| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGLGpu.h" |
| #include "GrGLBuffer.h" |
| #include "GrGLGLSL.h" |
| #include "GrGLGpuCommandBuffer.h" |
| #include "GrGLStencilAttachment.h" |
| #include "GrGLTextureRenderTarget.h" |
| #include "GrFixedClip.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrMesh.h" |
| #include "GrPipeline.h" |
| #include "GrPLSGeometryProcessor.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrSurfacePriv.h" |
| #include "GrTexturePriv.h" |
| #include "GrTypes.h" |
| #include "builders/GrGLShaderStringBuilder.h" |
| #include "glsl/GrGLSL.h" |
| #include "glsl/GrGLSLCaps.h" |
| #include "glsl/GrGLSLPLSPathRendering.h" |
| #include "instanced/GLInstancedRendering.h" |
| #include "SkMipMap.h" |
| #include "SkPixmap.h" |
| #include "SkStrokeRec.h" |
| #include "SkTemplates.h" |
| #include "SkTypes.h" |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define SKIP_CACHE_CHECK true |
| |
| #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) |
| #else |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| using gr_instanced::InstancedRendering; |
| using gr_instanced::GLInstancedRendering; |
| |
| static const GrGLenum gXfermodeEquation2Blend[] = { |
| // Basic OpenGL blend equations. |
| GR_GL_FUNC_ADD, |
| GR_GL_FUNC_SUBTRACT, |
| GR_GL_FUNC_REVERSE_SUBTRACT, |
| |
| // GL_KHR_blend_equation_advanced. |
| GR_GL_SCREEN, |
| GR_GL_OVERLAY, |
| GR_GL_DARKEN, |
| GR_GL_LIGHTEN, |
| GR_GL_COLORDODGE, |
| GR_GL_COLORBURN, |
| GR_GL_HARDLIGHT, |
| GR_GL_SOFTLIGHT, |
| GR_GL_DIFFERENCE, |
| GR_GL_EXCLUSION, |
| GR_GL_MULTIPLY, |
| GR_GL_HSL_HUE, |
| GR_GL_HSL_SATURATION, |
| GR_GL_HSL_COLOR, |
| GR_GL_HSL_LUMINOSITY |
| }; |
| GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); |
| GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); |
| GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); |
| GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); |
| GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); |
| GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); |
| GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); |
| GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); |
| GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); |
| GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); |
| GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); |
| GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); |
| GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); |
| GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); |
| GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); |
| GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| GR_GL_CONSTANT_ALPHA, |
| GR_GL_ONE_MINUS_CONSTANT_ALPHA, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| }; |
| |
| bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { |
| static const bool gCoeffReferencesBlendConst[] = { |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| true, |
| true, |
| true, |
| true, |
| |
| // extended blend coeffs |
| false, |
| false, |
| false, |
| false, |
| }; |
| return gCoeffReferencesBlendConst[coeff]; |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); |
| |
| GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); |
| GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); |
| GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); |
| GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); |
| GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); |
| GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); |
| GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); |
| GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); |
| |
| GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); |
| GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); |
| |
| // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options, |
| GrContext* context) { |
| SkAutoTUnref<const GrGLInterface> glInterface( |
| reinterpret_cast<const GrGLInterface*>(backendContext)); |
| if (!glInterface) { |
| glInterface.reset(GrGLDefaultInterface()); |
| } else { |
| glInterface->ref(); |
| } |
| if (!glInterface) { |
| return nullptr; |
| } |
| GrGLContext* glContext = GrGLContext::Create(glInterface, options); |
| if (glContext) { |
| return new GrGLGpu(glContext, context); |
| } |
| return nullptr; |
| } |
| |
| static bool gPrintStartupSpew; |
| |
| GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context) |
| : GrGpu(context) |
| , fGLContext(ctx) |
| , fProgramCache(new ProgramCache(this)) |
| , fHWProgramID(0) |
| , fTempSrcFBOID(0) |
| , fTempDstFBOID(0) |
| , fStencilClearFBOID(0) |
| , fHWMaxUsedBufferTextureUnit(-1) |
| , fHWPLSEnabled(false) |
| , fPLSHasBeenUsed(false) |
| , fHWMinSampleShading(0.0) { |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| fCopyPrograms[i].fProgram = 0; |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| fMipmapPrograms[i].fProgram = 0; |
| } |
| fWireRectProgram.fProgram = 0; |
| fPLSSetupProgram.fProgram = 0; |
| |
| SkASSERT(ctx); |
| fCaps.reset(SkRef(ctx->caps())); |
| |
| fHWBoundTextureUniqueIDs.reset(this->glCaps().glslCaps()->maxCombinedSamplers()); |
| |
| fHWBufferState[kVertex_GrBufferType].fGLTarget = GR_GL_ARRAY_BUFFER; |
| fHWBufferState[kIndex_GrBufferType].fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; |
| fHWBufferState[kTexel_GrBufferType].fGLTarget = GR_GL_TEXTURE_BUFFER; |
| fHWBufferState[kDrawIndirect_GrBufferType].fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER; |
| if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) { |
| fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = |
| GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; |
| fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = |
| GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; |
| } else { |
| fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; |
| fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_BUFFER; |
| } |
| GR_STATIC_ASSERT(6 == SK_ARRAY_COUNT(fHWBufferState)); |
| |
| if (this->caps()->shaderCaps()->texelBufferSupport()) { |
| fHWBufferTextures.reset(this->glCaps().glslCaps()->maxCombinedSamplers()); |
| } |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| fPathRendering.reset(new GrGLPathRendering(this)); |
| } |
| |
| GrGLClearErr(this->glInterface()); |
| if (gPrintStartupSpew) { |
| const GrGLubyte* vendor; |
| const GrGLubyte* renderer; |
| const GrGLubyte* version; |
| GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); |
| GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); |
| GL_CALL_RET(version, GetString(GR_GL_VERSION)); |
| SkDebugf("------------------------- create GrGLGpu %p --------------\n", |
| this); |
| SkDebugf("------ VENDOR %s\n", vendor); |
| SkDebugf("------ RENDERER %s\n", renderer); |
| SkDebugf("------ VERSION %s\n", version); |
| SkDebugf("------ EXTENSIONS\n"); |
| this->glContext().extensions().print(); |
| SkDebugf("\n"); |
| SkDebugf("%s", this->glCaps().dump().c_str()); |
| } |
| } |
| |
| GrGLGpu::~GrGLGpu() { |
| // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu |
| // to release the resources held by the objects themselves. |
| fPathRendering.reset(); |
| fCopyProgramArrayBuffer.reset(); |
| fMipmapProgramArrayBuffer.reset(); |
| fWireRectArrayBuffer.reset(); |
| fPLSSetupProgram.fArrayBuffer.reset(); |
| |
| if (0 != fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GL_CALL(UseProgram(0)); |
| } |
| |
| if (0 != fTempSrcFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); |
| } |
| if (0 != fTempDstFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); |
| } |
| if (0 != fStencilClearFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (0 != fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (0 != fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| |
| if (0 != fWireRectProgram.fProgram) { |
| GL_CALL(DeleteProgram(fWireRectProgram.fProgram)); |
| } |
| |
| if (0 != fPLSSetupProgram.fProgram) { |
| GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram)); |
| } |
| |
| delete fProgramCache; |
| } |
| |
| bool GrGLGpu::createPLSSetupProgram() { |
| if (!fPLSSetupProgram.fArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fPLSSetupProgram.fArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), |
| kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| if (!fPLSSetupProgram.fArrayBuffer) { |
| return false; |
| } |
| } |
| |
| SkASSERT(!fPLSSetupProgram.fProgram); |
| GL_CALL_RET(fPLSSetupProgram.fProgram, CreateProgram()); |
| if (!fPLSSetupProgram.fProgram) { |
| return false; |
| } |
| |
| const GrGLSLCaps* glslCaps = this->glCaps().glslCaps(); |
| const char* version = glslCaps->versionDeclString(); |
| |
| GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); |
| GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoord.addModifier("noperspective"); |
| } |
| aVertex.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uPosXform.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| vTexCoord.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| |
| vshaderTxt.append( |
| "// PLS Setup Program VS\n" |
| "void main() {" |
| " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" |
| " gl_Position.zw = vec2(0, 1);" |
| "}" |
| ); |
| |
| SkString fshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| fshaderTxt.append("#extension "); |
| fshaderTxt.append(glslCaps->fbFetchExtensionString()); |
| fshaderTxt.append(" : require\n"); |
| fshaderTxt.append("#extension GL_EXT_shader_pixel_local_storage : require\n"); |
| GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, &fshaderTxt); |
| vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); |
| vTexCoord.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| uTexture.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| |
| fshaderTxt.appendf( |
| "// PLS Setup Program FS\n" |
| GR_GL_PLS_PATH_DATA_DECL |
| "void main() {\n" |
| " " GR_GL_PLS_DSTCOLOR_NAME " = gl_LastFragColorARM;\n" |
| " pls.windings = ivec4(0, 0, 0, 0);\n" |
| "}" |
| ); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram, |
| GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram, |
| GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); |
| |
| GL_CALL(LinkProgram(fPLSSetupProgram.fProgram)); |
| |
| GL_CALL_RET(fPLSSetupProgram.fPosXformUniform, GetUniformLocation(fPLSSetupProgram.fProgram, |
| "u_posXform")); |
| |
| GL_CALL(BindAttribLocation(fPLSSetupProgram.fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| void GrGLGpu::disconnect(DisconnectType type) { |
| INHERITED::disconnect(type); |
| if (DisconnectType::kCleanup == type) { |
| if (fHWProgramID) { |
| GL_CALL(UseProgram(0)); |
| } |
| if (fTempSrcFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); |
| } |
| if (fTempDstFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); |
| } |
| if (fStencilClearFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| if (fCopyPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); |
| } |
| } |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| if (fMipmapPrograms[i].fProgram) { |
| GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); |
| } |
| } |
| if (fWireRectProgram.fProgram) { |
| GL_CALL(DeleteProgram(fWireRectProgram.fProgram)); |
| } |
| if (fPLSSetupProgram.fProgram) { |
| GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram)); |
| } |
| } else { |
| if (fProgramCache) { |
| fProgramCache->abandon(); |
| } |
| } |
| |
| delete fProgramCache; |
| fProgramCache = nullptr; |
| |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| fCopyProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { |
| fCopyPrograms[i].fProgram = 0; |
| } |
| fMipmapProgramArrayBuffer.reset(); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { |
| fMipmapPrograms[i].fProgram = 0; |
| } |
| fWireRectProgram.fProgram = 0; |
| fWireRectArrayBuffer.reset(); |
| fPLSSetupProgram.fProgram = 0; |
| fPLSSetupProgram.fArrayBuffer.reset(); |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->disconnect(type); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGLGpu::onResetContext(uint32_t resetBits) { |
| // we don't use the zb at all |
| if (resetBits & kMisc_GrGLBackendState) { |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| fHWBufferState[kTexel_GrBufferType].invalidate(); |
| fHWBufferState[kDrawIndirect_GrBufferType].invalidate(); |
| fHWBufferState[kXferCpuToGpu_GrBufferType].invalidate(); |
| fHWBufferState[kXferGpuToCpu_GrBufferType].invalidate(); |
| |
| fHWDrawFace = GrDrawFace::kInvalid; |
| |
| if (kGL_GrGLStandard == this->glStandard()) { |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't |
| // currently part of our gl interface. There are probably others as |
| // well. |
| } |
| |
| if (kGLES_GrGLStandard == this->glStandard() && |
| this->hasExtension("GL_ARM_shader_framebuffer_fetch")) { |
| // The arm extension requires specifically enabling MSAA fetching per sample. |
| // On some devices this may have a perf hit. Also multiple render targets are disabled |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| GL_CALL(Disable(GR_GL_DITHER)); |
| } |
| |
| if (resetBits & kMSAAEnable_GrGLBackendState) { |
| fMSAAEnabled = kUnknown_TriState; |
| |
| if (this->caps()->usesMixedSamples()) { |
| if (0 != this->caps()->maxRasterSamples()) { |
| fHWRasterMultisampleEnabled = kUnknown_TriState; |
| fHWNumRasterSamples = 0; |
| } |
| |
| // The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage |
| // modulation. This state has no effect when not rendering to a mixed sampled target. |
| GL_CALL(CoverageModulation(GR_GL_RGBA)); |
| } |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) { |
| fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID; |
| } |
| for (int b = 0; b < fHWBufferTextures.count(); ++b) { |
| SkASSERT(this->caps()->shaderCaps()->texelBufferSupport()); |
| fHWBufferTextures[b].fKnownBound = false; |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWWindowRectsState.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWVertexArrayState.invalidate(); |
| fHWBufferState[kVertex_GrBufferType].invalidate(); |
| fHWBufferState[kIndex_GrBufferType].invalidate(); |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| fHWSRGBFramebuffer = kUnknown_TriState; |
| } |
| |
| if (resetBits & kPathRendering_GrGLBackendState) { |
| if (this->caps()->shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->resetContext(); |
| } |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().unpackFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| } |
| } |
| |
| static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { |
| // By default, GrRenderTargets are GL's normal orientation so that they |
| // can be drawn to by the outside world without the client having |
| // to render upside down. |
| if (kDefault_GrSurfaceOrigin == origin) { |
| return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; |
| } else { |
| return origin; |
| } |
| } |
| |
| GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc, |
| GrWrapOwnership ownership) { |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| if (!desc.fTextureHandle) { |
| return nullptr; |
| } |
| #else |
| const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(desc.fTextureHandle); |
| if (!info || !info->fID) { |
| return nullptr; |
| } |
| #endif |
| |
| // next line relies on GrBackendTextureDesc's flags matching GrTexture's |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); |
| |
| GrGLTexture::IDDesc idDesc; |
| GrSurfaceDesc surfDesc; |
| |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| idDesc.fInfo.fID = static_cast<GrGLuint>(desc.fTextureHandle); |
| // When we create the texture, we only |
| // create GL_TEXTURE_2D at the moment. |
| // External clients can do something different. |
| |
| idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D; |
| #else |
| idDesc.fInfo = *info; |
| #endif |
| |
| if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) { |
| if (renderTarget) { |
| // This combination is not supported. |
| return nullptr; |
| } |
| if (!this->glCaps().glslCaps()->externalTextureSupport()) { |
| return nullptr; |
| } |
| } else if (GR_GL_TEXTURE_RECTANGLE == idDesc.fInfo.fTarget) { |
| if (!this->glCaps().rectangleTextureSupport()) { |
| return nullptr; |
| } |
| } else if (GR_GL_TEXTURE_2D != idDesc.fInfo.fTarget) { |
| return nullptr; |
| } |
| |
| // Sample count is interpreted to mean the number of samples that Gr code should allocate |
| // for a render buffer that resolves to the texture. We don't support MSAA textures. |
| if (desc.fSampleCnt && !renderTarget) { |
| return nullptr; |
| } |
| |
| if (kAdopt_GrWrapOwnership == ownership) { |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| } else { |
| idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed; |
| } |
| |
| surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; |
| surfDesc.fWidth = desc.fWidth; |
| surfDesc.fHeight = desc.fHeight; |
| surfDesc.fConfig = desc.fConfig; |
| surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); |
| // FIXME: this should be calling resolve_origin(), but Chrome code is currently |
| // assuming the old behaviour, which is that backend textures are always |
| // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: |
| // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| if (kDefault_GrSurfaceOrigin == desc.fOrigin) { |
| surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| } else { |
| surfDesc.fOrigin = desc.fOrigin; |
| } |
| |
| GrGLTexture* texture = nullptr; |
| if (renderTarget) { |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| if (!this->createRenderTargetObjects(surfDesc, idDesc.fInfo, &rtIDDesc)) { |
| return nullptr; |
| } |
| texture = GrGLTextureRenderTarget::CreateWrapped(this, surfDesc, idDesc, rtIDDesc); |
| } else { |
| texture = GrGLTexture::CreateWrapped(this, surfDesc, idDesc); |
| } |
| if (nullptr == texture) { |
| return nullptr; |
| } |
| |
| return texture; |
| } |
| |
| GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc, |
| GrWrapOwnership ownership) { |
| GrGLRenderTarget::IDDesc idDesc; |
| idDesc.fRTFBOID = static_cast<GrGLuint>(wrapDesc.fRenderTargetHandle); |
| idDesc.fMSColorRenderbufferID = 0; |
| idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| if (kAdopt_GrWrapOwnership == ownership) { |
| idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kOwned; |
| } else { |
| idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed; |
| } |
| idDesc.fIsMixedSampled = false; |
| |
| GrSurfaceDesc desc; |
| desc.fConfig = wrapDesc.fConfig; |
| desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = wrapDesc.fWidth; |
| desc.fHeight = wrapDesc.fHeight; |
| desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount()); |
| desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true); |
| |
| return GrGLRenderTarget::CreateWrapped(this, desc, idDesc, wrapDesc.fStencilBits); |
| } |
| |
| GrRenderTarget* GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTextureDesc& desc) { |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| if (!desc.fTextureHandle) { |
| return nullptr; |
| } |
| #else |
| const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(desc.fTextureHandle); |
| if (!info || !info->fID) { |
| return nullptr; |
| } |
| #endif |
| |
| GrGLTextureInfo texInfo; |
| GrSurfaceDesc surfDesc; |
| |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| texInfo.fID = static_cast<GrGLuint>(desc.fTextureHandle); |
| // We only support GL_TEXTURE_2D at the moment. |
| texInfo.fTarget = GR_GL_TEXTURE_2D; |
| #else |
| texInfo = *info; |
| #endif |
| |
| if (GR_GL_TEXTURE_RECTANGLE != texInfo.fTarget && |
| GR_GL_TEXTURE_2D != texInfo.fTarget) { |
| // Only texture rectangle and texture 2d are supported. We do not check whether texture |
| // rectangle is supported by Skia - if the caller provided us with a texture rectangle, |
| // we assume the necessary support exists. |
| return nullptr; |
| } |
| |
| surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; |
| surfDesc.fWidth = desc.fWidth; |
| surfDesc.fHeight = desc.fHeight; |
| surfDesc.fConfig = desc.fConfig; |
| surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); |
| // FIXME: this should be calling resolve_origin(), but Chrome code is currently |
| // assuming the old behaviour, which is that backend textures are always |
| // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: |
| // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| if (kDefault_GrSurfaceOrigin == desc.fOrigin) { |
| surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| } else { |
| surfDesc.fOrigin = desc.fOrigin; |
| } |
| |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| if (!this->createRenderTargetObjects(surfDesc, texInfo, &rtIDDesc)) { |
| return nullptr; |
| } |
| return GrGLRenderTarget::CreateWrapped(this, surfDesc, rtIDDesc, 0); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height, |
| GrPixelConfig srcConfig, |
| DrawPreference* drawPreference, |
| WritePixelTempDrawInfo* tempDrawInfo) { |
| if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) { |
| return false; |
| } |
| |
| // This subclass only allows writes to textures. If the dst is not a texture we have to draw |
| // into it. We could use glDrawPixels on GLs that have it, but we don't today. |
| if (!dstSurface->asTexture()) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } else { |
| GrGLTexture* texture = static_cast<GrGLTexture*>(dstSurface->asTexture()); |
| if (GR_GL_TEXTURE_EXTERNAL == texture->target()) { |
| // We don't currently support writing pixels to EXTERNAL textures. |
| return false; |
| } |
| } |
| |
| if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| // Start off assuming no swizzling |
| tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); |
| tempDrawInfo->fWriteConfig = srcConfig; |
| |
| // These settings we will always want if a temp draw is performed. Initially set the config |
| // to srcConfig, though that may be modified if we decide to do a R/G swap. |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. |
| |
| bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); |
| |
| if (configsAreRBSwaps) { |
| if (!this->caps()->isConfigTexturable(srcConfig)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fWriteConfig = dstSurface->config(); |
| } else if (this->glCaps().rgba8888PixelsOpsAreSlow() && |
| kRGBA_8888_GrPixelConfig == srcConfig) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fWriteConfig = dstSurface->config(); |
| } else if (kGLES_GrGLStandard == this->glStandard() && |
| this->glCaps().bgraIsInternalFormat()) { |
| // The internal format and external formats must match texture uploads so we can't |
| // swizzle while uploading when BGRA is a distinct internal format. |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fWriteConfig = dstSurface->config(); |
| } |
| } |
| |
| if (!this->glCaps().unpackFlipYSupport() && |
| kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } |
| |
| return true; |
| } |
| |
| static bool check_write_and_transfer_input(GrGLTexture* glTex, GrSurface* surface, |
| GrPixelConfig config) { |
| if (!glTex) { |
| return false; |
| } |
| |
| // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { |
| return false; |
| } |
| |
| // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures |
| if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onWritePixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig config, |
| const SkTArray<GrMipLevel>& texels) { |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| |
| if (!check_write_and_transfer_input(glTex, surface, config)) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(glTex->target(), glTex->textureID())); |
| |
| bool success = false; |
| if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { |
| // We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels() |
| SkASSERT(config == glTex->desc().fConfig); |
| success = this->uploadCompressedTexData(glTex->desc(), glTex->target(), texels, |
| kWrite_UploadType, left, top, width, height); |
| } else { |
| success = this->uploadTexData(glTex->desc(), glTex->target(), kWrite_UploadType, |
| left, top, width, height, config, texels); |
| } |
| |
| return success; |
| } |
| |
| bool GrGLGpu::onTransferPixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig config, GrBuffer* transferBuffer, |
| size_t offset, size_t rowBytes) { |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| |
| if (!check_write_and_transfer_input(glTex, surface, config)) { |
| return false; |
| } |
| |
| // For the moment, can't transfer compressed data |
| if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(glTex->target(), glTex->textureID())); |
| |
| SkASSERT(!transferBuffer->isMapped()); |
| SkASSERT(!transferBuffer->isCPUBacked()); |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(transferBuffer); |
| this->bindBuffer(kXferCpuToGpu_GrBufferType, glBuffer); |
| |
| bool success = false; |
| GrMipLevel mipLevel; |
| mipLevel.fPixels = transferBuffer; |
| mipLevel.fRowBytes = rowBytes; |
| SkSTArray<1, GrMipLevel> texels; |
| texels.push_back(mipLevel); |
| success = this->uploadTexData(glTex->desc(), glTex->target(), kTransfer_UploadType, |
| left, top, width, height, config, texels); |
| return success; |
| } |
| |
| // For GL_[UN]PACK_ALIGNMENT. |
| static inline GrGLint config_alignment(GrPixelConfig config) { |
| SkASSERT(!GrPixelConfigIsCompressed(config)); |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| return 1; |
| case kRGB_565_GrPixelConfig: |
| case kRGBA_4444_GrPixelConfig: |
| case kAlpha_half_GrPixelConfig: |
| case kRGBA_half_GrPixelConfig: |
| return 2; |
| case kRGBA_8888_GrPixelConfig: |
| case kBGRA_8888_GrPixelConfig: |
| case kSRGBA_8888_GrPixelConfig: |
| case kSBGRA_8888_GrPixelConfig: |
| case kRGBA_float_GrPixelConfig: |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc, |
| const GrGLInterface* interface) { |
| if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) { |
| return GR_GL_GET_ERROR(interface); |
| } else { |
| return CHECK_ALLOC_ERROR(interface); |
| } |
| } |
| |
| /** |
| * Creates storage space for the texture and fills it with texels. |
| * |
| * @param desc The surface descriptor for the texture being created. |
| * @param interface The GL interface in use. |
| * @param caps The capabilities of the GL device. |
| * @param internalFormat The data format used for the internal storage of the texture. May be sized. |
| * @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized. |
| * @param externalFormat The data format used for the external storage of the texture. |
| * @param externalType The type of the data used for the external storage of the texture. |
| * @param texels The texel data of the texture being created. |
| * @param baseWidth The width of the texture's base mipmap level |
| * @param baseHeight The height of the texture's base mipmap level |
| * @param succeeded Set to true if allocating and populating the texture completed |
| * without error. |
| */ |
| static bool allocate_and_populate_uncompressed_texture(const GrSurfaceDesc& desc, |
| const GrGLInterface& interface, |
| const GrGLCaps& caps, |
| GrGLenum target, |
| GrGLenum internalFormat, |
| GrGLenum internalFormatForTexStorage, |
| GrGLenum externalFormat, |
| GrGLenum externalType, |
| const SkTArray<GrMipLevel>& texels, |
| int baseWidth, int baseHeight) { |
| CLEAR_ERROR_BEFORE_ALLOC(&interface); |
| |
| bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig); |
| // We can only use TexStorage if we know we will not later change the storage requirements. |
| // This means if we may later want to add mipmaps, we cannot use TexStorage. |
| // Right now, we cannot know if we will later add mipmaps or not. |
| // The only time we can use TexStorage is when we already have the |
| // mipmaps. |
| useTexStorage &= texels.count() > 1; |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(&interface, |
| TexStorage2D(target, |
| texels.count(), |
| internalFormatForTexStorage, |
| desc.fWidth, desc.fHeight)); |
| GrGLenum error = check_alloc_error(desc, &interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| if (currentMipData == nullptr) { |
| continue; |
| } |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, desc.fWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, desc.fHeight / twoToTheMipLevel); |
| |
| GR_GL_CALL(&interface, |
| TexSubImage2D(target, |
| currentMipLevel, |
| 0, // left |
| 0, // top |
| currentWidth, |
| currentHeight, |
| externalFormat, externalType, |
| currentMipData)); |
| } |
| return true; |
| } |
| } else { |
| if (texels.empty()) { |
| GL_ALLOC_CALL(&interface, |
| TexImage2D(target, |
| 0, |
| internalFormat, |
| baseWidth, |
| baseHeight, |
| 0, // border |
| externalFormat, externalType, |
| nullptr)); |
| GrGLenum error = check_alloc_error(desc, &interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| // Even if curremtMipData is nullptr, continue to call TexImage2D. |
| // This will allocate texture memory which we can later populate. |
| GL_ALLOC_CALL(&interface, |
| TexImage2D(target, |
| currentMipLevel, |
| internalFormat, |
| currentWidth, |
| currentHeight, |
| 0, // border |
| externalFormat, externalType, |
| currentMipData)); |
| GrGLenum error = check_alloc_error(desc, &interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Creates storage space for the texture and fills it with texels. |
| * |
| * @param desc The surface descriptor for the texture being created. |
| * @param interface The GL interface in use. |
| * @param caps The capabilities of the GL device. |
| * @param internalFormat The data format used for the internal storage of the texture. |
| * @param texels The texel data of the texture being created. |
| */ |
| static bool allocate_and_populate_compressed_texture(const GrSurfaceDesc& desc, |
| const GrGLInterface& interface, |
| const GrGLCaps& caps, |
| GrGLenum target, GrGLenum internalFormat, |
| const SkTArray<GrMipLevel>& texels, |
| int baseWidth, int baseHeight) { |
| CLEAR_ERROR_BEFORE_ALLOC(&interface); |
| |
| bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig); |
| // We can only use TexStorage if we know we will not later change the storage requirements. |
| // This means if we may later want to add mipmaps, we cannot use TexStorage. |
| // Right now, we cannot know if we will later add mipmaps or not. |
| // The only time we can use TexStorage is when we already have the |
| // mipmaps. |
| useTexStorage &= texels.count() > 1; |
| |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(&interface, |
| TexStorage2D(target, |
| texels.count(), |
| internalFormat, |
| baseWidth, baseHeight)); |
| GrGLenum error = check_alloc_error(desc, &interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { |
| const void* currentMipData = texels[currentMipLevel].fPixels; |
| if (currentMipData == nullptr) { |
| continue; |
| } |
| |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth, |
| currentHeight); |
| GR_GL_CALL(&interface, CompressedTexSubImage2D(target, |
| currentMipLevel, |
| 0, // left |
| 0, // top |
| currentWidth, |
| currentHeight, |
| internalFormat, |
| SkToInt(dataSize), |
| currentMipData)); |
| } |
| } |
| } else { |
| for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, baseWidth, baseHeight); |
| |
| GL_ALLOC_CALL(&interface, |
| CompressedTexImage2D(target, |
| currentMipLevel, |
| internalFormat, |
| currentWidth, |
| currentHeight, |
| 0, // border |
| SkToInt(dataSize), |
| texels[currentMipLevel].fPixels)); |
| |
| GrGLenum error = check_alloc_error(desc, &interface); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * After a texture is created, any state which was altered during its creation |
| * needs to be restored. |
| * |
| * @param interface The GL interface to use. |
| * @param caps The capabilities of the GL device. |
| * @param restoreGLRowLength Should the row length unpacking be restored? |
| * @param glFlipY Did GL flip the texture vertically? |
| */ |
| static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps, |
| bool restoreGLRowLength, bool glFlipY) { |
| if (restoreGLRowLength) { |
| SkASSERT(caps.unpackRowLengthSupport()); |
| GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (glFlipY) { |
| GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| } |
| |
| bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc, |
| GrGLenum target, |
| UploadType uploadType, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const SkTArray<GrMipLevel>& texels) { |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); |
| |
| SkASSERT(this->caps()->isConfigTexturable(desc.fConfig)); |
| |
| // texels is const. |
| // But we may need to flip the texture vertically to prepare it. |
| // Rather than flip in place and alter the incoming data, |
| // we allocate a new buffer to flip into. |
| // This means we need to make a non-const shallow copy of texels. |
| SkTArray<GrMipLevel> texelsShallowCopy(texels); |
| |
| for (int currentMipLevel = texelsShallowCopy.count() - 1; currentMipLevel >= 0; |
| currentMipLevel--) { |
| SkASSERT(texelsShallowCopy[currentMipLevel].fPixels || kTransfer_UploadType == uploadType); |
| } |
| |
| const GrGLInterface* interface = this->glInterface(); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| |
| if (width == 0 || height == 0) { |
| return false; |
| } |
| |
| for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| |
| if (currentHeight > SK_MaxS32 || |
| currentWidth > SK_MaxS32) { |
| return false; |
| } |
| if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top, |
| ¤tWidth, |
| ¤tHeight, |
| &texelsShallowCopy[currentMipLevel].fPixels, |
| &texelsShallowCopy[currentMipLevel].fRowBytes)) { |
| return false; |
| } |
| if (currentWidth < 0 || currentHeight < 0) { |
| return false; |
| } |
| } |
| |
| // Internal format comes from the texture desc. |
| GrGLenum internalFormat; |
| // External format and type come from the upload data. |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getTexImageFormats(desc.fConfig, dataConfig, &internalFormat, |
| &externalFormat, &externalType)) { |
| return false; |
| } |
| // TexStorage requires a sized format, and internalFormat may or may not be |
| GrGLenum internalFormatForTexStorage = this->glCaps().configSizedInternalFormat(desc.fConfig); |
| |
| /* |
| * Check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| bool restoreGLRowLength = false; |
| bool swFlipY = false; |
| bool glFlipY = false; |
| |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin && !texelsShallowCopy.empty()) { |
| if (caps.unpackFlipYSupport()) { |
| glFlipY = true; |
| } else { |
| swFlipY = true; |
| } |
| } |
| |
| // in case we need a temporary, trimmed copy of the src pixels |
| SkAutoSMalloc<128 * 128> tempStorage; |
| |
| // find the combined size of all the mip levels and the relative offset of |
| // each into the collective buffer |
| size_t combined_buffer_size = 0; |
| SkTArray<size_t> individual_mip_offsets(texelsShallowCopy.count()); |
| for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| const size_t trimmedSize = currentWidth * bpp * currentHeight; |
| individual_mip_offsets.push_back(combined_buffer_size); |
| combined_buffer_size += trimmedSize; |
| } |
| char* buffer = (char*)tempStorage.reset(combined_buffer_size); |
| |
| for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| const size_t trimRowBytes = currentWidth * bpp; |
| |
| /* |
| * check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| restoreGLRowLength = false; |
| |
| const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes; |
| |
| // TODO: This optimization should be enabled with or without mips. |
| // For use with mips, we must set GR_GL_UNPACK_ROW_LENGTH once per |
| // mip level, before calling glTexImage2D. |
| const bool usesMips = texelsShallowCopy.count() > 1; |
| if (caps.unpackRowLengthSupport() && !swFlipY && !usesMips) { |
| // can't use this for flipping, only non-neg values allowed. :( |
| if (rowBytes != trimRowBytes) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } |
| } else if (kTransfer_UploadType != uploadType) { |
| if (trimRowBytes != rowBytes || swFlipY) { |
| // copy data into our new storage, skipping the trailing bytes |
| const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; |
| if (swFlipY && currentHeight >= 1) { |
| src += (currentHeight - 1) * rowBytes; |
| } |
| char* dst = buffer + individual_mip_offsets[currentMipLevel]; |
| for (int y = 0; y < currentHeight; y++) { |
| memcpy(dst, src, trimRowBytes); |
| if (swFlipY) { |
| src -= rowBytes; |
| } else { |
| src += rowBytes; |
| } |
| dst += trimRowBytes; |
| } |
| // now point data to our copied version |
| texelsShallowCopy[currentMipLevel].fPixels = buffer + |
| individual_mip_offsets[currentMipLevel]; |
| texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes; |
| } |
| } else { |
| return false; |
| } |
| } |
| |
| if (!texelsShallowCopy.empty()) { |
| if (glFlipY) { |
| GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); |
| } |
| GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, |
| config_alignment(desc.fConfig))); |
| } |
| |
| bool succeeded = true; |
| if (kNewTexture_UploadType == uploadType && |
| 0 == left && 0 == top && |
| desc.fWidth == width && desc.fHeight == height) { |
| succeeded = allocate_and_populate_uncompressed_texture(desc, *interface, caps, target, |
| internalFormat, |
| internalFormatForTexStorage, |
| externalFormat, externalType, |
| texelsShallowCopy, width, height); |
| } else { |
| if (swFlipY || glFlipY) { |
| top = desc.fHeight - (top + height); |
| } |
| for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); |
| currentMipLevel++) { |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| |
| GL_CALL(TexSubImage2D(target, |
| currentMipLevel, |
| left, top, |
| currentWidth, |
| currentHeight, |
| externalFormat, externalType, |
| texelsShallowCopy[currentMipLevel].fPixels)); |
| } |
| } |
| |
| restore_pixelstore_state(*interface, caps, restoreGLRowLength, glFlipY); |
| |
| return succeeded; |
| } |
| |
| // TODO: This function is using a lot of wonky semantics like, if width == -1 |
| // then set width = desc.fWdith ... blah. A better way to do it might be to |
| // create a CompressedTexData struct that takes a desc/ptr and figures out |
| // the proper upload semantics. Then users can construct this function how they |
| // see fit if they want to go against the "standard" way to do it. |
| bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc, |
| GrGLenum target, |
| const SkTArray<GrMipLevel>& texels, |
| UploadType uploadType, |
| int left, int top, int width, int height) { |
| SkASSERT(this->caps()->isConfigTexturable(desc.fConfig)); |
| |
| // No support for software flip y, yet... |
| SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); |
| |
| const GrGLInterface* interface = this->glInterface(); |
| const GrGLCaps& caps = this->glCaps(); |
| |
| if (-1 == width) { |
| width = desc.fWidth; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(width <= desc.fWidth); |
| } |
| #endif |
| |
| if (-1 == height) { |
| height = desc.fHeight; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(height <= desc.fHeight); |
| } |
| #endif |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat; |
| if (!caps.getCompressedTexImageFormats(desc.fConfig, &internalFormat)) { |
| return false; |
| } |
| |
| if (kNewTexture_UploadType == uploadType) { |
| return allocate_and_populate_compressed_texture(desc, *interface, caps, target, |
| internalFormat, texels, width, height); |
| } else { |
| // Paletted textures can't be updated. |
| if (GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| return false; |
| } |
| for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { |
| SkASSERT(texels[currentMipLevel].fPixels || kTransfer_UploadType == uploadType); |
| |
| int twoToTheMipLevel = 1 << currentMipLevel; |
| int currentWidth = SkTMax(1, width / twoToTheMipLevel); |
| int currentHeight = SkTMax(1, height / twoToTheMipLevel); |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth, |
| currentHeight); |
| GL_CALL(CompressedTexSubImage2D(target, |
| currentMipLevel, |
| left, top, |
| currentWidth, |
| currentHeight, |
| internalFormat, |
| SkToInt(dataSize), |
| texels[currentMipLevel].fPixels)); |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool renderbuffer_storage_msaa(const GrGLContext& ctx, |
| int sampleCount, |
| GrGLenum format, |
| int width, int height) { |
| CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kDesktop_ARB_MSFBOType: |
| case GrGLCaps::kDesktop_EXT_MSFBOType: |
| case GrGLCaps::kMixedSamples_MSFBOType: |
| case GrGLCaps::kES_3_0_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); |
| break; |
| } |
| return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); |
| } |
| |
| bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, |
| const GrGLTextureInfo& texInfo, |
| GrGLRenderTarget::IDDesc* idDesc) { |
| idDesc->fMSColorRenderbufferID = 0; |
| idDesc->fRTFBOID = 0; |
| idDesc->fRTFBOOwnership = GrBackendObjectOwnership::kOwned; |
| idDesc->fTexFBOID = 0; |
| SkASSERT((GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType()) == |
| this->caps()->usesMixedSamples()); |
| idDesc->fIsMixedSampled = desc.fSampleCnt > 0 && this->caps()->usesMixedSamples(); |
| |
| GrGLenum status; |
| |
| GrGLenum colorRenderbufferFormat = 0; // suppress warning |
| |
| if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); |
| if (!idDesc->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { |
| GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| if (!idDesc->fRTFBOID || |
| !idDesc->fMSColorRenderbufferID) { |
| goto FAILED; |
| } |
| if (!this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat)) { |
| return false; |
| } |
| } else { |
| idDesc->fRTFBOID = idDesc->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| SkASSERT(desc.fSampleCnt > 0); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); |
| if (!renderbuffer_storage_msaa(*fGLContext, |
| desc.fSampleCnt, |
| colorRenderbufferFormat, |
| desc.fWidth, desc.fHeight)) { |
| goto FAILED; |
| } |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| idDesc->fMSColorRenderbufferID)); |
| if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| } |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID)); |
| |
| if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| texInfo.fTarget, |
| texInfo.fID, 0, desc.fSampleCnt)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| texInfo.fTarget, |
| texInfo.fID, 0)); |
| } |
| if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (idDesc->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| } |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID)); |
| } |
| if (idDesc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID)); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static GrTexture* return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return nullptr; |
| } |
| |
| #if 0 && defined(SK_DEBUG) |
| static size_t as_size_t(int x) { |
| return x; |
| } |
| #endif |
| |
| static GrGLTexture::IDDesc generate_gl_texture(const GrGLInterface* interface) { |
| GrGLTexture::IDDesc idDesc; |
| idDesc.fInfo.fID = 0; |
| GR_GL_CALL(interface, GenTextures(1, &idDesc.fInfo.fID)); |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| // When we create the texture, we only |
| // create GL_TEXTURE_2D at the moment. |
| // External clients can do something different. |
| idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D; |
| return idDesc; |
| } |
| |
| static void set_initial_texture_params(const GrGLInterface* interface, |
| const GrGLTextureInfo& info, |
| GrGLTexture::TexParams* initialTexParams) { |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| // we only set a subset here so invalidate first |
| initialTexParams->invalidate(); |
| initialTexParams->fMinFilter = GR_GL_NEAREST; |
| initialTexParams->fMagFilter = GR_GL_NEAREST; |
| initialTexParams->fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams->fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams->fMagFilter)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams->fMinFilter)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams->fWrapS)); |
| GR_GL_CALL(interface, TexParameteri(info.fTarget, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams->fWrapT)); |
| } |
| |
| GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, |
| SkBudgeted budgeted, |
| const SkTArray<GrMipLevel>& texels) { |
| // We fail if the MSAA was requested and is not available. |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { |
| //SkDebugf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); |
| |
| GrGLTexture::IDDesc idDesc; |
| idDesc.fOwnership = GrBackendObjectOwnership::kOwned; |
| GrGLTexture::TexParams initialTexParams; |
| if (!this->createTextureImpl(desc, &idDesc.fInfo, renderTarget, &initialTexParams, texels)) { |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| if (renderTarget) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0)); |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| |
| if (!this->createRenderTargetObjects(desc, idDesc.fInfo, &rtIDDesc)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); |
| return return_null_texture(); |
| } |
| tex = new GrGLTextureRenderTarget(this, budgeted, desc, idDesc, rtIDDesc); |
| } else { |
| bool wasMipMapDataProvided = false; |
| if (texels.count() > 1) { |
| wasMipMapDataProvided = true; |
| } |
| tex = new GrGLTexture(this, budgeted, desc, idDesc, wasMipMapDataProvided); |
| } |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", |
| idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc, |
| SkBudgeted budgeted, |
| const SkTArray<GrMipLevel>& texels) { |
| // Make sure that we're not flipping Y. |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { |
| return return_null_texture(); |
| } |
| |
| GrGLTexture::IDDesc idDesc = generate_gl_texture(this->glInterface()); |
| if (!idDesc.fInfo.fID) { |
| return return_null_texture(); |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(idDesc.fInfo.fTarget, idDesc.fInfo.fID)); |
| |
| GrGLTexture::TexParams initialTexParams; |
| set_initial_texture_params(this->glInterface(), idDesc.fInfo, &initialTexParams); |
| |
| if (!this->uploadCompressedTexData(desc, idDesc.fInfo.fTarget, texels)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| tex = new GrGLTexture(this, budgeted, desc, idDesc); |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n", |
| idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| namespace { |
| |
| const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; |
| |
| void inline get_stencil_rb_sizes(const GrGLInterface* gl, |
| GrGLStencilAttachment::Format* format) { |
| |
| // we shouldn't ever know one size and not the other |
| SkASSERT((kUnknownBitCount == format->fStencilBits) == |
| (kUnknownBitCount == format->fTotalBits)); |
| if (kUnknownBitCount == format->fStencilBits) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_STENCIL_SIZE, |
| (GrGLint*)&format->fStencilBits); |
| if (format->fPacked) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_DEPTH_SIZE, |
| (GrGLint*)&format->fTotalBits); |
| format->fTotalBits += format->fStencilBits; |
| } else { |
| format->fTotalBits = format->fStencilBits; |
| } |
| } |
| } |
| } |
| |
| int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) { |
| static const int kSize = 16; |
| SkASSERT(this->caps()->isConfigRenderable(config, false)); |
| if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) { |
| // Default to unsupported, set this if we find a stencil format that works. |
| int firstWorkingStencilFormatIndex = -1; |
| // Create color texture |
| GrGLuint colorID = 0; |
| GL_CALL(GenTextures(1, &colorID)); |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| GR_GL_CLAMP_TO_EDGE)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| GR_GL_CLAMP_TO_EDGE)); |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, |
| &externalType)) { |
| return false; |
| } |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, |
| 0, |
| internalFormat, |
| kSize, |
| kSize, |
| 0, |
| externalFormat, |
| externalType, |
| NULL)); |
| if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) { |
| GL_CALL(DeleteTextures(1, &colorID)); |
| return -1; |
| } |
| |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| |
| // Create Framebuffer |
| GrGLuint fb = 0; |
| GL_CALL(GenFramebuffers(1, &fb)); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fb)); |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| colorID, |
| 0)); |
| GrGLuint sbRBID = 0; |
| GL_CALL(GenRenderbuffers(1, &sbRBID)); |
| |
| // look over formats till I find a compatible one |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| if (sbRBID) { |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); |
| for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { |
| const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| kSize, kSize)); |
| if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbRBID)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status == GR_GL_FRAMEBUFFER_COMPLETE) { |
| firstWorkingStencilFormatIndex = i; |
| break; |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbRBID)); |
| } |
| GL_CALL(DeleteTextures(1, &colorID)); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0)); |
| GL_CALL(DeleteFramebuffers(1, &fb)); |
| fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex); |
| } |
| return this->glCaps().getStencilFormatIndexForConfig(config); |
| } |
| |
| bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, |
| bool renderTarget, GrGLTexture::TexParams* initialTexParams, |
| const SkTArray<GrMipLevel>& texels) { |
| info->fID = 0; |
| info->fTarget = GR_GL_TEXTURE_2D; |
| GL_CALL(GenTextures(1, &(info->fID))); |
| |
| if (!info->fID) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(info->fTarget, info->fID)); |
| |
| if (renderTarget && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(info->fTarget, |
| GR_GL_TEXTURE_USAGE, |
| GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| if (info) { |
| set_initial_texture_params(this->glInterface(), *info, initialTexParams); |
| } |
| if (!this->uploadTexData(desc, info->fTarget, kNewTexture_UploadType, 0, 0, |
| desc.fWidth, desc.fHeight, |
| desc.fConfig, texels)) { |
| GL_CALL(DeleteTextures(1, &(info->fID))); |
| return false; |
| } |
| return true; |
| } |
| |
| GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, |
| int width, |
| int height) { |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numStencilSamples(); |
| GrGLStencilAttachment::IDDesc sbDesc; |
| |
| int sIdx = this->getCompatibleStencilIndex(rt->config()); |
| if (sIdx < 0) { |
| return nullptr; |
| } |
| |
| if (!sbDesc.fRenderbufferID) { |
| GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| } |
| if (!sbDesc.fRenderbufferID) { |
| return nullptr; |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| if (samples > 0) { |
| SkAssertResult(renderbuffer_storage_msaa(*fGLContext, |
| samples, |
| sFmt.fInternalFormat, |
| width, height)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| width, height)); |
| SkASSERT(GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); |
| } |
| fStats.incStencilAttachmentCreates(); |
| // After sized formats we attempt an unsized format and take |
| // whatever sizes GL gives us. In that case we query for the size. |
| GrGLStencilAttachment::Format format = sFmt; |
| get_stencil_rb_sizes(this->glInterface(), &format); |
| GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this, |
| sbDesc, |
| width, |
| height, |
| samples, |
| format); |
| return stencil; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer |
| // objects are implemented as client-side-arrays on tile-deferred architectures. |
| #define DYNAMIC_USAGE_PARAM GR_GL_STREAM_DRAW |
| |
| GrBuffer* GrGLGpu::onCreateBuffer(size_t size, GrBufferType intendedType, |
| GrAccessPattern accessPattern, const void* data) { |
| return GrGLBuffer::Create(this, size, intendedType, accessPattern, data); |
| } |
| |
| InstancedRendering* GrGLGpu::onCreateInstancedRendering() { |
| return new GLInstancedRendering(this); |
| } |
| |
| void GrGLGpu::flushScissor(const GrScissorState& scissorState, |
| const GrGLIRect& rtViewport, |
| GrSurfaceOrigin rtOrigin) { |
| if (scissorState.enabled()) { |
| GrGLIRect scissor; |
| scissor.setRelativeTo(rtViewport, |
| scissorState.rect().fLeft, |
| scissorState.rect().fTop, |
| scissorState.rect().width(), |
| scissorState.rect().height(), |
| rtOrigin); |
| // if the scissor fully contains the viewport then we fall through and |
| // disable the scissor test. |
| if (!scissor.contains(rtViewport)) { |
| if (fHWScissorSettings.fRect != scissor) { |
| scissor.pushToGLScissor(this->glInterface()); |
| fHWScissorSettings.fRect = scissor; |
| } |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| return; |
| } |
| } |
| |
| // See fall through note above |
| this->disableScissor(); |
| } |
| |
| void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState, |
| const GrGLRenderTarget* rt) { |
| typedef GrWindowRectsState::Mode Mode; |
| SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen. |
| SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles()); |
| |
| if (!this->caps()->maxWindowRectangles() || |
| fHWWindowRectsState.knownEqualTo(rt->origin(), rt->getViewport(), windowState)) { |
| return; |
| } |
| |
| // This is purely a workaround for a spurious warning generated by gcc. Otherwise the above |
| // assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912 |
| int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows)); |
| SkASSERT(windowState.numWindows() == numWindows); |
| |
| GrGLIRect glwindows[GrWindowRectangles::kMaxWindows]; |
| const SkIRect* skwindows = windowState.windows().data(); |
| int dx = -windowState.origin().x(), dy = -windowState.origin().y(); |
| for (int i = 0; i < numWindows; ++i) { |
| const SkIRect& skwindow = skwindows[i].makeOffset(dx, dy); |
| glwindows[i].setRelativeTo(rt->getViewport(), skwindow, rt->origin()); |
| } |
| |
| GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE; |
| GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts())); |
| |
| fHWWindowRectsState.set(rt->origin(), rt->getViewport(), windowState); |
| } |
| |
| void GrGLGpu::disableWindowRectangles() { |
| if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) { |
| return; |
| } |
| GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr)); |
| fHWWindowRectsState.setDisabled(); |
| } |
| |
| void GrGLGpu::flushMinSampleShading(float minSampleShading) { |
| if (fHWMinSampleShading != minSampleShading) { |
| if (minSampleShading > 0.0) { |
| GL_CALL(Enable(GR_GL_SAMPLE_SHADING)); |
| GL_CALL(MinSampleShading(minSampleShading)); |
| } |
| else { |
| GL_CALL(Disable(GR_GL_SAMPLE_SHADING)); |
| } |
| fHWMinSampleShading = minSampleShading; |
| } |
| } |
| |
| bool GrGLGpu::flushGLState(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc, |
| bool willDrawPoints) { |
| SkAutoTUnref<GrGLProgram> program(fProgramCache->refProgram(this, pipeline, primProc, |
| willDrawPoints)); |
| if (!program) { |
| GrCapsDebugf(this->caps(), "Failed to create program!\n"); |
| return false; |
| } |
| |
| program->generateMipmaps(primProc, pipeline); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| pipeline.getXferProcessor().getBlendInfo(&blendInfo); |
| |
| this->flushColorWrite(blendInfo.fWriteColor); |
| this->flushDrawFace(pipeline.getDrawFace()); |
| this->flushMinSampleShading(primProc.getSampleShading()); |
| |
| GrGLuint programID = program->programID(); |
| if (fHWProgramID != programID) { |
| GL_CALL(UseProgram(programID)); |
| fHWProgramID = programID; |
| } |
| |
| if (blendInfo.fWriteColor) { |
| // Swizzle the blend to match what the shader will output. |
| const GrSwizzle& swizzle = this->glCaps().glslCaps()->configOutputSwizzle( |
| pipeline.getRenderTarget()->config()); |
| this->flushBlend(blendInfo, swizzle); |
| } |
| |
| program->setData(primProc, pipeline); |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.getRenderTarget()); |
| this->flushStencil(pipeline.getStencil()); |
| this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin()); |
| this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT); |
| this->flushHWAAState(glRT, pipeline.isHWAntialiasState(), !pipeline.getStencil().isDisabled()); |
| |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(glRT, nullptr, pipeline.getDisableOutputConversionToSRGB()); |
| |
| return true; |
| } |
| |
| void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc, |
| const GrNonInstancedMesh& mesh, |
| size_t* indexOffsetInBytes) { |
| const GrBuffer* vbuf = mesh.vertexBuffer(); |
| SkASSERT(vbuf); |
| SkASSERT(!vbuf->isMapped()); |
| |
| GrGLAttribArrayState* attribState; |
| if (mesh.isIndexed()) { |
| SkASSERT(indexOffsetInBytes); |
| |
| *indexOffsetInBytes = 0; |
| const GrBuffer* ibuf = mesh.indexBuffer(); |
| SkASSERT(ibuf); |
| SkASSERT(!ibuf->isMapped()); |
| *indexOffsetInBytes += ibuf->baseOffset(); |
| attribState = fHWVertexArrayState.bindInternalVertexArray(this, ibuf); |
| } else { |
| attribState = fHWVertexArrayState.bindInternalVertexArray(this); |
| } |
| |
| int vaCount = primProc.numAttribs(); |
| if (vaCount > 0) { |
| |
| GrGLsizei stride = static_cast<GrGLsizei>(primProc.getVertexStride()); |
| |
| size_t vertexOffsetInBytes = stride * mesh.startVertex(); |
| |
| vertexOffsetInBytes += vbuf->baseOffset(); |
| |
| uint32_t usedAttribArraysMask = 0; |
| size_t offset = 0; |
| |
| for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) { |
| const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex); |
| usedAttribArraysMask |= (1 << attribIndex); |
| GrVertexAttribType attribType = attrib.fType; |
| attribState->set(this, |
| attribIndex, |
| vbuf, |
| attribType, |
| stride, |
| reinterpret_cast<GrGLvoid*>(vertexOffsetInBytes + offset)); |
| offset += attrib.fOffset; |
| } |
| attribState->disableUnusedArrays(this, usedAttribArraysMask); |
| } |
| } |
| |
| GrGLenum GrGLGpu::bindBuffer(GrBufferType type, const GrBuffer* buffer) { |
| this->handleDirtyContext(); |
| |
| // Index buffer state is tied to the vertex array. |
| if (kIndex_GrBufferType == type) { |
| this->bindVertexArray(0); |
| } |
| |
| SkASSERT(type >= 0 && type <= kLast_GrBufferType); |
| auto& bufferState = fHWBufferState[type]; |
| |
| if (buffer->uniqueID() != bufferState.fBoundBufferUniqueID) { |
| if (buffer->isCPUBacked()) { |
| if (!bufferState.fBufferZeroKnownBound) { |
| GL_CALL(BindBuffer(bufferState.fGLTarget, 0)); |
| } |
| } else { |
| const GrGLBuffer* glBuffer = static_cast<const GrGLBuffer*>(buffer); |
| GL_CALL(BindBuffer(bufferState.fGLTarget, glBuffer->bufferID())); |
| } |
| bufferState.fBufferZeroKnownBound = buffer->isCPUBacked(); |
| bufferState.fBoundBufferUniqueID = buffer->uniqueID(); |
| } |
| |
| return bufferState.fGLTarget; |
| } |
| |
| void GrGLGpu::notifyBufferReleased(const GrGLBuffer* buffer) { |
| if (buffer->hasAttachedToTexture()) { |
| // Detach this buffer from any textures to ensure the underlying memory is freed. |
| uint32_t uniqueID = buffer->uniqueID(); |
| for (int i = fHWMaxUsedBufferTextureUnit; i >= 0; --i) { |
| auto& buffTex = fHWBufferTextures[i]; |
| if (uniqueID != buffTex.fAttachedBufferUniqueID) { |
| continue; |
| } |
| if (i == fHWMaxUsedBufferTextureUnit) { |
| --fHWMaxUsedBufferTextureUnit; |
| } |
| |
| this->setTextureUnit(i); |
| if (!buffTex.fKnownBound) { |
| SkASSERT(buffTex.fTextureID); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID)); |
| buffTex.fKnownBound = true; |
| } |
| GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER, |
| this->glCaps().configSizedInternalFormat(buffTex.fTexelConfig), 0)); |
| } |
| } |
| } |
| |
| void GrGLGpu::disableScissor() { |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| return; |
| } |
| } |
| |
| void GrGLGpu::clear(const GrFixedClip& clip, GrColor color, GrRenderTarget* target) { |
| this->handleDirtyContext(); |
| |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| |
| this->flushRenderTarget(glRT, clip.scissorEnabled() ? &clip.scissorRect() : nullptr); |
| this->flushScissor(clip.scissorState(), glRT->getViewport(), glRT->origin()); |
| this->flushWindowRectangles(clip.windowRectsState(), glRT); |
| |
| GrGLfloat r, g, b, a; |
| static const GrGLfloat scale255 = 1.f / 255.f; |
| a = GrColorUnpackA(color) * scale255; |
| GrGLfloat scaleRGB = scale255; |
| r = GrColorUnpackR(color) * scaleRGB; |
| g = GrColorUnpackG(color) * scaleRGB; |
| b = GrColorUnpackB(color) * scaleRGB; |
| |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| GL_CALL(ClearColor(r, g, b, a)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| void GrGLGpu::clearStencil(GrRenderTarget* target) { |
| if (nullptr == target) { |
| return; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); |
| |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| void GrGLGpu::clearStencilClip(const GrFixedClip& clip, |
| bool insideStencilMask, |
| GrRenderTarget* target) { |
| SkASSERT(target); |
| this->handleDirtyContext(); |
| |
| GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(sb); |
| GrGLint stencilBitCount = sb->bits(); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrDrawTarget says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideStencilMask) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); |
| |
| this->flushScissor(clip.scissorState(), glRT->getViewport(), glRT->origin()); |
| this->flushWindowRectangles(clip.windowRectsState(), glRT); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps, |
| int width, int height, GrPixelConfig config, |
| size_t rowBytes) { |
| // If this render target is already TopLeft, we don't need to flip. |
| if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { |
| return false; |
| } |
| |
| // If the read is really small or smaller than the min texture size, don't force a draw. |
| static const int kMinSize = 32; |
| if (width < kMinSize || height < kMinSize) { |
| return false; |
| } |
| |
| // if GL can do the flip then we'll never pay for it. |
| if (caps.packFlipYSupport()) { |
| return false; |
| } |
| |
| // If we have to do memcpy to handle non-trim rowBytes then we |
| // get the flip for free. Otherwise it costs. |
| // Note that we're assuming that 0 rowBytes has already been handled and that the width has been |
| // clipped. |
| return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes; |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) { |
| auto bindRenderTarget = [this, target]() -> bool { |
| this->flushRenderTarget(static_cast<GrGLRenderTarget*>(target), &SkIRect::EmptyIRect()); |
| return true; |
| }; |
| auto getIntegerv = [this](GrGLenum query, GrGLint* value) { |
| GR_GL_GetIntegerv(this->glInterface(), query, value); |
| }; |
| GrPixelConfig rtConfig = target->config(); |
| return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget); |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) { |
| auto bindRenderTarget = [this, rtConfig]() -> bool { |
| GrTextureDesc desc; |
| desc.fConfig = rtConfig; |
| desc.fWidth = desc.fHeight = 16; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| SkAutoTUnref<GrTexture> temp(this->createTexture(desc, |
| SkBudgeted::kNo)); |
| if (!temp) { |
| return false; |
| } |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(temp->asRenderTarget()); |
| this->flushRenderTarget(glrt, &SkIRect::EmptyIRect()); |
| return true; |
| }; |
| auto getIntegerv = [this](GrGLenum query, GrGLint* value) { |
| GR_GL_GetIntegerv(this->glInterface(), query, value); |
| }; |
| return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget); |
| } |
| |
| bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) { |
| if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) { |
| return this->readPixelsSupported(rt, readConfig); |
| } else { |
| GrPixelConfig config = surfaceForConfig->config(); |
| return this->readPixelsSupported(config, readConfig); |
| } |
| } |
| |
| static bool requires_srgb_conversion(GrPixelConfig a, GrPixelConfig b) { |
| if (GrPixelConfigIsSRGB(a)) { |
| return !GrPixelConfigIsSRGB(b) && !GrPixelConfigIsAlphaOnly(b); |
| } else if (GrPixelConfigIsSRGB(b)) { |
| return !GrPixelConfigIsSRGB(a) && !GrPixelConfigIsAlphaOnly(a); |
| } |
| return false; |
| } |
| |
| bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes, |
| GrPixelConfig readConfig, DrawPreference* drawPreference, |
| ReadPixelTempDrawInfo* tempDrawInfo) { |
| GrPixelConfig srcConfig = srcSurface->config(); |
| |
| // These settings we will always want if a temp draw is performed. |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. |
| tempDrawInfo->fTempSurfaceFit = this->glCaps().partialFBOReadIsSlow() ? SkBackingFit::kExact |
| : SkBackingFit::kApprox; |
| // For now assume no swizzling, we may change that below. |
| tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); |
| |
| // Depends on why we need/want a temp draw. Start off assuming no change, the surface we read |
| // from will be srcConfig and we will read readConfig pixels from it. |
| // Not that if we require a draw and return a non-renderable format for the temp surface the |
| // base class will fail for us. |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fReadConfig = readConfig; |
| |
| if (requires_srgb_conversion(srcConfig, readConfig)) { |
| if (!this->readPixelsSupported(readConfig, readConfig)) { |
| return false; |
| } |
| // Draw to do srgb to linear conversion or vice versa. |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; |
| tempDrawInfo->fReadConfig = readConfig; |
| return true; |
| } |
| |
| GrRenderTarget* srcAsRT = srcSurface->asRenderTarget(); |
| if (!srcAsRT) { |
| // For now keep assuming the draw is not a format transformation, just a draw to get to a |
| // RT. We may add additional transformations below. |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig && |
| this->readPixelsSupported(kBGRA_8888_GrPixelConfig, kBGRA_8888_GrPixelConfig)) { |
| tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig; |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fReadConfig = kBGRA_8888_GrPixelConfig; |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } else if (this->glCaps().rgbaToBgraReadbackConversionsAreSlow() && |
| GrBytesPerPixel(readConfig) == 4 && |
| GrPixelConfigSwapRAndB(readConfig) == srcConfig && |
| this->readPixelsSupported(srcSurface, srcConfig)) { |
| // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. |
| // Better to do a draw with a R/B swap and then read as the original config. |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fReadConfig = srcConfig; |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } else if (!this->readPixelsSupported(srcSurface, readConfig)) { |
| if (readConfig == kBGRA_8888_GrPixelConfig && |
| this->glCaps().isConfigRenderable(kRGBA_8888_GrPixelConfig, false) && |
| this->readPixelsSupported(kRGBA_8888_GrPixelConfig, kRGBA_8888_GrPixelConfig)) { |
| // We're trying to read BGRA but it's not supported. If RGBA is renderable and |
| // we can read it back, then do a swizzling draw to a RGBA and read it back (which |
| // will effectively be BGRA). |
| tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fReadConfig = kRGBA_8888_GrPixelConfig; |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } else if (readConfig == kSBGRA_8888_GrPixelConfig && |
| this->glCaps().isConfigRenderable(kSRGBA_8888_GrPixelConfig, false) && |
| this->readPixelsSupported(kSRGBA_8888_GrPixelConfig, kSRGBA_8888_GrPixelConfig)) { |
| // We're trying to read sBGRA but it's not supported. If sRGBA is renderable and |
| // we can read it back, then do a swizzling draw to a sRGBA and read it back (which |
| // will effectively be sBGRA). |
| tempDrawInfo->fTempSurfaceDesc.fConfig = kSRGBA_8888_GrPixelConfig; |
| tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); |
| tempDrawInfo->fReadConfig = kSRGBA_8888_GrPixelConfig; |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } else if (readConfig == kAlpha_8_GrPixelConfig) { |
| // onReadPixels implements a fallback for cases where we are want to read kAlpha_8, |
| // it's unsupported, but 32bit RGBA reads are supported. |
| // Don't attempt to do any srgb conversions since we only care about alpha. |
| GrPixelConfig cpuTempConfig = kRGBA_8888_GrPixelConfig; |
| if (GrPixelConfigIsSRGB(srcSurface->config())) { |
| cpuTempConfig = kSRGBA_8888_GrPixelConfig; |
| } |
| if (!this->readPixelsSupported(srcSurface, cpuTempConfig)) { |
| // If we can't read RGBA from the src try to draw to a kRGBA_8888 (or kSRGBA_8888) |
| // first and then onReadPixels will read that to a 32bit temporary buffer. |
| if (this->caps()->isConfigRenderable(cpuTempConfig, false)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = cpuTempConfig; |
| tempDrawInfo->fReadConfig = kAlpha_8_GrPixelConfig; |
| } else { |
| return false; |
| } |
| } else { |
| SkASSERT(tempDrawInfo->fTempSurfaceDesc.fConfig == srcConfig); |
| SkASSERT(tempDrawInfo->fReadConfig == kAlpha_8_GrPixelConfig); |
| } |
| } else if (this->caps()->isConfigRenderable(readConfig, false) && |
| this->readPixelsSupported(readConfig, readConfig)) { |
| // Do a draw to convert from the src config to the read config. |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; |
| tempDrawInfo->fReadConfig = readConfig; |
| } else { |
| return false; |
| } |
| } |
| |
| if (srcAsRT && |
| read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig, rowBytes)) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onReadPixels(GrSurface* surface, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| void* buffer, |
| size_t rowBytes) { |
| SkASSERT(surface); |
| |
| GrGLRenderTarget* renderTarget = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!renderTarget) { |
| return false; |
| } |
| |
| // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (requires_srgb_conversion(surface->config(), config)) { |
| return false; |
| } |
| |
| // We have a special case fallback for reading eight bit alpha. We will read back all four 8 |
| // bit channels as RGBA and then extract A. |
| if (!this->readPixelsSupported(renderTarget, config)) { |
| // Don't attempt to do any srgb conversions since we only care about alpha. |
| GrPixelConfig tempConfig = kRGBA_8888_GrPixelConfig; |
| if (GrPixelConfigIsSRGB(renderTarget->config())) { |
| tempConfig = kSRGBA_8888_GrPixelConfig; |
| } |
| if (kAlpha_8_GrPixelConfig == config && |
| this->readPixelsSupported(renderTarget, tempConfig)) { |
| SkAutoTDeleteArray<uint32_t> temp(new uint32_t[width * height * 4]); |
| if (this->onReadPixels(renderTarget, left, top, width, height, tempConfig, temp.get(), |
| width*4)) { |
| uint8_t* dst = reinterpret_cast<uint8_t*>(buffer); |
| for (int j = 0; j < height; ++j) { |
| for (int i = 0; i < width; ++i) { |
| dst[j*rowBytes + i] = (0xFF000000U & temp[j*width+i]) >> 24; |
| } |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getReadPixelsFormat(renderTarget->config(), config, &externalFormat, |
| &externalType)) { |
| return false; |
| } |
| bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin(); |
| |
| // resolve the render target if necessary |
| switch (renderTarget->getResolveType()) { |
| case GrGLRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrGLRenderTarget::kAutoResolves_ResolveType: |
| this->flushRenderTarget(renderTarget, &SkIRect::EmptyIRect()); |
| break; |
| case GrGLRenderTarget::kCanResolve_ResolveType: |
| this->onResolveRenderTarget(renderTarget); |
| // we don't track the state of the READ FBO ID. |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID())); |
| break; |
| default: |
| SkFAIL("Unknown resolve type"); |
| } |
| |
| const GrGLIRect& glvp = renderTarget->getViewport(); |
| |
| // the read rect is viewport-relative |
| GrGLIRect readRect; |
| readRect.setRelativeTo(glvp, left, top, width, height, renderTarget->origin()); |
| |
| size_t bytesPerPixel = GrBytesPerPixel(config); |
| size_t tightRowBytes = bytesPerPixel * width; |
| |
| size_t readDstRowBytes = tightRowBytes; |
| void* readDst = buffer; |
| |
| // determine if GL can read using the passed rowBytes or if we need |
| // a scratch buffer. |
| SkAutoSMalloc<32 * sizeof(GrColor)> scratch; |
| if (rowBytes != tightRowBytes) { |
| if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, |
| static_cast<GrGLint>(rowBytes / bytesPerPixel))); |
| readDstRowBytes = rowBytes; |
| } else { |
| scratch.reset(tightRowBytes * height); |
| readDst = scratch.get(); |
| } |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); |
| } |
| GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(config))); |
| |
| GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, |
| readRect.fWidth, readRect.fHeight, |
| externalFormat, externalType, readDst)); |
| if (readDstRowBytes != tightRowBytes) { |
| SkASSERT(this->glCaps().packRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); |
| flipY = false; |
| } |
| |
| // now reverse the order of the rows, since GL's are bottom-to-top, but our |
| // API presents top-to-bottom. We must preserve the padding contents. Note |
| // that the above readPixels did not overwrite the padding. |
| if (readDst == buffer) { |
| SkASSERT(rowBytes == readDstRowBytes); |
| if (flipY) { |
| scratch.reset(tightRowBytes); |
| void* tmpRow = scratch.get(); |
| // flip y in-place by rows |
| const int halfY = height >> 1; |
| char* top = reinterpret_cast<char*>(buffer); |
| char* bottom = top + (height - 1) * rowBytes; |
| for (int y = 0; y < halfY; y++) { |
| memcpy(tmpRow, top, tightRowBytes); |
| memcpy(top, bottom, tightRowBytes); |
| memcpy(bottom, tmpRow, tightRowBytes); |
| top += rowBytes; |
| bottom -= rowBytes; |
| } |
| } |
| } else { |
| SkASSERT(readDst != buffer); |
| SkASSERT(rowBytes != tightRowBytes); |
| // copy from readDst to buffer while flipping y |
| // const int halfY = height >> 1; |
| const char* src = reinterpret_cast<const char*>(readDst); |
| char* dst = reinterpret_cast<char*>(buffer); |
| if (flipY) { |
| dst += (height-1) * rowBytes; |
| } |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, tightRowBytes); |
| src += readDstRowBytes; |
| if (!flipY) { |
| dst += rowBytes; |
| } else { |
| dst -= rowBytes; |
| } |
| } |
| } |
| return true; |
| } |
| |
| GrGpuCommandBuffer* GrGLGpu::createCommandBuffer( |
| GrRenderTarget* target, |
| const GrGpuCommandBuffer::LoadAndStoreInfo& colorInfo, |
| const GrGpuCommandBuffer::LoadAndStoreInfo& stencilInfo) { |
| return new GrGLGpuCommandBuffer(this); |
| } |
| |
| void GrGLGpu::finishDrawTarget() { |
| if (fPLSHasBeenUsed) { |
| /* There is an ARM driver bug where if we use PLS, and then draw a frame which does not |
| * use PLS, it leaves garbage all over the place. As a workaround, we use PLS in a |
| * trivial way every frame. And since we use it every frame, there's never a point at which |
| * it becomes safe to stop using this workaround once we start. |
| */ |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| // using PLS in the presence of MSAA results in GL_INVALID_OPERATION |
| this->flushHWAAState(nullptr, false, false); |
| SkASSERT(!fHWPLSEnabled); |
| SkASSERT(fMSAAEnabled != kYes_TriState); |
| GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); |
| this->stampPLSSetupRect(SkRect::MakeXYWH(-100.0f, -100.0f, 0.01f, 0.01f)); |
| GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); |
| } |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bounds, bool disableSRGB) { |
| SkASSERT(target); |
| |
| uint32_t rtID = target->uniqueID(); |
| if (fHWBoundRenderTargetUniqueID != rtID) { |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID())); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| if (kChromium_GrGLDriver != this->glContext().driver()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| } |
| #endif |
| fHWBoundRenderTargetUniqueID = rtID; |
| this->flushViewport(target->getViewport()); |
| } |
| |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(GrPixelConfigIsSRGB(target->config()) && !disableSRGB); |
| } |
| |
| this->didWriteToSurface(target, bounds); |
| } |
| |
| void GrGLGpu::flushFramebufferSRGB(bool enable) { |
| if (enable && kYes_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kYes_TriState; |
| } else if (!enable && kNo_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kNo_TriState; |
| } |
| } |
| |
| void GrGLGpu::flushViewport(const GrGLIRect& viewport) { |
| if (fHWViewport != viewport) { |
| viewport.pushToGLViewport(this->glInterface()); |
| fHWViewport = viewport; |
| } |
| } |
| |
| GrGLenum gPrimitiveType2GLMode[] = { |
| GR_GL_TRIANGLES, |
| GR_GL_TRIANGLE_STRIP, |
| GR_GL_TRIANGLE_FAN, |
| GR_GL_POINTS, |
| GR_GL_LINES, |
| GR_GL_LINE_STRIP |
| }; |
| |
| #define SWAP_PER_DRAW 0 |
| |
| #if SWAP_PER_DRAW |
| #if defined(SK_BUILD_FOR_MAC) |
| #include <AGL/agl.h> |
| #elif defined(SK_BUILD_FOR_WIN32) |
| #include <gl/GL.h> |
| void SwapBuf() { |
| DWORD procID = GetCurrentProcessId(); |
| HWND hwnd = GetTopWindow(GetDesktopWindow()); |
| while(hwnd) { |
| DWORD wndProcID = 0; |
| GetWindowThreadProcessId(hwnd, &wndProcID); |
| if(wndProcID == procID) { |
| SwapBuffers(GetDC(hwnd)); |
| } |
| hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); |
| } |
| } |
| #endif |
| #endif |
| |
| void GrGLGpu::draw(const GrPipeline& pipeline, |
| const GrPrimitiveProcessor& primProc, |
| const GrMesh meshes[], |
| int meshCount) { |
| this->handleDirtyContext(); |
| |
| bool hasPoints = false; |
| for (int i = 0; i < meshCount; ++i) { |
| if (meshes[i].primitiveType() == kPoints_GrPrimitiveType) { |
| hasPoints = true; |
| break; |
| } |
| } |
| if (!this->flushGLState(pipeline, primProc, hasPoints)) { |
| return; |
| } |
| GrPixelLocalStorageState plsState = primProc.getPixelLocalStorageState(); |
| if (!fHWPLSEnabled && plsState != |
| GrPixelLocalStorageState::kDisabled_GrPixelLocalStorageState) { |
| GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); |
| this->setupPixelLocalStorage(pipeline, primProc); |
| fHWPLSEnabled = true; |
| } |
| if (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) { |
| GrStencilSettings stencil; |
| stencil.setDisabled(); |
| this->flushStencil(stencil); |
| } |
| |
| for (int i = 0; i < meshCount; ++i) { |
| if (GrXferBarrierType barrierType = pipeline.xferBarrierType(*this->caps())) { |
| this->xferBarrier(pipeline.getRenderTarget(), barrierType); |
| } |
| |
| const GrMesh& mesh = meshes[i]; |
| GrMesh::Iterator iter; |
| const GrNonInstancedMesh* nonInstMesh = iter.init(mesh); |
| do { |
| size_t indexOffsetInBytes = 0; |
| this->setupGeometry(primProc, *nonInstMesh, &indexOffsetInBytes); |
| if (nonInstMesh->isIndexed()) { |
| GrGLvoid* indices = |
| reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + |
| sizeof(uint16_t) * nonInstMesh->startIndex()); |
| // info.startVertex() was accounted for by setupGeometry. |
| if (this->glCaps().drawRangeElementsSupport()) { |
| // We assume here that the batch that generated the mesh used the full |
| // 0..vertexCount()-1 range. |
| int start = 0; |
| int end = nonInstMesh->vertexCount() - 1; |
| GL_CALL(DrawRangeElements(gPrimitiveType2GLMode[nonInstMesh->primitiveType()], |
| start, end, |
| nonInstMesh->indexCount(), |
| GR_GL_UNSIGNED_SHORT, |
| indices)); |
| } else { |
| GL_CALL(DrawElements(gPrimitiveType2GLMode[nonInstMesh->primitiveType()], |
| nonInstMesh->indexCount(), |
| GR_GL_UNSIGNED_SHORT, |
| indices)); |
| } |
| } else { |
| // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account |
| // for startVertex in the DrawElements case. So we always rely on setupGeometry to |
| // have accounted for startVertex. |
| GL_CALL(DrawArrays(gPrimitiveType2GLMode[nonInstMesh->primitiveType()], 0, |
| nonInstMesh->vertexCount())); |
| } |
| fStats.incNumDraws(); |
| } while ((nonInstMesh = iter.next())); |
| } |
| |
| if (fHWPLSEnabled && plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) { |
| // PLS draws always involve multiple draws, finishing up with a non-PLS |
| // draw that writes to the color buffer. That draw ends up here; we wait |
| // until after it is complete to actually disable PLS. |
| GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); |
| fHWPLSEnabled = false; |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| } |
| |
| #if SWAP_PER_DRAW |
| glFlush(); |
| #if defined(SK_BUILD_FOR_MAC) |
| aglSwapBuffers(aglGetCurrentContext()); |
| int set_a_break_pt_here = 9; |
| aglSwapBuffers(aglGetCurrentContext()); |
| #elif defined(SK_BUILD_FOR_WIN32) |
| SwapBuf(); |
| int set_a_break_pt_here = 9; |
| SwapBuf(); |
| #endif |
| #endif |
| } |
| |
| void GrGLGpu::stampPLSSetupRect(const SkRect& bounds) { |
| SkASSERT(this->glCaps().glslCaps()->plsPathRenderingSupport()); |
| |
| if (!fPLSSetupProgram.fProgram) { |
| if (!this->createPLSSetupProgram()) { |
| SkDebugf("Failed to create PLS setup program.\n"); |
| return; |
| } |
| } |
| |
| GL_CALL(UseProgram(fPLSSetupProgram.fProgram)); |
| this->fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = this->fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->set(this, 0, fPLSSetupProgram.fArrayBuffer, kVec2f_GrVertexAttribType, |
| 2 * sizeof(GrGLfloat), 0); |
| attribs->disableUnusedArrays(this, 0x1); |
| |
| GL_CALL(Uniform4f(fPLSSetupProgram.fPosXformUniform, bounds.width(), bounds.height(), |
| bounds.left(), bounds.top())); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle()); |
| this->flushColorWrite(true); |
| this->flushDrawFace(GrDrawFace::kBoth); |
| if (!fHWStencilSettings.isDisabled()) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| } |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| GL_CALL(UseProgram(fHWProgramID)); |
| if (!fHWStencilSettings.isDisabled()) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| } |
| } |
| |
| void GrGLGpu::setupPixelLocalStorage(const GrPipeline& pipeline, |
| const GrPrimitiveProcessor& primProc) { |
| fPLSHasBeenUsed = true; |
| const SkRect& bounds = |
| static_cast<const GrPLSGeometryProcessor&>(primProc).getBounds(); |
| // setup pixel local storage -- this means capturing and storing the current framebuffer color |
| // and initializing the winding counts to zero |
| GrRenderTarget* rt = pipeline.getRenderTarget(); |
| SkScalar width = SkIntToScalar(rt->width()); |
| SkScalar height = SkIntToScalar(rt->height()); |
| // dst rect edges in NDC (-1 to 1) |
| // having some issues with rounding, just expand the bounds by 1 and trust the scissor to keep |
| // it contained properly |
| GrGLfloat dx0 = 2.0f * (bounds.left() - 1) / width - 1.0f; |
| GrGLfloat dx1 = 2.0f * (bounds.right() + 1) / width - 1.0f; |
| GrGLfloat dy0 = -2.0f * (bounds.top() - 1) / height + 1.0f; |
| GrGLfloat dy1 = -2.0f * (bounds.bottom() + 1) / height + 1.0f; |
| SkRect deviceBounds = SkRect::MakeXYWH(dx0, dy0, dx1 - dx0, dy1 - dy0); |
| |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); |
| this->stampPLSSetupRect(deviceBounds); |
| } |
| |
| void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| if (rt->needsResolve()) { |
| // Some extensions automatically resolves the texture when it is read. |
| if (this->glCaps().usesMSAARenderBuffers()) { |
| SkASSERT(rt->textureFBOID() != rt->renderFBOID()); |
| fStats.incRenderTargetBinds(); |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); |
| GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| const GrGLIRect& vp = rt->getViewport(); |
| const SkIRect dirtyRect = rt->getResolveRect(); |
| |
| if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| GrScissorState scissorState; |
| scissorState.set(dirtyRect); |
| this->flushScissor(scissorState, vp, rt->origin()); |
| this->disableWindowRectangles(); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| GrGLIRect r; |
| r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, |
| dirtyRect.width(), dirtyRect.height(), target->origin()); |
| |
| int right = r.fLeft + r.fWidth; |
| int top = r.fBottom + r.fHeight; |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, |
| r.fLeft, r.fBottom, right, top, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| rt->flagAsResolved(); |
| } |
| } |
| |
| namespace { |
| |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[kGrStencilOpCount] = { |
| GR_GL_KEEP, // kKeep |
| GR_GL_ZERO, // kZero |
| GR_GL_REPLACE, // kReplace |
| GR_GL_INVERT, // kInvert |
| GR_GL_INCR_WRAP, // kIncWrap |
| GR_GL_DECR_WRAP, // kDecWrap |
| GR_GL_INCR, // kIncClamp |
| GR_GL_DECR, // kDecClamp |
| }; |
| GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep); |
| GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero); |
| GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace); |
| GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert); |
| GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap); |
| GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap); |
| GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp); |
| GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp); |
| SkASSERT(op < (GrStencilOp)kGrStencilOpCount); |
| return gTable[(int)op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings::Face& face, |
| GrGLenum glFace) { |
| GrGLenum glFunc = GrToGLStencilFunc(face.fTest); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp); |
| |
| GrGLint ref = face.fRef; |
| GrGLint mask = face.fTestMask; |
| GrGLint writeMask = face.fWriteMask; |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); |
| } |
| } |
| } |
| |
| void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { |
| if (fHWStencilSettings != stencilSettings) { |
| if (stencilSettings.isDisabled()) { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| } |
| if (!stencilSettings.isDisabled()) { |
| if (stencilSettings.isTwoSided()) { |
| SkASSERT(this->caps()->twoSidedStencilSupport()); |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.front(), |
| GR_GL_FRONT); |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.back(), |
| GR_GL_BACK); |
| } else { |
| set_gl_stencil(this->glInterface(), |
| stencilSettings.front(), |
| GR_GL_FRONT_AND_BACK); |
| } |
| } |
| fHWStencilSettings = stencilSettings; |
| } |
| } |
| |
| void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled) { |
| // rt is only optional if useHWAA is false. |
| SkASSERT(rt || !useHWAA); |
| SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); |
| |
| if (this->caps()->multisampleDisableSupport()) { |
| if (useHWAA) { |
| if (kYes_TriState != fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| |
| if (0 != this->caps()->maxRasterSamples()) { |
| if (useHWAA && rt->isMixedSampled() && !stencilEnabled) { |
| // Since stencil is disabled and we want more samples than are in the color buffer, we |
| // need to tell the rasterizer explicitly how many to run. |
| if (kYes_TriState != fHWRasterMultisampleEnabled) { |
| GL_CALL(Enable(GR_GL_RASTER_MULTISAMPLE)); |
| fHWRasterMultisampleEnabled = kYes_TriState; |
| } |
| if (rt->numStencilSamples() != fHWNumRasterSamples) { |
| SkASSERT(rt->numStencilSamples() <= this->caps()->maxRasterSamples()); |
| GL_CALL(RasterSamples(rt->numStencilSamples(), GR_GL_TRUE)); |
| fHWNumRasterSamples = rt->numStencilSamples(); |
| } |
| } else { |
| if (kNo_TriState != fHWRasterMultisampleEnabled) { |
| GL_CALL(Disable(GR_GL_RASTER_MULTISAMPLE)); |
| fHWRasterMultisampleEnabled = kNo_TriState; |
| } |
| } |
| } else { |
| SkASSERT(!useHWAA || !rt->isMixedSampled() || stencilEnabled); |
| } |
| } |
| |
| void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) { |
| // Any optimization to disable blending should have already been applied and |
| // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). |
| |
| GrBlendEquation equation = blendInfo.fEquation; |
| GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| GrBlendCoeff dstCoeff = blendInfo.fDstBlend; |
| bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && |
| kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| |
| // Workaround for the ARM KHR_blend_equation_advanced blacklist issue |
| // https://code.google.com/p/skia/issues/detail?id=3943 |
| if (kARM_GrGLVendor == this->ctxInfo().vendor() && |
| GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Set to any basic blending equation. |
| GrBlendEquation blend_equation = kAdd_GrBlendEquation; |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); |
| fHWBlendState.fEquation = blend_equation; |
| } |
| |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| return; |
| } |
| |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| |
| if (fHWBlendState.fEquation != equation) { |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); |
| fHWBlendState.fEquation = equation; |
| } |
| |
| if (GrBlendEquationIsAdvanced(equation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Advanced equations have no other blend state. |
| return; |
| } |
| |
| if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| |
| if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) { |
| GrColor blendConst = blendInfo.fBlendConstant; |
| blendConst = swizzle.applyTo(blendConst); |
| if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(blendConst, c); |
| GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| } |
| |
| static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { |
| static const GrGLenum gWrapModes[] = { |
| GR_GL_CLAMP_TO_EDGE, |
| GR_GL_REPEAT, |
| GR_GL_MIRRORED_REPEAT |
| }; |
| GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); |
| GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); |
| GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); |
| GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); |
| return gWrapModes[tm]; |
| } |
| |
| static GrGLenum get_component_enum_from_char(char component) { |
| switch (component) { |
| case 'r': |
| return GR_GL_RED; |
| case 'g': |
| return GR_GL_GREEN; |
| case 'b': |
| return GR_GL_BLUE; |
| case 'a': |
| return GR_GL_ALPHA; |
| default: |
| SkFAIL("Unsupported component"); |
| return 0; |
| } |
| } |
| |
| /** If texture swizzling is available using tex parameters then it is preferred over mangling |
| the generated shader code. This potentially allows greater reuse of cached shaders. */ |
| static void get_tex_param_swizzle(GrPixelConfig config, |
| const GrGLCaps& caps, |
| GrGLenum* glSwizzle) { |
| const GrSwizzle& swizzle = caps.configSwizzle(config); |
| for (int i = 0; i < 4; ++i) { |
| glSwizzle[i] = get_component_enum_from_char(swizzle.c_str()[i]); |
| } |
| } |
| |
| void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, bool allowSRGBInputs, |
| GrGLTexture* texture) { |
| SkASSERT(texture); |
| |
| #ifdef SK_DEBUG |
| if (!this->caps()->npotTextureTileSupport()) { |
| const bool tileX = SkShader::kClamp_TileMode != params.getTileModeX(); |
| const bool tileY = SkShader::kClamp_TileMode != params.getTileModeY(); |
| if (tileX || tileY) { |
| const int w = texture->width(); |
| const int h = texture->height(); |
| SkASSERT(SkIsPow2(w) && SkIsPow2(h)); |
| } |
| } |
| #endif |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. So keep this |
| // out of the "last != next" check. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| uint32_t textureID = texture->uniqueID(); |
| GrGLenum target = texture->target(); |
| if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(target, texture->textureID())); |
| fHWBoundTextureUniqueIDs[unitIdx] = textureID; |
| } |
| |
| ResetTimestamp timestamp; |
| const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); |
| bool setAll = timestamp < this->getResetTimestamp(); |
| GrGLTexture::TexParams newTexParams; |
| |
| static GrGLenum glMinFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR_MIPMAP_LINEAR |
| }; |
| static GrGLenum glMagFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR |
| }; |
| GrTextureParams::FilterMode filterMode = params.filterMode(); |
| |
| if (GrTextureParams::kMipMap_FilterMode == filterMode) { |
| if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) { |
| filterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| } |
| |
| newTexParams.fMinFilter = glMinFilterModes[filterMode]; |
| newTexParams.fMagFilter = glMagFilterModes[filterMode]; |
| |
| if (GrPixelConfigIsSRGB(texture->config())) { |
| newTexParams.fSRGBDecode = allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT; |
| if (setAll || newTexParams.fSRGBDecode != oldTexParams.fSRGBDecode) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, newTexParams.fSRGBDecode)); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| // We were supposed to ensure MipMaps were up-to-date and built correctly before getting here. |
| if (GrTextureParams::kMipMap_FilterMode == filterMode) { |
| SkASSERT(!texture->texturePriv().mipMapsAreDirty()); |
| if (GrPixelConfigIsSRGB(texture->config())) { |
| SkSourceGammaTreatment gammaTreatment = allowSRGBInputs ? |
| SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore; |
| SkASSERT(texture->texturePriv().gammaTreatment() == gammaTreatment); |
| } |
| } |
| #endif |
| |
| newTexParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel(); |
| |
| newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); |
| newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); |
| get_tex_param_swizzle(texture->config(), this->glCaps(), newTexParams.fSwizzleRGBA); |
| if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter)); |
| } |
| if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter)); |
| } |
| if (setAll || newTexParams.fMaxMipMapLevel != oldTexParams.fMaxMipMapLevel) { |
| // These are not supported in ES2 contexts |
| if (this->glCaps().mipMapLevelAndLodControlSupport()) { |
| if (newTexParams.fMaxMipMapLevel != 0) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_LOD, 0)); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, 0)); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LOD, |
| newTexParams.fMaxMipMapLevel)); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL, |
| newTexParams.fMaxMipMapLevel)); |
| } |
| } |
| } |
| if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); |
| } |
| if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); |
| } |
| if (this->glCaps().textureSwizzleSupport() && |
| (setAll || memcmp(newTexParams.fSwizzleRGBA, |
| oldTexParams.fSwizzleRGBA, |
| sizeof(newTexParams.fSwizzleRGBA)))) { |
| this->setTextureSwizzle(unitIdx, target, newTexParams.fSwizzleRGBA); |
| } |
| texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); |
| } |
| |
| void GrGLGpu::bindTexelBuffer(int unitIdx, GrPixelConfig texelConfig, GrGLBuffer* buffer) { |
| SkASSERT(this->glCaps().canUseConfigWithTexelBuffer(texelConfig)); |
| SkASSERT(unitIdx >= 0 && unitIdx < fHWBufferTextures.count()); |
| |
| BufferTexture& buffTex = fHWBufferTextures[unitIdx]; |
| |
| if (!buffTex.fKnownBound) { |
| if (!buffTex.fTextureID) { |
| GL_CALL(GenTextures(1, &buffTex.fTextureID)); |
| if (!buffTex.fTextureID) { |
| return; |
| } |
| } |
| |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID)); |
| |
| buffTex.fKnownBound = true; |
| } |
| |
| if (buffer->uniqueID() != buffTex.fAttachedBufferUniqueID || |
| buffTex.fTexelConfig != texelConfig) { |
| |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER, |
| this->glCaps().configSizedInternalFormat(texelConfig), |
| buffer->bufferID())); |
| |
| buffTex.fTexelConfig = texelConfig; |
| buffTex.fAttachedBufferUniqueID = buffer->uniqueID(); |
| |
| if (this->glCaps().textureSwizzleSupport() && |
| this->glCaps().configSwizzle(texelConfig) != buffTex.fSwizzle) { |
| GrGLenum glSwizzle[4]; |
| get_tex_param_swizzle(texelConfig, this->glCaps(), glSwizzle); |
| this->setTextureSwizzle(unitIdx, GR_GL_TEXTURE_BUFFER, glSwizzle); |
| buffTex.fSwizzle = this->glCaps().configSwizzle(texelConfig); |
| } |
| |
| buffer->setHasAttachedToTexture(); |
| fHWMaxUsedBufferTextureUnit = SkTMax(unitIdx, fHWMaxUsedBufferTextureUnit); |
| } |
| } |
| |
| void GrGLGpu::generateMipmaps(const GrTextureParams& params, bool allowSRGBInputs, |
| GrGLTexture* texture) { |
| SkASSERT(texture); |
| |
| // First, figure out if we need mips for this texture at all: |
| GrTextureParams::FilterMode filterMode = params.filterMode(); |
| |
| if (GrTextureParams::kMipMap_FilterMode == filterMode) { |
| if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) { |
| filterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| } |
| |
| if (GrTextureParams::kMipMap_FilterMode != filterMode) { |
| return; |
| } |
| |
| // If this is an sRGB texture and the mips were previously built the "other" way |
| // (gamma-correct vs. not), then we need to rebuild them. We don't need to check for |
| // srgbSupport - we'll *never* get an sRGB pixel config if we don't support it. |
| SkSourceGammaTreatment gammaTreatment = allowSRGBInputs |
| ? SkSourceGammaTreatment::kRespect : SkSourceGammaTreatment::kIgnore; |
| if (GrPixelConfigIsSRGB(texture->config()) && |
| gammaTreatment != texture->texturePriv().gammaTreatment()) { |
| texture->texturePriv().dirtyMipMaps(true); |
| } |
| |
| // If the mips aren't dirty, we're done: |
| if (!texture->texturePriv().mipMapsAreDirty()) { |
| return; |
| } |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| GrGLenum target = texture->target(); |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(target, texture->textureID())); |
| |
| // Configure sRGB decode, if necessary. This state is the only thing needed for the driver |
| // call (glGenerateMipmap) to work correctly. Our manual method dirties other state, too. |
| if (GrPixelConfigIsSRGB(texture->config())) { |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, |
| allowSRGBInputs ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT)); |
| } |
| |
| // Either do manual mipmap generation or (if that fails), just rely on the driver: |
| if (!this->generateMipmap(texture, allowSRGBInputs)) { |
| GL_CALL(GenerateMipmap(target)); |
| } |
| |
| texture->texturePriv().dirtyMipMaps(false); |
| texture->texturePriv().setMaxMipMapLevel(SkMipMap::ComputeLevelCount( |
| texture->width(), texture->height())); |
| texture->texturePriv().setGammaTreatment(gammaTreatment); |
| |
| // We have potentially set lots of state on the texture. Easiest to dirty it all: |
| texture->textureParamsModified(); |
| } |
| |
| void GrGLGpu::setTextureSwizzle(int unitIdx, GrGLenum target, const GrGLenum swizzle[]) { |
| this->setTextureUnit(unitIdx); |
| if (this->glStandard() == kGLES_GrGLStandard) { |
| // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); |
| GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); |
| } else { |
| GR_STATIC_ASSERT(sizeof(swizzle[0]) == sizeof(GrGLint)); |
| GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA, |
| reinterpret_cast<const GrGLint*>(swizzle))); |
| } |
| } |
| |
| void GrGLGpu::flushColorWrite(bool writeColor) { |
| if (!writeColor) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushDrawFace(GrDrawFace face) { |
| if (fHWDrawFace != face) { |
| switch (face) { |
| case GrDrawFace::kCCW: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_BACK)); |
| break; |
| case GrDrawFace::kCW: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_FRONT)); |
| break; |
| case GrDrawFace::kBoth: |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| break; |
| default: |
| SkFAIL("Unknown draw face."); |
| } |
| fHWDrawFace = face; |
| } |
| } |
| |
| void GrGLGpu::setTextureUnit(int unit) { |
| SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count()); |
| if (unit != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGLGpu::setScratchTextureUnit() { |
| // Bind the last texture unit since it is the least likely to be used by GrGLProgram. |
| int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1; |
| if (lastUnitIdx != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); |
| fHWActiveTextureUnitIdx = lastUnitIdx; |
| } |
| // clear out the this field so that if a program does use this unit it will rebind the correct |
| // texture. |
| fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID; |
| } |
| |
| // Determines whether glBlitFramebuffer could be used between src and dst. |
| static inline bool can_blit_framebuffer(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGLGpu* gpu) { |
| if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && |
| gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0)) { |
| switch (gpu->glCaps().blitFramebufferSupport()) { |
| case GrGLCaps::kNone_BlitFramebufferSupport: |
| return false; |
| case GrGLCaps::kNoScalingNoMirroring_BlitFramebufferSupport: |
| // Our copy surface doesn't support scaling so just check for mirroring. |
| if (dst->origin() != src->origin()) { |
| return false; |
| } |
| break; |
| case GrGLCaps::kFull_BlitFramebufferSupport: |
| break; |
| } |
| // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match |
| // or the rects are not the same (not just the same size but have the same edges). |
| if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && |
| (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { |
| return false; |
| } |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| if (dstTex && dstTex->target() != GR_GL_TEXTURE_2D) { |
| return false; |
| } |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| if (srcTex && srcTex->target() != GR_GL_TEXTURE_2D) { |
| return false; |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| static inline bool can_copy_texsubimage(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGLGpu* gpu) { |
| // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage |
| // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps |
| // many drivers would allow it to work, but ANGLE does not. |
| if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && |
| (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { |
| return false; |
| } |
| const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); |
| // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) |
| // then we don't want to copy to the texture but to the MSAA buffer. |
| if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { |
| return false; |
| } |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| // If the src is multisampled (and uses an extension where there is a separate MSAA |
| // renderbuffer) then it is an invalid operation to call CopyTexSubImage |
| if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| return false; |
| } |
| |
| const GrGLTexture* dstTex = static_cast<const GrGLTexture*>(dst->asTexture()); |
| // CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a |
| // texture. |
| if (!dstTex) { |
| return false; |
| } |
| |
| const GrGLTexture* srcTex = static_cast<const GrGLTexture*>(src->asTexture()); |
| |
| // Check that we could wrap the source in an FBO, that the dst is TEXTURE_2D, that no mirroring |
| // is required. |
| if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && |
| !GrPixelConfigIsCompressed(src->config()) && |
| (!srcTex || srcTex->target() == GR_GL_TEXTURE_2D) && |
| dstTex->target() == GR_GL_TEXTURE_2D && |
| dst->origin() == src->origin()) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is |
| // relative to is output. |
| void GrGLGpu::bindSurfaceFBOForCopy(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, |
| TempFBOTarget tempFBOTarget) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!rt) { |
| SkASSERT(surface->asTexture()); |
| GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID(); |
| GrGLenum target = static_cast<GrGLTexture*>(surface->asTexture())->target(); |
| GrGLuint* tempFBOID; |
| tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; |
| |
| if (0 == *tempFBOID) { |
| GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); |
| } |
| |
| fStats.incRenderTargetBinds(); |
| GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID)); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| target, |
| texID, |
| 0)); |
| viewport->fLeft = 0; |
| viewport->fBottom = 0; |
| viewport->fWidth = surface->width(); |
| viewport->fHeight = surface->height(); |
| } else { |
| fStats.incRenderTargetBinds(); |
| GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID())); |
| *viewport = rt->getViewport(); |
| } |
| } |
| |
| void GrGLGpu::unbindTextureFBOForCopy(GrGLenum fboTarget, GrSurface* surface) { |
| // bindSurfaceFBOForCopy temporarily binds textures that are not render targets to |
| if (!surface->asRenderTarget()) { |
| SkASSERT(surface->asTexture()); |
| GrGLenum textureTarget = static_cast<GrGLTexture*>(surface->asTexture())->target(); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| textureTarget, |
| 0, |
| 0)); |
| } |
| } |
| |
| bool GrGLGpu::initDescForDstCopy(const GrRenderTarget* src, GrSurfaceDesc* desc) const { |
| // If the src is a texture, we can implement the blit as a draw assuming the config is |
| // renderable. |
| if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) { |
| desc->fOrigin = kDefault_GrSurfaceOrigin; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = src->config(); |
| return true; |
| } |
| |
| const GrGLTexture* srcTexture = static_cast<const GrGLTexture*>(src->asTexture()); |
| if (srcTexture && srcTexture->target() != GR_GL_TEXTURE_2D) { |
| // Not supported for FBO blit or CopyTexSubImage |
| return false; |
| } |
| |
| // We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are |
| // possible and we return false to fallback to creating a render target dst for render-to- |
| // texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo |
| // creation. It isn't clear that avoiding temporary fbo creation is actually optimal. |
| |
| GrSurfaceOrigin originForBlitFramebuffer = kDefault_GrSurfaceOrigin; |
| if (this->glCaps().blitFramebufferSupport() == |
| GrGLCaps::kNoScalingNoMirroring_BlitFramebufferSupport) { |
| originForBlitFramebuffer = src->origin(); |
| } |
| |
| // Check for format issues with glCopyTexSubImage2D |
| if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && |
| kBGRA_8888_GrPixelConfig == src->config()) { |
| // glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit |
| // then we set up for that, otherwise fail. |
| if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) { |
| desc->fOrigin = originForBlitFramebuffer; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = kBGRA_8888_GrPixelConfig; |
| return true; |
| } |
| return false; |
| } |
| |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src); |
| if (srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or |
| // fail. |
| if (this->caps()->isConfigRenderable(src->config(), false)) { |
| desc->fOrigin = originForBlitFramebuffer; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = src->config(); |
| return true; |
| } |
| return false; |
| } |
| |
| // We'll do a CopyTexSubImage. Make the dst a plain old texture. |
| desc->fConfig = src->config(); |
| desc->fOrigin = src->origin(); |
| desc->fFlags = kNone_GrSurfaceFlags; |
| return true; |
| } |
| |
| bool GrGLGpu::onCopySurface(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| // None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the |
| // swizzle. |
| if (this->glCaps().glslCaps()->configOutputSwizzle(src->config()) != |
| this->glCaps().glslCaps()->configOutputSwizzle(dst->config())) { |
| return false; |
| } |
| // Don't prefer copying as a draw if the dst doesn't already have a FBO object. |
| bool preferCopy = SkToBool(dst->asRenderTarget()); |
| if (preferCopy && src->asTexture()) { |
| if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| if (can_copy_texsubimage(dst, src, this)) { |
| this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_blit_framebuffer(dst, src, this)) { |
| return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint); |
| } |
| |
| if (!preferCopy && src->asTexture()) { |
| if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool GrGLGpu::createCopyProgram(int progIdx) { |
| const GrGLSLCaps* glslCaps = this->glCaps().glslCaps(); |
| static const GrSLType kSamplerTypes[3] = { kTexture2DSampler_GrSLType, |
| kTextureExternalSampler_GrSLType, |
| kTexture2DRectSampler_GrSLType }; |
| if (kTextureExternalSampler_GrSLType == kSamplerTypes[progIdx] && |
| !this->glCaps().glslCaps()->externalTextureSupport()) { |
| return false; |
| } |
| if (kTexture2DRectSampler_GrSLType == kSamplerTypes[progIdx] && |
| !this->glCaps().rectangleTextureSupport()) { |
| return false; |
| } |
| |
| if (!fCopyProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fCopyProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| } |
| if (!fCopyProgramArrayBuffer) { |
| return false; |
| } |
| |
| SkASSERT(!fCopyPrograms[progIdx].fProgram); |
| GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fCopyPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| const char* version = glslCaps->versionDeclString(); |
| GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); |
| GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uTexture("u_texture", kSamplerTypes[progIdx], |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, |
| GrShaderVar::kVaryingOut_TypeModifier); |
| GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, |
| GrShaderVar::kOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoord.addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uPosXform.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| vTexCoord.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| |
| vshaderTxt.append( |
| "// Copy Program VS\n" |
| "void main() {" |
| " v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;" |
| " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" |
| " gl_Position.zw = vec2(0, 1);" |
| "}" |
| ); |
| |
| SkString fshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| if (kSamplerTypes[progIdx] == kTextureExternalSampler_GrSLType) { |
| fshaderTxt.appendf("#extension %s : require\n", |
| glslCaps->externalTextureExtensionString()); |
| } |
| GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, |
| &fshaderTxt); |
| vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); |
| vTexCoord.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| uTexture.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| const char* fsOutName; |
| if (glslCaps->mustDeclareFragmentShaderOutput()) { |
| oFragColor.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fsOutName = oFragColor.c_str(); |
| } else { |
| fsOutName = "gl_FragColor"; |
| } |
| fshaderTxt.appendf( |
| "// Copy Program FS\n" |
| "void main() {" |
| " %s = %s(u_texture, v_texCoord);" |
| "}", |
| fsOutName, |
| GrGLSLTexture2DFunctionName(kVec2f_GrSLType, kSamplerTypes[progIdx], this->glslGeneration()) |
| ); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, &str, &length, 1, |
| &fStats); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, &str, &length, 1, |
| &fStats); |
| |
| GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform")); |
| GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::createMipmapProgram(int progIdx) { |
| const bool oddWidth = SkToBool(progIdx & 0x2); |
| const bool oddHeight = SkToBool(progIdx & 0x1); |
| const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1); |
| |
| const GrGLSLCaps* glslCaps = this->glCaps().glslCaps(); |
| |
| SkASSERT(!fMipmapPrograms[progIdx].fProgram); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram()); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| return false; |
| } |
| |
| const char* version = glslCaps->versionDeclString(); |
| GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); |
| GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| // We need 1, 2, or 4 texture coordinates (depending on parity of each dimension): |
| GrGLSLShaderVar vTexCoords[] = { |
| GrGLSLShaderVar("v_texCoord0", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier), |
| GrGLSLShaderVar("v_texCoord1", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier), |
| GrGLSLShaderVar("v_texCoord2", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier), |
| GrGLSLShaderVar("v_texCoord3", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier), |
| }; |
| GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, |
| GrShaderVar::kOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| vshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| vTexCoords[0].addModifier("noperspective"); |
| vTexCoords[1].addModifier("noperspective"); |
| vTexCoords[2].addModifier("noperspective"); |
| vTexCoords[3].addModifier("noperspective"); |
| } |
| |
| aVertex.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].appendDecl(glslCaps, &vshaderTxt); |
| vshaderTxt.append(";"); |
| } |
| |
| vshaderTxt.append( |
| "// Mipmap Program VS\n" |
| "void main() {" |
| " gl_Position.xy = a_vertex * vec2(2, 2) - vec2(1, 1);" |
| " gl_Position.zw = vec2(0, 1);" |
| ); |
| |
| // Insert texture coordinate computation: |
| if (oddWidth && oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;" |
| " v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + vec2(u_texCoordXform.x, 0);" |
| " v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + vec2(0, u_texCoordXform.z);" |
| " v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;" |
| ); |
| } else if (oddWidth) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * vec2(u_texCoordXform.y, 1);" |
| " v_texCoord1 = a_vertex.xy * vec2(u_texCoordXform.y, 1) + vec2(u_texCoordXform.x, 0);" |
| ); |
| } else if (oddHeight) { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy * vec2(1, u_texCoordXform.w);" |
| " v_texCoord1 = a_vertex.xy * vec2(1, u_texCoordXform.w) + vec2(0, u_texCoordXform.z);" |
| ); |
| } else { |
| vshaderTxt.append( |
| " v_texCoord0 = a_vertex.xy;" |
| ); |
| } |
| |
| vshaderTxt.append("}"); |
| |
| SkString fshaderTxt(version); |
| if (glslCaps->noperspectiveInterpolationSupport()) { |
| if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { |
| fshaderTxt.appendf("#extension %s : require\n", extension); |
| } |
| } |
| GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, |
| &fshaderTxt); |
| for (int i = 0; i < numTaps; ++i) { |
| vTexCoords[i].setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); |
| vTexCoords[i].appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| } |
| uTexture.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| const char* fsOutName; |
| if (glslCaps->mustDeclareFragmentShaderOutput()) { |
| oFragColor.appendDecl(glslCaps, &fshaderTxt); |
| fshaderTxt.append(";"); |
| fsOutName = oFragColor.c_str(); |
| } else { |
| fsOutName = "gl_FragColor"; |
| } |
| const char* sampleFunction = GrGLSLTexture2DFunctionName(kVec2f_GrSLType, |
| kTexture2DSampler_GrSLType, |
| this->glslGeneration()); |
| fshaderTxt.append( |
| "// Mipmap Program FS\n" |
| "void main() {" |
| ); |
| |
| if (oddWidth && oddHeight) { |
| fshaderTxt.appendf( |
| " %s = (%s(u_texture, v_texCoord0) + %s(u_texture, v_texCoord1) + " |
| " %s(u_texture, v_texCoord2) + %s(u_texture, v_texCoord3)) * 0.25;", |
| fsOutName, sampleFunction, sampleFunction, sampleFunction, sampleFunction |
| ); |
| } else if (oddWidth || oddHeight) { |
| fshaderTxt.appendf( |
| " %s = (%s(u_texture, v_texCoord0) + %s(u_texture, v_texCoord1)) * 0.5;", |
| fsOutName, sampleFunction, sampleFunction |
| ); |
| } else { |
| fshaderTxt.appendf( |
| " %s = %s(u_texture, v_texCoord0);", |
| fsOutName, sampleFunction |
| ); |
| } |
| |
| fshaderTxt.append("}"); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_VERTEX_SHADER, &str, &length, 1, |
| &fStats); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, |
| GR_GL_FRAGMENT_SHADER, &str, &length, 1, |
| &fStats); |
| |
| GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram)); |
| |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture")); |
| GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| bool GrGLGpu::createWireRectProgram() { |
| if (!fWireRectArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 1, |
| 1, 0 |
| }; |
| fWireRectArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| if (!fWireRectArrayBuffer) { |
| return false; |
| } |
| } |
| |
| SkASSERT(!fWireRectProgram.fProgram); |
| GL_CALL_RET(fWireRectProgram.fProgram, CreateProgram()); |
| if (!fWireRectProgram.fProgram) { |
| return false; |
| } |
| |
| GrGLSLShaderVar uColor("u_color", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar uRect("u_rect", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); |
| const char* version = this->glCaps().glslCaps()->versionDeclString(); |
| |
| // The rect uniform specifies the rectangle in NDC space as a vec4 (left,top,right,bottom). The |
| // program is used with a vbo containing the unit square. Vertices are computed from the rect |
| // uniform using the 4 vbo vertices. |
| SkString vshaderTxt(version); |
| aVertex.appendDecl(this->glCaps().glslCaps(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| uRect.appendDecl(this->glCaps().glslCaps(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| vshaderTxt.append( |
| "// Wire Rect Program VS\n" |
| "void main() {" |
| " gl_Position.x = u_rect.x + a_vertex.x * (u_rect.z - u_rect.x);" |
| " gl_Position.y = u_rect.y + a_vertex.y * (u_rect.w - u_rect.y);" |
| " gl_Position.zw = vec2(0, 1);" |
| "}" |
| ); |
| |
| GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier); |
| |
| SkString fshaderTxt(version); |
| GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, |
| *this->glCaps().glslCaps(), |
| &fshaderTxt); |
| uColor.appendDecl(this->glCaps().glslCaps(), &fshaderTxt); |
| fshaderTxt.append(";"); |
| const char* fsOutName; |
| if (this->glCaps().glslCaps()->mustDeclareFragmentShaderOutput()) { |
| oFragColor.appendDecl(this->glCaps().glslCaps(), &fshaderTxt); |
| fshaderTxt.append(";"); |
| fsOutName = oFragColor.c_str(); |
| } else { |
| fsOutName = "gl_FragColor"; |
| } |
| fshaderTxt.appendf( |
| "// Write Rect Program FS\n" |
| "void main() {" |
| " %s = %s;" |
| "}", |
| fsOutName, |
| uColor.c_str() |
| ); |
| |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram, |
| GR_GL_VERTEX_SHADER, &str, &length, 1, |
| &fStats); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram, |
| GR_GL_FRAGMENT_SHADER, &str, &length, 1, |
| &fStats); |
| |
| GL_CALL(LinkProgram(fWireRectProgram.fProgram)); |
| |
| GL_CALL_RET(fWireRectProgram.fColorUniform, |
| GetUniformLocation(fWireRectProgram.fProgram, "u_color")); |
| GL_CALL_RET(fWireRectProgram.fRectUniform, |
| GetUniformLocation(fWireRectProgram.fProgram, "u_rect")); |
| GL_CALL(BindAttribLocation(fWireRectProgram.fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| return true; |
| } |
| |
| void GrGLGpu::drawDebugWireRect(GrRenderTarget* rt, const SkIRect& rect, GrColor color) { |
| // TODO: This should swizzle the output to match dst's config, though it is a debugging |
| // visualization. |
| |
| this->handleDirtyContext(); |
| if (!fWireRectProgram.fProgram) { |
| if (!this->createWireRectProgram()) { |
| SkDebugf("Failed to create wire rect program.\n"); |
| return; |
| } |
| } |
| |
| int w = rt->width(); |
| int h = rt->height(); |
| |
| // Compute the edges of the rectangle (top,left,right,bottom) in NDC space. Must consider |
| // whether the render target is flipped or not. |
| GrGLfloat edges[4]; |
| edges[0] = SkIntToScalar(rect.fLeft) + 0.5f; |
| edges[2] = SkIntToScalar(rect.fRight) - 0.5f; |
| if (kBottomLeft_GrSurfaceOrigin == rt->origin()) { |
| edges[1] = h - (SkIntToScalar(rect.fTop) + 0.5f); |
| edges[3] = h - (SkIntToScalar(rect.fBottom) - 0.5f); |
| } else { |
| edges[1] = SkIntToScalar(rect.fTop) + 0.5f; |
| edges[3] = SkIntToScalar(rect.fBottom) - 0.5f; |
| } |
| edges[0] = 2 * edges[0] / w - 1.0f; |
| edges[1] = 2 * edges[1] / h - 1.0f; |
| edges[2] = 2 * edges[2] / w - 1.0f; |
| edges[3] = 2 * edges[3] / h - 1.0f; |
| |
| GrGLfloat channels[4]; |
| static const GrGLfloat scale255 = 1.f / 255.f; |
| channels[0] = GrColorUnpackR(color) * scale255; |
| channels[1] = GrColorUnpackG(color) * scale255; |
| channels[2] = GrColorUnpackB(color) * scale255; |
| channels[3] = GrColorUnpackA(color) * scale255; |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(rt->asRenderTarget()); |
| this->flushRenderTarget(glRT, &rect); |
| |
| GL_CALL(UseProgram(fWireRectProgram.fProgram)); |
| fHWProgramID = fWireRectProgram.fProgram; |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->set(this, 0, fWireRectArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat), |
| 0); |
| attribs->disableUnusedArrays(this, 0x1); |
| |
| GL_CALL(Uniform4fv(fWireRectProgram.fRectUniform, 1, edges)); |
| GL_CALL(Uniform4fv(fWireRectProgram.fColorUniform, 1, channels)); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle::RGBA()); |
| this->flushColorWrite(true); |
| this->flushDrawFace(GrDrawFace::kBoth); |
| this->flushHWAAState(glRT, false, false); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GrStencilSettings stencil; |
| stencil.setDisabled(); |
| this->flushStencil(stencil); |
| |
| GL_CALL(DrawArrays(GR_GL_LINE_LOOP, 0, 4)); |
| } |
| |
| |
| bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture()); |
| int progIdx = TextureTargetToCopyProgramIdx(srcTex->target()); |
| |
| if (!fCopyPrograms[progIdx].fProgram) { |
| if (!this->createCopyProgram(progIdx)) { |
| SkDebugf("Failed to create copy program.\n"); |
| return false; |
| } |
| } |
| |
| int w = srcRect.width(); |
| int h = srcRect.height(); |
| |
| GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode); |
| this->bindTexture(0, params, true, srcTex); |
| |
| GrGLIRect dstVP; |
| this->bindSurfaceFBOForCopy(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); |
| this->flushViewport(dstVP); |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); |
| |
| GL_CALL(UseProgram(fCopyPrograms[progIdx].fProgram)); |
| fHWProgramID = fCopyPrograms[progIdx].fProgram; |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->set(this, 0, fCopyProgramArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat), |
| 0); |
| attribs->disableUnusedArrays(this, 0x1); |
| |
| // dst rect edges in NDC (-1 to 1) |
| int dw = dst->width(); |
| int dh = dst->height(); |
| GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; |
| GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; |
| GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; |
| GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dy0 = -dy0; |
| dy1 = -dy1; |
| } |
| |
| GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft; |
| GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w); |
| GrGLfloat sy0 = (GrGLfloat)srcRect.fTop; |
| GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h); |
| int sh = src->height(); |
| if (kBottomLeft_GrSurfaceOrigin == src->origin()) { |
| sy0 = sh - sy0; |
| sy1 = sh - sy1; |
| } |
| // src rect edges in normalized texture space (0 to 1) unless we're using a RECTANGLE texture. |
| GrGLenum srcTarget = srcTex->target(); |
| if (GR_GL_TEXTURE_RECTANGLE != srcTarget) { |
| int sw = src->width(); |
| sx0 /= sw; |
| sx1 /= sw; |
| sy0 /= sh; |
| sy1 /= sh; |
| } |
| |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); |
| GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform, |
| sx1 - sx0, sy1 - sy0, sx0, sy0)); |
| GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0)); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle::RGBA()); |
| this->flushColorWrite(true); |
| this->flushDrawFace(GrDrawFace::kBoth); |
| this->flushHWAAState(nullptr, false, false); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GrStencilSettings stencil; |
| stencil.setDisabled(); |
| this->flushStencil(stencil); |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, dst); |
| this->didWriteToSurface(dst, &dstRect); |
| |
| return true; |
| } |
| |
| void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_texsubimage(dst, src, this)); |
| GrGLIRect srcVP; |
| this->bindSurfaceFBOForCopy(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); |
| GrGLTexture* dstTex = static_cast<GrGLTexture *>(dst->asTexture()); |
| SkASSERT(dstTex); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| GrGLIRect srcGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(dstTex->target(), dstTex->textureID())); |
| GrGLint dstY; |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); |
| } else { |
| dstY = dstPoint.fY; |
| } |
| GL_CALL(CopyTexSubImage2D(dstTex->target(), 0, |
| dstPoint.fX, dstY, |
| srcGLRect.fLeft, srcGLRect.fBottom, |
| srcGLRect.fWidth, srcGLRect.fHeight)); |
| this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, src); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| this->didWriteToSurface(dst, &dstRect); |
| } |
| |
| bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_blit_framebuffer(dst, src, this)); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| if (dst == src) { |
| if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { |
| return false; |
| } |
| } |
| |
| GrGLIRect dstVP; |
| GrGLIRect srcVP; |
| this->bindSurfaceFBOForCopy(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); |
| this->bindSurfaceFBOForCopy(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| GrGLIRect srcGLRect; |
| GrGLIRect dstGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| dstGLRect.setRelativeTo(dstVP, |
| dstRect.fLeft, |
| dstRect.fTop, |
| dstRect.width(), |
| dstRect.height(), |
| dst->origin()); |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| |
| GrGLint srcY0; |
| GrGLint srcY1; |
| // Does the blit need to y-mirror or not? |
| if (src->origin() == dst->origin()) { |
| srcY0 = srcGLRect.fBottom; |
| srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; |
| } else { |
| srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; |
| srcY1 = srcGLRect.fBottom; |
| } |
| GL_CALL(BlitFramebuffer(srcGLRect.fLeft, |
| srcY0, |
| srcGLRect.fLeft + srcGLRect.fWidth, |
| srcY1, |
| dstGLRect.fLeft, |
| dstGLRect.fBottom, |
| dstGLRect.fLeft + dstGLRect.fWidth, |
| dstGLRect.fBottom + dstGLRect.fHeight, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| this->unbindTextureFBOForCopy(GR_GL_DRAW_FRAMEBUFFER, dst); |
| this->unbindTextureFBOForCopy(GR_GL_READ_FRAMEBUFFER, src); |
| this->didWriteToSurface(dst, &dstRect); |
| return true; |
| } |
| |
| // Manual implementation of mipmap generation, to work around driver bugs w/sRGB. |
| // Uses draw calls to do a series of downsample operations to successive mips. |
| // If this returns false, then the calling code falls back to using glGenerateMipmap. |
| bool GrGLGpu::generateMipmap(GrGLTexture* texture, bool gammaCorrect) { |
| // Our iterative downsample requires the ability to limit which level we're sampling: |
| if (!this->glCaps().doManualMipmapping()) { |
| return false; |
| } |
| |
| // Mipmaps are only supported on 2D textures: |
| if (GR_GL_TEXTURE_2D != texture->target()) { |
| return false; |
| } |
| |
| // We need to be able to render to the texture for this to work: |
| if (!this->caps()->isConfigRenderable(texture->config(), false)) { |
| return false; |
| } |
| |
| // If we're mipping an sRGB texture, we need to ensure FB sRGB is correct: |
| if (GrPixelConfigIsSRGB(texture->config())) { |
| // If we have write-control, just set the state that we want: |
| if (this->glCaps().srgbWriteControl()) { |
| this->flushFramebufferSRGB(gammaCorrect); |
| } else if (!gammaCorrect) { |
| // If we don't have write-control we can't do non-gamma-correct mipmapping: |
| return false; |
| } |
| } |
| |
| int width = texture->width(); |
| int height = texture->height(); |
| int levelCount = SkMipMap::ComputeLevelCount(width, height) + 1; |
| |
| // Define all mips, if we haven't previously done so: |
| if (0 == texture->texturePriv().maxMipMapLevel()) { |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| if (!this->glCaps().getTexImageFormats(texture->config(), texture->config(), |
| &internalFormat, &externalFormat, &externalType)) { |
| return false; |
| } |
| |
| for (GrGLint level = 1; level < levelCount; ++level) { |
| // Define the next mip: |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, level, internalFormat, |
| width, height, 0, |
| externalFormat, externalType, nullptr)); |
| } |
| } |
| |
| // Create (if necessary), then bind temporary FBO: |
| if (0 == fTempDstFBOID) { |
| GL_CALL(GenFramebuffers(1, &fTempDstFBOID)); |
| } |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID)); |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| |
| // Bind the texture, to get things configured for filtering. |
| // We'll be changing our base level further below: |
| this->setTextureUnit(0); |
| GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode); |
| this->bindTexture(0, params, gammaCorrect, texture); |
| |
| // Vertex data: |
| if (!fMipmapProgramArrayBuffer) { |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| fMipmapProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), |
| kVertex_GrBufferType, |
| kStatic_GrAccessPattern, vdata)); |
| } |
| if (!fMipmapProgramArrayBuffer) { |
| return false; |
| } |
| |
| fHWVertexArrayState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); |
| attribs->set(this, 0, fMipmapProgramArrayBuffer, kVec2f_GrVertexAttribType, |
| 2 * sizeof(GrGLfloat), 0); |
| attribs->disableUnusedArrays(this, 0x1); |
| |
| // Set "simple" state once: |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo, GrSwizzle::RGBA()); |
| this->flushColorWrite(true); |
| this->flushDrawFace(GrDrawFace::kBoth); |
| this->flushHWAAState(nullptr, false, false); |
| this->disableScissor(); |
| this->disableWindowRectangles(); |
| GrStencilSettings stencil; |
| stencil.setDisabled(); |
| this->flushStencil(stencil); |
| |
| // Do all the blits: |
| width = texture->width(); |
| height = texture->height(); |
| GrGLIRect viewport; |
| viewport.fLeft = 0; |
| viewport.fBottom = 0; |
| for (GrGLint level = 1; level < levelCount; ++level) { |
| // Get and bind the program for this particular downsample (filter shape can vary): |
| int progIdx = TextureSizeToMipmapProgramIdx(width, height); |
| if (!fMipmapPrograms[progIdx].fProgram) { |
| if (!this->createMipmapProgram(progIdx)) { |
| SkDebugf("Failed to create mipmap program.\n"); |
| return false; |
| } |
| } |
| GL_CALL(UseProgram(fMipmapPrograms[progIdx].fProgram)); |
| fHWProgramID = fMipmapPrograms[progIdx].fProgram; |
| |
| // Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h) |
| const float invWidth = 1.0f / width; |
| const float invHeight = 1.0f / height; |
| GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform, |
| invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight)); |
| GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0)); |
| |
| // Only sample from previous mip |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1)); |
| |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, texture->textureID(), level)); |
| |
| width = SkTMax(1, width / 2); |
| height = SkTMax(1, height / 2); |
| viewport.fWidth = width; |
| viewport.fHeight = height; |
| this->flushViewport(viewport); |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| } |
| |
| // Unbind: |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, 0, 0)); |
| |
| return true; |
| } |
| |
| void GrGLGpu::onGetMultisampleSpecs(GrRenderTarget* rt, const GrStencilSettings& stencil, |
| int* effectiveSampleCnt, SamplePattern* samplePattern) { |
| SkASSERT(!rt->isMixedSampled() || rt->renderTargetPriv().getStencilAttachment() || |
| stencil.isDisabled()); |
| |
| this->flushStencil(stencil); |
| this->flushHWAAState(rt, true, !stencil.isDisabled()); |
| this->flushRenderTarget(static_cast<GrGLRenderTarget*>(rt), &SkIRect::EmptyIRect()); |
| |
| if (0 != this->caps()->maxRasterSamples()) { |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_EFFECTIVE_RASTER_SAMPLES, effectiveSampleCnt); |
| } else { |
| GR_GL_GetIntegerv(this->glInterface(), GR_GL_SAMPLES, effectiveSampleCnt); |
| } |
| |
| SkASSERT(*effectiveSampleCnt >= rt->desc().fSampleCnt); |
| |
| if (this->caps()->sampleLocationsSupport()) { |
| samplePattern->reset(*effectiveSampleCnt); |
| for (int i = 0; i < *effectiveSampleCnt; ++i) { |
| GrGLfloat pos[2]; |
| GL_CALL(GetMultisamplefv(GR_GL_SAMPLE_POSITION, i, pos)); |
| if (kTopLeft_GrSurfaceOrigin == rt->origin()) { |
| (*samplePattern)[i].set(pos[0], pos[1]); |
| } else { |
| (*samplePattern)[i].set(pos[0], 1 - pos[1]); |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { |
| SkASSERT(type); |
| switch (type) { |
| case kTexture_GrXferBarrierType: { |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt); |
| if (glrt->textureFBOID() != glrt->renderFBOID()) { |
| // The render target uses separate storage so no need for glTextureBarrier. |
| // FIXME: The render target will resolve automatically when its texture is bound, |
| // but we could resolve only the bounds that will be read if we do it here instead. |
| return; |
| } |
| SkASSERT(this->caps()->textureBarrierSupport()); |
| GL_CALL(TextureBarrier()); |
| return; |
| } |
| case kBlend_GrXferBarrierType: |
| SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == |
| this->caps()->blendEquationSupport()); |
| GL_CALL(BlendBarrier()); |
| return; |
| default: break; // placate compiler warnings that kNone not handled |
| } |
| } |
| |
| GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h, |
| GrPixelConfig config, bool /*isRT*/) { |
| if (!this->caps()->isConfigTexturable(config)) { |
| return false; |
| } |
| GrGLTextureInfo* info = new GrGLTextureInfo; |
| info->fTarget = GR_GL_TEXTURE_2D; |
| info->fID = 0; |
| GL_CALL(GenTextures(1, &info->fID)); |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0)); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| GL_CALL(BindTexture(info->fTarget, info->fID)); |
| fHWBoundTextureUniqueIDs[0] = 0; |
| GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); |
| GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); |
| |
| GrGLenum internalFormat; |
| GrGLenum externalFormat; |
| GrGLenum externalType; |
| |
| if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, |
| &externalType)) { |
| delete info; |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| return 0; |
| #else |
| return reinterpret_cast<GrBackendObject>(nullptr); |
| #endif |
| } |
| |
| GL_CALL(TexImage2D(info->fTarget, 0, internalFormat, w, h, 0, externalFormat, |
| externalType, pixels)); |
| |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| GrGLuint id = info->fID; |
| delete info; |
| return id; |
| #else |
| return reinterpret_cast<GrBackendObject>(info); |
| #endif |
| } |
| |
| bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const { |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| GrGLuint texID = (GrGLuint)id; |
| #else |
| GrGLuint texID = reinterpret_cast<const GrGLTextureInfo*>(id)->fID; |
| #endif |
| |
| GrGLboolean result; |
| GL_CALL_RET(result, IsTexture(texID)); |
| |
| return (GR_GL_TRUE == result); |
| } |
| |
| void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id, bool abandonTexture) { |
| #ifdef SK_IGNORE_GL_TEXTURE_TARGET |
| GrGLuint texID = (GrGLuint)id; |
| #else |
| const GrGLTextureInfo* info = reinterpret_cast<const GrGLTextureInfo*>(id); |
| GrGLuint texID = info->fID; |
| #endif |
| |
| if (!abandonTexture) { |
| GL_CALL(DeleteTextures(1, &texID)); |
| } |
| |
| #ifndef SK_IGNORE_GL_TEXTURE_TARGET |
| delete info; |
| #endif |
| } |
| |
| void GrGLGpu::resetShaderCacheForTesting() const { |
| fProgramCache->abandon(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu, |
| const GrBuffer* ibuf) { |
| GrGLAttribArrayState* attribState; |
| |
| if (gpu->glCaps().isCoreProfile()) { |
| if (!fCoreProfileVertexArray) { |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount); |
| } |
| if (ibuf) { |
| attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf); |
| } else { |
| attribState = fCoreProfileVertexArray->bind(gpu); |
| } |
| } else { |
| if (ibuf) { |
| // bindBuffer implicitly binds VAO 0 when binding an index buffer. |
| gpu->bindBuffer(kIndex_GrBufferType, ibuf); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |
| |
| bool GrGLGpu::onMakeCopyForTextureParams(GrTexture* texture, const GrTextureParams& textureParams, |
| GrTextureProducer::CopyParams* copyParams) const { |
| if (textureParams.isTiled() || |
| GrTextureParams::kMipMap_FilterMode == textureParams.filterMode()) { |
| GrGLTexture* glTexture = static_cast<GrGLTexture*>(texture); |
| if (GR_GL_TEXTURE_EXTERNAL == glTexture->target() || |
| GR_GL_TEXTURE_RECTANGLE == glTexture->target()) { |
| copyParams->fFilter = GrTextureParams::kNone_FilterMode; |
| copyParams->fWidth = texture->width(); |
| copyParams->fHeight = texture->height(); |
| return true; |
| } |
| } |
| return false; |
| } |