| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "CurveIntersection.h" |
| #include "Intersections.h" |
| #include "LineUtilities.h" |
| #include "QuadraticUtilities.h" |
| |
| /* |
| Find the interection of a line and quadratic by solving for valid t values. |
| |
| From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
| |
| "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
| control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
| A, B and C are points and t goes from zero to one. |
| |
| This will give you two equations: |
| |
| x = a(1 - t)^2 + b(1 - t)t + ct^2 |
| y = d(1 - t)^2 + e(1 - t)t + ft^2 |
| |
| If you add for instance the line equation (y = kx + m) to that, you'll end up |
| with three equations and three unknowns (x, y and t)." |
| |
| Similar to above, the quadratic is represented as |
| x = a(1-t)^2 + 2b(1-t)t + ct^2 |
| y = d(1-t)^2 + 2e(1-t)t + ft^2 |
| and the line as |
| y = g*x + h |
| |
| Using Mathematica, solve for the values of t where the quadratic intersects the |
| line: |
| |
| (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
| d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
| (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
| g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
| (in) Solve[t1 == 0, t] |
| (out) { |
| {t -> (-2 d + 2 e + 2 a g - 2 b g - |
| Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
| 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
| (2 (-d + 2 e - f + a g - 2 b g + c g)) |
| }, |
| {t -> (-2 d + 2 e + 2 a g - 2 b g + |
| Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
| 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
| (2 (-d + 2 e - f + a g - 2 b g + c g)) |
| } |
| } |
| |
| Using the results above (when the line tends towards horizontal) |
| A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
| B = 2*( (d - e ) - g*(a - b ) ) |
| C = (-(d ) + g*(a ) + h ) |
| |
| If g goes to infinity, we can rewrite the line in terms of x. |
| x = g'*y + h' |
| |
| And solve accordingly in Mathematica: |
| |
| (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
| d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
| (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
| g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
| (in) Solve[t2 == 0, t] |
| (out) { |
| {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
| Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
| 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
| (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
| }, |
| {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
| Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
| 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
| (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
| } |
| } |
| |
| Thus, if the slope of the line tends towards vertical, we use: |
| A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
| B = 2*(-(a - b ) + g'*(d - e ) ) |
| C = ( (a ) - g'*(d ) - h' ) |
| */ |
| |
| |
| class LineQuadraticIntersections { |
| public: |
| |
| LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i) |
| : quad(q) |
| , line(l) |
| , intersections(i) { |
| } |
| |
| int intersectRay(double roots[2]) { |
| /* |
| solve by rotating line+quad so line is horizontal, then finding the roots |
| set up matrix to rotate quad to x-axis |
| |cos(a) -sin(a)| |
| |sin(a) cos(a)| |
| note that cos(a) = A(djacent) / Hypoteneuse |
| sin(a) = O(pposite) / Hypoteneuse |
| since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
| | A -O | |
| | O A | |
| A = line[1].x - line[0].x (adjacent side of the right triangle) |
| O = line[1].y - line[0].y (opposite side of the right triangle) |
| for each of the three points (e.g. n = 0 to 2) |
| quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O |
| */ |
| double adj = line[1].x - line[0].x; |
| double opp = line[1].y - line[0].y; |
| double r[3]; |
| for (int n = 0; n < 3; ++n) { |
| r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp; |
| } |
| double A = r[2]; |
| double B = r[1]; |
| double C = r[0]; |
| A += C - 2 * B; // A = a - 2*b + c |
| B -= C; // B = -(b - c) |
| return quadraticRootsValidT(A, 2 * B, C, roots); |
| } |
| |
| int intersect() { |
| addEndPoints(); |
| double rootVals[2]; |
| int roots = intersectRay(rootVals); |
| for (int index = 0; index < roots; ++index) { |
| double quadT = rootVals[index]; |
| double lineT = findLineT(quadT); |
| if (pinTs(quadT, lineT)) { |
| _Point pt; |
| xy_at_t(line, lineT, pt.x, pt.y); |
| intersections.insert(quadT, lineT, pt); |
| } |
| } |
| return intersections.fUsed; |
| } |
| |
| int horizontalIntersect(double axisIntercept, double roots[2]) { |
| double D = quad[2].y; // f |
| double E = quad[1].y; // e |
| double F = quad[0].y; // d |
| D += F - 2 * E; // D = d - 2*e + f |
| E -= F; // E = -(d - e) |
| F -= axisIntercept; |
| return quadraticRootsValidT(D, 2 * E, F, roots); |
| } |
| |
| int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
| addHorizontalEndPoints(left, right, axisIntercept); |
| double rootVals[2]; |
| int roots = horizontalIntersect(axisIntercept, rootVals); |
| for (int index = 0; index < roots; ++index) { |
| _Point pt; |
| double quadT = rootVals[index]; |
| xy_at_t(quad, quadT, pt.x, pt.y); |
| double lineT = (pt.x - left) / (right - left); |
| if (pinTs(quadT, lineT)) { |
| intersections.insert(quadT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| flip(); |
| } |
| return intersections.fUsed; |
| } |
| |
| int verticalIntersect(double axisIntercept, double roots[2]) { |
| double D = quad[2].x; // f |
| double E = quad[1].x; // e |
| double F = quad[0].x; // d |
| D += F - 2 * E; // D = d - 2*e + f |
| E -= F; // E = -(d - e) |
| F -= axisIntercept; |
| return quadraticRootsValidT(D, 2 * E, F, roots); |
| } |
| |
| int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
| addVerticalEndPoints(top, bottom, axisIntercept); |
| double rootVals[2]; |
| int roots = verticalIntersect(axisIntercept, rootVals); |
| for (int index = 0; index < roots; ++index) { |
| _Point pt; |
| double quadT = rootVals[index]; |
| xy_at_t(quad, quadT, pt.x, pt.y); |
| double lineT = (pt.y - top) / (bottom - top); |
| if (pinTs(quadT, lineT)) { |
| intersections.insert(quadT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| flip(); |
| } |
| return intersections.fUsed; |
| } |
| |
| protected: |
| |
| // add endpoints first to get zero and one t values exactly |
| void addEndPoints() |
| { |
| for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| for (int lIndex = 0; lIndex < 2; lIndex++) { |
| if (quad[qIndex] == line[lIndex]) { |
| intersections.insert(qIndex >> 1, lIndex, line[lIndex]); |
| } |
| } |
| } |
| } |
| |
| void addHorizontalEndPoints(double left, double right, double y) |
| { |
| for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| if (quad[qIndex].y != y) { |
| continue; |
| } |
| if (quad[qIndex].x == left) { |
| intersections.insert(qIndex >> 1, 0, quad[qIndex]); |
| } |
| if (quad[qIndex].x == right) { |
| intersections.insert(qIndex >> 1, 1, quad[qIndex]); |
| } |
| } |
| } |
| |
| void addVerticalEndPoints(double top, double bottom, double x) |
| { |
| for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
| if (quad[qIndex].x != x) { |
| continue; |
| } |
| if (quad[qIndex].y == top) { |
| intersections.insert(qIndex >> 1, 0, quad[qIndex]); |
| } |
| if (quad[qIndex].y == bottom) { |
| intersections.insert(qIndex >> 1, 1, quad[qIndex]); |
| } |
| } |
| } |
| |
| double findLineT(double t) { |
| double x, y; |
| xy_at_t(quad, t, x, y); |
| double dx = line[1].x - line[0].x; |
| double dy = line[1].y - line[0].y; |
| if (fabs(dx) > fabs(dy)) { |
| return (x - line[0].x) / dx; |
| } |
| return (y - line[0].y) / dy; |
| } |
| |
| void flip() { |
| // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y |
| int roots = intersections.fUsed; |
| for (int index = 0; index < roots; ++index) { |
| intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
| } |
| } |
| |
| static bool pinTs(double& quadT, double& lineT) { |
| if (!approximately_one_or_less(lineT)) { |
| return false; |
| } |
| if (!approximately_zero_or_more(lineT)) { |
| return false; |
| } |
| if (precisely_less_than_zero(quadT)) { |
| quadT = 0; |
| } else if (precisely_greater_than_one(quadT)) { |
| quadT = 1; |
| } |
| if (precisely_less_than_zero(lineT)) { |
| lineT = 0; |
| } else if (precisely_greater_than_one(lineT)) { |
| lineT = 1; |
| } |
| return true; |
| } |
| |
| private: |
| |
| const Quadratic& quad; |
| const _Line& line; |
| Intersections& intersections; |
| }; |
| |
| // utility for pairs of coincident quads |
| static double horizontalIntersect(const Quadratic& quad, const _Point& pt) { |
| LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
| double rootVals[2]; |
| int roots = q.horizontalIntersect(pt.y, rootVals); |
| for (int index = 0; index < roots; ++index) { |
| double x; |
| double t = rootVals[index]; |
| xy_at_t(quad, t, x, *(double*) 0); |
| if (AlmostEqualUlps(x, pt.x)) { |
| return t; |
| } |
| } |
| return -1; |
| } |
| |
| static double verticalIntersect(const Quadratic& quad, const _Point& pt) { |
| LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
| double rootVals[2]; |
| int roots = q.verticalIntersect(pt.x, rootVals); |
| for (int index = 0; index < roots; ++index) { |
| double y; |
| double t = rootVals[index]; |
| xy_at_t(quad, t, *(double*) 0, y); |
| if (AlmostEqualUlps(y, pt.y)) { |
| return t; |
| } |
| } |
| return -1; |
| } |
| |
| double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) { |
| if (vertical) { |
| return verticalIntersect(q1, p); |
| } |
| return horizontalIntersect(q1, p); |
| } |
| |
| int horizontalIntersect(const Quadratic& quad, double left, double right, |
| double y, double tRange[2]) { |
| LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
| double rootVals[2]; |
| int result = q.horizontalIntersect(y, rootVals); |
| int tCount = 0; |
| for (int index = 0; index < result; ++index) { |
| double x, y; |
| xy_at_t(quad, rootVals[index], x, y); |
| if (x < left || x > right) { |
| continue; |
| } |
| tRange[tCount++] = rootVals[index]; |
| } |
| return tCount; |
| } |
| |
| int horizontalIntersect(const Quadratic& quad, double left, double right, double y, |
| bool flipped, Intersections& intersections) { |
| LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); |
| return q.horizontalIntersect(y, left, right, flipped); |
| } |
| |
| int verticalIntersect(const Quadratic& quad, double top, double bottom, double x, |
| bool flipped, Intersections& intersections) { |
| LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); |
| return q.verticalIntersect(x, top, bottom, flipped); |
| } |
| |
| int intersect(const Quadratic& quad, const _Line& line, Intersections& i) { |
| LineQuadraticIntersections q(quad, line, i); |
| return q.intersect(); |
| } |
| |
| int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) { |
| LineQuadraticIntersections q(quad, line, i); |
| return q.intersectRay(i.fT[0]); |
| } |