blob: f40c6b666c7ead6f8d2ddfe74e4c5dbb6e71d798 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrProgramDesc.h"
#include "GrPipeline.h"
#include "GrPrimitiveProcessor.h"
#include "GrProcessor.h"
#include "GrRenderTargetPriv.h"
#include "GrShaderCaps.h"
#include "GrTexturePriv.h"
#include "SkChecksum.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
enum {
kSamplerOrImageTypeKeyBits = 4
};
static inline uint16_t image_storage_or_sampler_uniform_type_key(GrSLType type ) {
int value = UINT16_MAX;
switch (type) {
case kTexture2DSampler_GrSLType:
value = 0;
break;
case kITexture2DSampler_GrSLType:
value = 1;
break;
case kTextureExternalSampler_GrSLType:
value = 2;
break;
case kTexture2DRectSampler_GrSLType:
value = 3;
break;
case kBufferSampler_GrSLType:
value = 4;
break;
case kImageStorage2D_GrSLType:
value = 5;
break;
case kIImageStorage2D_GrSLType:
value = 6;
break;
default:
break;
}
SkASSERT((value & ((1 << kSamplerOrImageTypeKeyBits) - 1)) == value);
return value;
}
static uint16_t sampler_key(GrSLType samplerType, GrPixelConfig config, GrShaderFlags visibility,
const GrShaderCaps& caps) {
int samplerTypeKey = image_storage_or_sampler_uniform_type_key(samplerType);
GR_STATIC_ASSERT(1 == sizeof(caps.configTextureSwizzle(config).asKey()));
return SkToU16(samplerTypeKey |
caps.configTextureSwizzle(config).asKey() << kSamplerOrImageTypeKeyBits |
(caps.samplerPrecision(config, visibility) << (8 + kSamplerOrImageTypeKeyBits)));
}
static uint16_t storage_image_key(const GrResourceIOProcessor::ImageStorageAccess& imageAccess) {
GrSLType type = imageAccess.proxy()->imageStorageType();
return image_storage_or_sampler_uniform_type_key(type) |
(int)imageAccess.format() << kSamplerOrImageTypeKeyBits;
}
static void add_sampler_and_image_keys(GrProcessorKeyBuilder* b, const GrResourceIOProcessor& proc,
const GrShaderCaps& caps) {
int numTextureSamplers = proc.numTextureSamplers();
int numBuffers = proc.numBuffers();
int numImageStorages = proc.numImageStorages();
int numUniforms = numTextureSamplers + numBuffers + numImageStorages;
// Need two bytes per key.
int word32Count = (numUniforms + 1) / 2;
if (0 == word32Count) {
return;
}
uint16_t* k16 = SkTCast<uint16_t*>(b->add32n(word32Count));
int j = 0;
for (int i = 0; i < numTextureSamplers; ++i, ++j) {
const GrResourceIOProcessor::TextureSampler& sampler = proc.textureSampler(i);
const GrTexture* tex = sampler.peekTexture();
k16[j] = sampler_key(tex->texturePriv().samplerType(), tex->config(), sampler.visibility(),
caps);
}
for (int i = 0; i < numBuffers; ++i, ++j) {
const GrResourceIOProcessor::BufferAccess& access = proc.bufferAccess(i);
k16[j] = sampler_key(kBufferSampler_GrSLType, access.texelConfig(), access.visibility(),
caps);
}
for (int i = 0; i < numImageStorages; ++i, ++j) {
k16[j] = storage_image_key(proc.imageStorageAccess(i));
}
// zero the last 16 bits if the number of uniforms for samplers and image storages is odd.
if (numUniforms & 0x1) {
k16[numUniforms] = 0;
}
}
/**
* A function which emits a meta key into the key builder. This is required because shader code may
* be dependent on properties of the effect that the effect itself doesn't use
* in its key (e.g. the pixel format of textures used). So we create a meta-key for
* every effect using this function. It is also responsible for inserting the effect's class ID
* which must be different for every GrProcessor subclass. It can fail if an effect uses too many
* transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share this
* function because it is hairy, though FPs do not have attribs, and GPs do not have transforms
*/
static bool gen_meta_key(const GrResourceIOProcessor& proc,
const GrShaderCaps& shaderCaps,
uint32_t transformKey,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = proc.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)SK_MaxU16);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
add_sampler_and_image_keys(b, proc, shaderCaps);
uint32_t* key = b->add32n(2);
key[0] = (classID << 16) | SkToU32(processorKeySize);
key[1] = transformKey;
return true;
}
static bool gen_meta_key(const GrXferProcessor& xp,
const GrShaderCaps& shaderCaps,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = xp.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t)SK_MaxU16);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
b->add32((classID << 16) | SkToU32(processorKeySize));
return true;
}
static bool gen_frag_proc_and_meta_keys(const GrPrimitiveProcessor& primProc,
const GrFragmentProcessor& fp,
const GrShaderCaps& shaderCaps,
GrProcessorKeyBuilder* b) {
for (int i = 0; i < fp.numChildProcessors(); ++i) {
if (!gen_frag_proc_and_meta_keys(primProc, fp.childProcessor(i), shaderCaps, b)) {
return false;
}
}
fp.getGLSLProcessorKey(shaderCaps, b);
return gen_meta_key(fp, shaderCaps, primProc.getTransformKey(fp.coordTransforms(),
fp.numCoordTransforms()), b);
}
bool GrProgramDesc::Build(GrProgramDesc* desc,
const GrPrimitiveProcessor& primProc,
bool hasPointSize,
const GrPipeline& pipeline,
const GrShaderCaps& shaderCaps) {
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the attribute
// bindings in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t));
// Make room for everything up to the effect keys.
desc->key().reset();
desc->key().push_back_n(kProcessorKeysOffset);
GrProcessorKeyBuilder b(&desc->key());
primProc.getGLSLProcessorKey(shaderCaps, &b);
if (!gen_meta_key(primProc, shaderCaps, 0, &b)) {
desc->key().reset();
return false;
}
GrProcessor::RequiredFeatures requiredFeatures = primProc.requiredFeatures();
for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) {
const GrFragmentProcessor& fp = pipeline.getFragmentProcessor(i);
if (!gen_frag_proc_and_meta_keys(primProc, fp, shaderCaps, &b)) {
desc->key().reset();
return false;
}
requiredFeatures |= fp.requiredFeatures();
}
const GrXferProcessor& xp = pipeline.getXferProcessor();
const GrSurfaceOrigin* originIfDstTexture = nullptr;
GrSurfaceOrigin origin;
if (pipeline.dstTextureProxy()) {
origin = pipeline.dstTextureProxy()->origin();
originIfDstTexture = &origin;
}
xp.getGLSLProcessorKey(shaderCaps, &b, originIfDstTexture);
if (!gen_meta_key(xp, shaderCaps, &b)) {
desc->key().reset();
return false;
}
requiredFeatures |= xp.requiredFeatures();
// --------DO NOT MOVE HEADER ABOVE THIS LINE--------------------------------------------------
// Because header is a pointer into the dynamic array, we can't push any new data into the key
// below here.
KeyHeader* header = desc->atOffset<KeyHeader, kHeaderOffset>();
// make sure any padding in the header is zeroed.
memset(header, 0, kHeaderSize);
GrRenderTargetProxy* proxy = pipeline.proxy();
if (requiredFeatures & GrProcessor::kSampleLocations_RequiredFeature) {
SkASSERT(pipeline.isHWAntialiasState());
GrRenderTarget* rt = pipeline.renderTarget();
header->fSamplePatternKey =
rt->renderTargetPriv().getMultisampleSpecs(pipeline).fUniqueID;
} else {
header->fSamplePatternKey = 0;
}
header->fOutputSwizzle = shaderCaps.configOutputSwizzle(proxy->config()).asKey();
header->fSnapVerticesToPixelCenters = pipeline.snapVerticesToPixelCenters();
header->fColorFragmentProcessorCnt = pipeline.numColorFragmentProcessors();
header->fCoverageFragmentProcessorCnt = pipeline.numCoverageFragmentProcessors();
// Fail if the client requested more processors than the key can fit.
if (header->fColorFragmentProcessorCnt != pipeline.numColorFragmentProcessors() ||
header->fCoverageFragmentProcessorCnt != pipeline.numCoverageFragmentProcessors()) {
return false;
}
header->fHasPointSize = hasPointSize ? 1 : 0;
return true;
}