SkPath b; | |
REPORTER_ASSERT(reporter, a == a); | |
REPORTER_ASSERT(reporter, a == b); | |
a.setFillType(SkPath::kInverseWinding_FillType); | |
REPORTER_ASSERT(reporter, a != b); | |
a.reset(); | |
REPORTER_ASSERT(reporter, a == b); | |
a.lineTo(1, 1); | |
REPORTER_ASSERT(reporter, a != b); | |
a.reset(); | |
REPORTER_ASSERT(reporter, a == b); | |
a.lineTo(1, 1); | |
b.lineTo(1, 2); | |
REPORTER_ASSERT(reporter, a != b); | |
a.reset(); | |
a.lineTo(1, 2); | |
REPORTER_ASSERT(reporter, a == b); | |
} | |
static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool force, | |
bool dumpAsHex, const char* str) { | |
SkDynamicMemoryWStream wStream; | |
path.dump(&wStream, force, dumpAsHex); | |
sk_sp<SkData> data = wStream.detachAsData(); | |
REPORTER_ASSERT(reporter, data->size() == strlen(str)); | |
if (strlen(str) > 0) { | |
REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str))); | |
} else { | |
REPORTER_ASSERT(reporter, data->data() == nullptr || !memcmp(data->data(), str, strlen(str))); | |
} | |
} | |
static void test_dump(skiatest::Reporter* reporter) { | |
SkPath p; | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n"); | |
compare_dump(reporter, p, true, false, "path.setFillType(SkPath::kWinding_FillType);\n"); | |
p.moveTo(1, 2); | |
p.lineTo(3, 4); | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.lineTo(3, 4);\n"); | |
compare_dump(reporter, p, true, false, "path.setFillType(SkPath::kWinding_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.lineTo(3, 4);\n" | |
"path.lineTo(1, 2);\n" | |
"path.close();\n"); | |
p.reset(); | |
p.setFillType(SkPath::kEvenOdd_FillType); | |
p.moveTo(1, 2); | |
p.quadTo(3, 4, 5, 6); | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kEvenOdd_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.quadTo(3, 4, 5, 6);\n"); | |
p.reset(); | |
p.setFillType(SkPath::kInverseWinding_FillType); | |
p.moveTo(1, 2); | |
p.conicTo(3, 4, 5, 6, 0.5f); | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kInverseWinding_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.conicTo(3, 4, 5, 6, 0.5f);\n"); | |
p.reset(); | |
p.setFillType(SkPath::kInverseEvenOdd_FillType); | |
p.moveTo(1, 2); | |
p.cubicTo(3, 4, 5, 6, 7, 8); | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kInverseEvenOdd_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.cubicTo(3, 4, 5, 6, 7, 8);\n"); | |
p.reset(); | |
p.setFillType(SkPath::kWinding_FillType); | |
p.moveTo(1, 2); | |
p.lineTo(3, 4); | |
compare_dump(reporter, p, false, true, | |
"path.setFillType(SkPath::kWinding_FillType);\n" | |
"path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); // 1, 2\n" | |
"path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); // 3, 4\n"); | |
p.reset(); | |
p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); | |
p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); | |
compare_dump(reporter, p, false, false, "path.setFillType(SkPath::kWinding_FillType);\n" | |
"path.moveTo(1, 2);\n" | |
"path.lineTo(3, 4);\n"); | |
} | |
namespace { | |
class ChangeListener : public SkPathRef::GenIDChangeListener { | |
public: | |
ChangeListener(bool *changed) : fChanged(changed) { *fChanged = false; } | |
~ChangeListener() override {} | |
void onChange() override { | |
*fChanged = true; | |
} | |
private: | |
bool* fChanged; | |
}; | |
} | |
class PathTest_Private { | |
public: | |
static void TestPathTo(skiatest::Reporter* reporter) { | |
SkPath p, q; | |
p.lineTo(4, 4); | |
p.reversePathTo(q); | |
check_path_is_line(reporter, &p, 4, 4); | |
q.moveTo(-4, -4); | |
p.reversePathTo(q); | |
check_path_is_line(reporter, &p, 4, 4); | |
q.lineTo(7, 8); | |
q.conicTo(8, 7, 6, 5, 0.5f); | |
q.quadTo(6, 7, 8, 6); | |
q.cubicTo(5, 6, 7, 8, 7, 5); | |
q.close(); | |
p.reversePathTo(q); | |
SkRect reverseExpected = {-4, -4, 8, 8}; | |
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected); | |
} | |
static void TestPathrefListeners(skiatest::Reporter* reporter) { | |
SkPath p; | |
bool changed = false; | |
p.moveTo(0, 0); | |
// Check that listener is notified on moveTo(). | |
SkPathPriv::AddGenIDChangeListener(p, new ChangeListener(&changed)); | |
REPORTER_ASSERT(reporter, !changed); | |
p.moveTo(10, 0); | |
REPORTER_ASSERT(reporter, changed); | |
// Check that listener is notified on lineTo(). | |
SkPathPriv::AddGenIDChangeListener(p, new ChangeListener(&changed)); | |
REPORTER_ASSERT(reporter, !changed); | |
p.lineTo(20, 0); | |
REPORTER_ASSERT(reporter, changed); | |
// Check that listener is notified on reset(). | |
SkPathPriv::AddGenIDChangeListener(p, new ChangeListener(&changed)); | |
REPORTER_ASSERT(reporter, !changed); | |
p.reset(); | |
REPORTER_ASSERT(reporter, changed); | |
p.moveTo(0, 0); | |
// Check that listener is notified on rewind(). | |
SkPathPriv::AddGenIDChangeListener(p, new ChangeListener(&changed)); | |
REPORTER_ASSERT(reporter, !changed); | |
p.rewind(); | |
REPORTER_ASSERT(reporter, changed); | |
// Check that listener is notified when pathref is deleted. | |
{ | |
SkPath q; | |
q.moveTo(10, 10); | |
SkPathPriv::AddGenIDChangeListener(q, new ChangeListener(&changed)); | |
REPORTER_ASSERT(reporter, !changed); | |
} | |
// q went out of scope. | |
REPORTER_ASSERT(reporter, changed); | |
} | |
}; | |
static void test_crbug_629455(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(0, 0); | |
path.cubicTo(SkBits2Float(0xcdcdcd00), SkBits2Float(0xcdcdcdcd), | |
SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd), | |
SkBits2Float(0x423fcdcd), SkBits2Float(0x40ed9341)); | |
// AKA: cubicTo(-4.31596e+08f, -4.31602e+08f, -4.31602e+08f, -4.31602e+08f, 47.951f, 7.42423f); | |
path.lineTo(0, 0); | |
auto surface = SkSurface::MakeRasterN32Premul(100, 100); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
static void test_fuzz_crbug_662952(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f | |
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411c0000)); // 8.65f, 9.75f | |
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411e6666)); // 8.65f, 9.9f | |
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411e6666)); // 8.6f, 9.9f | |
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f | |
path.close(); | |
auto surface = SkSurface::MakeRasterN32Premul(100, 100); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
surface->getCanvas()->clipPath(path, true); | |
surface->getCanvas()->drawRect(SkRect::MakeWH(100, 100), paint); | |
} | |
static void test_path_crbugskia6003() { | |
auto surface(SkSurface::MakeRasterN32Premul(500, 500)); | |
SkCanvas* canvas = surface->getCanvas(); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
SkPath path; | |
path.moveTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f | |
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a2999a)); // 165.9f, 81.3f | |
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a2999a)); // 165.7f, 81.3f | |
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a16666)); // 165.7f, 80.7f | |
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666)); // 165.7f, 79.7f | |
// 165.7f, 79.7f, 165.8f, 79.7f, 165.8f, 79.7f | |
path.cubicTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), | |
SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666)); | |
// 165.8f, 79.7f, 165.8f, 79.7f, 165.9f, 79.7f | |
path.cubicTo(SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), | |
SkBits2Float(0x429f6666), SkBits2Float(0x4325e666), SkBits2Float(0x429f6666)); | |
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f | |
path.close(); | |
canvas->clipPath(path, true); | |
canvas->drawRect(SkRect::MakeWH(500, 500), paint); | |
} | |
static void test_fuzz_crbug_662730(skiatest::Reporter* reporter) { | |
SkPath path; | |
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 | |
path.lineTo(SkBits2Float(0xd5394437), SkBits2Float(0x37373737)); // -1.2731e+13f, 1.09205e-05f | |
path.lineTo(SkBits2Float(0x37373737), SkBits2Float(0x37373737)); // 1.09205e-05f, 1.09205e-05f | |
path.lineTo(SkBits2Float(0x37373745), SkBits2Float(0x0001b800)); // 1.09205e-05f, 1.57842e-40f | |
path.close(); | |
auto surface = SkSurface::MakeRasterN32Premul(100, 100); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
#if !defined(SK_SUPPORT_LEGACY_DELTA_AA) | |
static void test_skbug_6947() { | |
SkPath path; | |
SkPoint points[] = | |
{{125.126022f, -0.499872506f}, {125.288895f, -0.499338806f}, | |
{125.299316f, -0.499290764f}, {126.294594f, 0.505449712f}, | |
{125.999992f, 62.5047531f}, {124.0f, 62.4980202f}, | |
{124.122749f, 0.498142242f}, {125.126022f, -0.499872506f}, | |
{125.119476f, 1.50011659f}, {125.122749f, 0.50012207f}, | |
{126.122749f, 0.502101898f}, {126.0f, 62.5019798f}, | |
{125.0f, 62.5f}, {124.000008f, 62.4952469f}, | |
{124.294609f, 0.495946467f}, {125.294601f, 0.50069809f}, | |
{125.289886f, 1.50068688f}, {125.282349f, 1.50065041f}, | |
{125.119476f, 1.50011659f}}; | |
constexpr SkPath::Verb kMove = SkPath::kMove_Verb; | |
constexpr SkPath::Verb kLine = SkPath::kLine_Verb; | |
constexpr SkPath::Verb kClose = SkPath::kClose_Verb; | |
SkPath::Verb verbs[] = {kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose, | |
kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose}; | |
int pointIndex = 0; | |
for(auto verb : verbs) { | |
switch (verb) { | |
case kMove: | |
path.moveTo(points[pointIndex++]); | |
break; | |
case kLine: | |
path.lineTo(points[pointIndex++]); | |
break; | |
case kClose: | |
default: | |
path.close(); | |
break; | |
} | |
} | |
auto surface = SkSurface::MakeRasterN32Premul(250, 125); | |
SkPaint paint; | |
paint.setAntiAlias(true); | |
surface->getCanvas()->drawPath(path, paint); | |
} | |
#endif | |
static void test_interp(skiatest::Reporter* reporter) { | |
SkPath p1, p2, out; | |
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); | |
REPORTER_ASSERT(reporter, p1 == out); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); | |
REPORTER_ASSERT(reporter, p1 == out); | |
p1.moveTo(0, 2); | |
p1.lineTo(0, 4); | |
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); | |
REPORTER_ASSERT(reporter, !p1.interpolate(p2, 1, &out)); | |
p2.moveTo(6, 0); | |
p2.lineTo(8, 0); | |
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out)); | |
REPORTER_ASSERT(reporter, p2 == out); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out)); | |
REPORTER_ASSERT(reporter, p1 == out); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); | |
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(3, 1, 4, 2)); | |
p1.reset(); | |
p1.moveTo(4, 4); | |
p1.conicTo(5, 4, 5, 5, 1 / SkScalarSqrt(2)); | |
p2.reset(); | |
p2.moveTo(4, 2); | |
p2.conicTo(7, 2, 7, 5, 1 / SkScalarSqrt(2)); | |
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2)); | |
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out)); | |
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(4, 3, 6, 5)); | |
p2.reset(); | |
p2.moveTo(4, 2); | |
p2.conicTo(6, 3, 6, 5, 1); | |
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); | |
p2.reset(); | |
p2.moveTo(4, 4); | |
p2.conicTo(5, 4, 5, 5, 0.5f); | |
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2)); | |
} | |
DEF_TEST(PathInterp, reporter) { | |
test_interp(reporter); | |
} | |
#include "SkSurface.h" | |
DEF_TEST(PathBigCubic, reporter) { | |
SkPath path; | |
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 | |
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f | |
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 | |
path.moveTo(0, 512); | |
// this call should not assert | |
SkSurface::MakeRasterN32Premul(255, 255, nullptr)->getCanvas()->drawPath(path, SkPaint()); | |
} | |
DEF_TEST(PathContains, reporter) { | |
test_contains(reporter); | |
} | |
DEF_TEST(Paths, reporter) { | |
test_fuzz_crbug_647922(); | |
test_fuzz_crbug_643933(); | |
test_sect_with_horizontal_needs_pinning(); | |
test_crbug_629455(reporter); | |
test_fuzz_crbug_627414(reporter); | |
test_path_crbug364224(); | |
test_fuzz_crbug_662952(reporter); | |
test_fuzz_crbug_662730(reporter); | |
test_fuzz_crbug_662780(); | |
test_mask_overflow(); | |
test_path_crbugskia6003(); | |
test_fuzz_crbug_668907(); | |
#if !defined(SK_SUPPORT_LEGACY_DELTA_AA) | |
test_skbug_6947(); | |
#endif | |
SkSize::Make(3, 4); | |
SkPath p, empty; | |
SkRect bounds, bounds2; | |
test_empty(reporter, p); | |
REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); | |
// this triggers a code path in SkPath::operator= which is otherwise unexercised | |
SkPath& self = p; | |
p = self; | |
// this triggers a code path in SkPath::swap which is otherwise unexercised | |
p.swap(self); | |
bounds.set(0, 0, SK_Scalar1, SK_Scalar1); | |
p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); | |
check_convex_bounds(reporter, p, bounds); | |
// we have quads or cubics | |
REPORTER_ASSERT(reporter, | |
p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask)); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
p.reset(); | |
test_empty(reporter, p); | |
p.addOval(bounds); | |
check_convex_bounds(reporter, p, bounds); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
p.rewind(); | |
test_empty(reporter, p); | |
p.addRect(bounds); | |
check_convex_bounds(reporter, p, bounds); | |
// we have only lines | |
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); | |
REPORTER_ASSERT(reporter, !p.isEmpty()); | |
REPORTER_ASSERT(reporter, p != empty); | |
REPORTER_ASSERT(reporter, !(p == empty)); | |
// do getPoints and getVerbs return the right result | |
REPORTER_ASSERT(reporter, p.getPoints(nullptr, 0) == 4); | |
REPORTER_ASSERT(reporter, p.getVerbs(nullptr, 0) == 5); | |
SkPoint pts[4]; | |
int count = p.getPoints(pts, 4); | |
REPORTER_ASSERT(reporter, count == 4); | |
uint8_t verbs[6]; | |
verbs[5] = 0xff; | |
p.getVerbs(verbs, 5); | |
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); | |
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); | |
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); | |
REPORTER_ASSERT(reporter, 0xff == verbs[5]); | |
bounds2.set(pts, 4); | |
REPORTER_ASSERT(reporter, bounds == bounds2); | |
bounds.offset(SK_Scalar1*3, SK_Scalar1*4); | |
p.offset(SK_Scalar1*3, SK_Scalar1*4); | |
REPORTER_ASSERT(reporter, bounds == p.getBounds()); | |
REPORTER_ASSERT(reporter, p.isRect(nullptr)); | |
bounds2.setEmpty(); | |
REPORTER_ASSERT(reporter, p.isRect(&bounds2)); | |
REPORTER_ASSERT(reporter, bounds == bounds2); | |
// now force p to not be a rect | |
bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); | |
p.addRect(bounds); | |
REPORTER_ASSERT(reporter, !p.isRect(nullptr)); | |
// Test an edge case w.r.t. the bound returned by isRect (i.e., the | |
// path has a trailing moveTo. Please see crbug.com\445368) | |
{ | |
SkRect r; | |
p.reset(); | |
p.addRect(bounds); | |
REPORTER_ASSERT(reporter, p.isRect(&r)); | |
REPORTER_ASSERT(reporter, r == bounds); | |
// add a moveTo outside of our bounds | |
p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10); | |
REPORTER_ASSERT(reporter, p.isRect(&r)); | |
REPORTER_ASSERT(reporter, r == bounds); | |
} | |
test_operatorEqual(reporter); | |
test_isLine(reporter); | |
test_isRect(reporter); | |
test_is_simple_closed_rect(reporter); | |
test_isNestedFillRects(reporter); | |
test_zero_length_paths(reporter); | |
test_direction(reporter); | |
test_convexity(reporter); | |
test_convexity2(reporter); | |
test_conservativelyContains(reporter); | |
test_close(reporter); | |
test_segment_masks(reporter); | |
test_flattening(reporter); | |
test_transform(reporter); | |
test_bounds(reporter); | |
test_iter(reporter); | |
test_raw_iter(reporter); | |
test_circle(reporter); | |
test_oval(reporter); | |
test_strokerec(reporter); | |
test_addPoly(reporter); | |
test_isfinite(reporter); | |
test_isfinite_after_transform(reporter); | |
test_islastcontourclosed(reporter); | |
test_arb_round_rect_is_convex(reporter); | |
test_arb_zero_rad_round_rect_is_rect(reporter); | |
test_addrect(reporter); | |
test_addrect_isfinite(reporter); | |
test_tricky_cubic(); | |
test_clipped_cubic(); | |
test_crbug_170666(); | |
test_crbug_493450(reporter); | |
test_crbug_495894(reporter); | |
test_crbug_613918(); | |
test_bad_cubic_crbug229478(); | |
test_bad_cubic_crbug234190(); | |
test_gen_id(reporter); | |
test_path_close_issue1474(reporter); | |
test_path_to_region(reporter); | |
test_rrect(reporter); | |
test_arc(reporter); | |
test_arc_ovals(reporter); | |
test_arcTo(reporter); | |
test_addPath(reporter); | |
test_addPathMode(reporter, false, false); | |
test_addPathMode(reporter, true, false); | |
test_addPathMode(reporter, false, true); | |
test_addPathMode(reporter, true, true); | |
test_extendClosedPath(reporter); | |
test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode); | |
test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode); | |
test_conicTo_special_case(reporter); | |
test_get_point(reporter); | |
test_contains(reporter); | |
PathTest_Private::TestPathTo(reporter); | |
PathRefTest_Private::TestPathRef(reporter); | |
PathTest_Private::TestPathrefListeners(reporter); | |
test_dump(reporter); | |
test_path_crbug389050(reporter); | |
test_path_crbugskia2820(reporter); | |
test_path_crbugskia5995(); | |
test_skbug_3469(reporter); | |
test_skbug_3239(reporter); | |
test_bounds_crbug_513799(reporter); | |
test_fuzz_crbug_638223(); | |
} | |
DEF_TEST(conservatively_contains_rect, reporter) { | |
SkPath path; | |
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f | |
// 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0 | |
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), | |
SkBits2Float(0x00000100), SkBits2Float(0x00000000), | |
SkBits2Float(0x00000100), SkBits2Float(0x00000000)); | |
path.moveTo(0, 0); | |
// this guy should not assert | |
path.conservativelyContainsRect({ -211747, 12.1115f, -197893, 25.0321f }); | |
} | |
/////////////////////////////////////////////////////////////////////////////////////////////////// | |
static void rand_path(SkPath* path, SkRandom& rand, SkPath::Verb verb, int n) { | |
for (int i = 0; i < n; ++i) { | |
switch (verb) { | |
case SkPath::kLine_Verb: | |
path->lineTo(rand.nextF()*100, rand.nextF()*100); | |
break; | |
case SkPath::kQuad_Verb: | |
path->quadTo(rand.nextF()*100, rand.nextF()*100, | |
rand.nextF()*100, rand.nextF()*100); | |
break; | |
case SkPath::kConic_Verb: | |
path->conicTo(rand.nextF()*100, rand.nextF()*100, | |
rand.nextF()*100, rand.nextF()*100, rand.nextF()*10); | |
break; | |
case SkPath::kCubic_Verb: | |
path->cubicTo(rand.nextF()*100, rand.nextF()*100, | |
rand.nextF()*100, rand.nextF()*100, | |
rand.nextF()*100, rand.nextF()*100); | |
break; | |
default: | |
SkASSERT(false); | |
} | |
} | |
} | |
#include "SkPathOps.h" | |
DEF_TEST(path_tight_bounds, reporter) { | |
SkRandom rand; | |
const SkPath::Verb verbs[] = { | |
SkPath::kLine_Verb, SkPath::kQuad_Verb, SkPath::kConic_Verb, SkPath::kCubic_Verb, | |
}; | |
for (int i = 0; i < 1000; ++i) { | |
for (int n = 1; n <= 10; n += 9) { | |
for (SkPath::Verb verb : verbs) { | |
SkPath path; | |
rand_path(&path, rand, verb, n); | |
SkRect bounds = path.getBounds(); | |
SkRect tight = path.computeTightBounds(); | |
REPORTER_ASSERT(reporter, bounds.contains(tight)); | |
SkRect tight2; | |
TightBounds(path, &tight2); | |
REPORTER_ASSERT(reporter, nearly_equal(tight, tight2)); | |
} | |
} | |
} | |
} | |
DEF_TEST(skbug_6450, r) { | |
SkRect ri = { 0.18554693f, 195.26283f, 0.185784385f, 752.644409f }; | |
SkVector rdi[4] = { | |
{ 1.81159976e-09f, 7.58768801e-05f }, | |
{ 0.000118725002f, 0.000118725002f }, | |
{ 0.000118725002f, 0.000118725002f }, | |
{ 0.000118725002f, 0.486297607f } | |
}; | |
SkRRect irr; | |
irr.setRectRadii(ri, rdi); | |
SkRect ro = { 9.18354821e-39f, 2.1710848e+9f, 2.16945843e+9f, 3.47808128e+9f }; | |
SkVector rdo[4] = { | |
{ 0, 0 }, | |
{ 0.0103298295f, 0.185887396f }, | |
{ 2.52999727e-29f, 169.001938f }, | |
{ 195.262741f, 195.161255f } | |
}; | |
SkRRect orr; | |
orr.setRectRadii(ro, rdo); | |
SkMakeNullCanvas()->drawDRRect(orr, irr, SkPaint()); | |
} | |
DEF_TEST(PathRefSerialization, reporter) { | |
SkPath path; | |
const size_t numMoves = 5; | |
const size_t numConics = 7; | |
const size_t numPoints = numMoves + 2 * numConics; | |
const size_t numVerbs = numMoves + numConics; | |
for (size_t i = 0; i < numMoves; ++i) path.moveTo(1, 2); | |
for (size_t i = 0; i < numConics; ++i) path.conicTo(1, 2, 3, 4, 5); | |
REPORTER_ASSERT(reporter, path.countPoints() == numPoints); | |
REPORTER_ASSERT(reporter, path.countVerbs() == numVerbs); | |
// Verify that path serializes/deserializes properly. | |
sk_sp<SkData> data = path.serialize(); | |
size_t bytesWritten = data->size(); | |
{ | |
SkPath readBack; | |
REPORTER_ASSERT(reporter, readBack != path); | |
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten); | |
REPORTER_ASSERT(reporter, bytesRead == bytesWritten); | |
REPORTER_ASSERT(reporter, readBack == path); | |
} | |
// uint32_t[] offset into serialized path. | |
const size_t verbCountOffset = 4; | |
const size_t pointCountOffset = 5; | |
const size_t conicCountOffset = 6; | |
// Verify that this test is changing the right values. | |
const int* writtenValues = static_cast<const int*>(data->data()); | |
REPORTER_ASSERT(reporter, writtenValues[verbCountOffset] == numVerbs); | |
REPORTER_ASSERT(reporter, writtenValues[pointCountOffset] == numPoints); | |
REPORTER_ASSERT(reporter, writtenValues[conicCountOffset] == numConics); | |
// Too many verbs, points, or conics fails to deserialize silently. | |
const int tooManyObjects = INT_MAX; | |
size_t offsets[] = {verbCountOffset, pointCountOffset, conicCountOffset}; | |
for (size_t i = 0; i < 3; ++i) { | |
SkAutoMalloc storage_copy(bytesWritten); | |
memcpy(storage_copy.get(), data->data(), bytesWritten); | |
static_cast<int*>(storage_copy.get())[offsets[i]] = tooManyObjects; | |
SkPath readBack; | |
size_t bytesRead = readBack.readFromMemory(storage_copy.get(), bytesWritten); | |
REPORTER_ASSERT(reporter, !bytesRead); | |
} | |
// One less byte (rounded down to alignment) than was written will also | |
// fail to be deserialized. | |
{ | |
SkPath readBack; | |
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten - 4); | |
REPORTER_ASSERT(reporter, !bytesRead); | |
} | |
} |