blob: d36a1d75c904f349e3e6e73c0a9a8270c7657fe5 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "SkData.h"
#include "SkGlyphCache.h"
#include "SkPaint.h"
#include "SkPDFCatalog.h"
#include "SkPDFCanon.h"
#include "SkPDFDevice.h"
#include "SkPDFFont.h"
#include "SkPDFFontImpl.h"
#include "SkPDFStream.h"
#include "SkPDFTypes.h"
#include "SkPDFUtils.h"
#include "SkRefCnt.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkTypefacePriv.h"
#include "SkTypes.h"
#include "SkUtils.h"
#if defined (SK_SFNTLY_SUBSETTER)
#include SK_SFNTLY_SUBSETTER
#endif
#if defined (GOOGLE3)
// #including #defines doesn't work in with this build system.
#include "typography/font/sfntly/src/sample/chromium/font_subsetter.h"
#define SK_SFNTLY_SUBSETTER // For the benefit of #ifdefs below.
#endif
// PDF's notion of symbolic vs non-symbolic is related to the character set, not
// symbols vs. characters. Rarely is a font the right character set to call it
// non-symbolic, so always call it symbolic. (PDF 1.4 spec, section 5.7.1)
static const int kPdfSymbolic = 4;
namespace {
///////////////////////////////////////////////////////////////////////////////
// File-Local Functions
///////////////////////////////////////////////////////////////////////////////
bool parsePFBSection(const uint8_t** src, size_t* len, int sectionType,
size_t* size) {
// PFB sections have a two or six bytes header. 0x80 and a one byte
// section type followed by a four byte section length. Type one is
// an ASCII section (includes a length), type two is a binary section
// (includes a length) and type three is an EOF marker with no length.
const uint8_t* buf = *src;
if (*len < 2 || buf[0] != 0x80 || buf[1] != sectionType) {
return false;
} else if (buf[1] == 3) {
return true;
} else if (*len < 6) {
return false;
}
*size = (size_t)buf[2] | ((size_t)buf[3] << 8) | ((size_t)buf[4] << 16) |
((size_t)buf[5] << 24);
size_t consumed = *size + 6;
if (consumed > *len) {
return false;
}
*src = *src + consumed;
*len = *len - consumed;
return true;
}
bool parsePFB(const uint8_t* src, size_t size, size_t* headerLen,
size_t* dataLen, size_t* trailerLen) {
const uint8_t* srcPtr = src;
size_t remaining = size;
return parsePFBSection(&srcPtr, &remaining, 1, headerLen) &&
parsePFBSection(&srcPtr, &remaining, 2, dataLen) &&
parsePFBSection(&srcPtr, &remaining, 1, trailerLen) &&
parsePFBSection(&srcPtr, &remaining, 3, NULL);
}
/* The sections of a PFA file are implicitly defined. The body starts
* after the line containing "eexec," and the trailer starts with 512
* literal 0's followed by "cleartomark" (plus arbitrary white space).
*
* This function assumes that src is NUL terminated, but the NUL
* termination is not included in size.
*
*/
bool parsePFA(const char* src, size_t size, size_t* headerLen,
size_t* hexDataLen, size_t* dataLen, size_t* trailerLen) {
const char* end = src + size;
const char* dataPos = strstr(src, "eexec");
if (!dataPos) {
return false;
}
dataPos += strlen("eexec");
while ((*dataPos == '\n' || *dataPos == '\r' || *dataPos == ' ') &&
dataPos < end) {
dataPos++;
}
*headerLen = dataPos - src;
const char* trailerPos = strstr(dataPos, "cleartomark");
if (!trailerPos) {
return false;
}
int zeroCount = 0;
for (trailerPos--; trailerPos > dataPos && zeroCount < 512; trailerPos--) {
if (*trailerPos == '\n' || *trailerPos == '\r' || *trailerPos == ' ') {
continue;
} else if (*trailerPos == '0') {
zeroCount++;
} else {
return false;
}
}
if (zeroCount != 512) {
return false;
}
*hexDataLen = trailerPos - src - *headerLen;
*trailerLen = size - *headerLen - *hexDataLen;
// Verify that the data section is hex encoded and count the bytes.
int nibbles = 0;
for (; dataPos < trailerPos; dataPos++) {
if (isspace(*dataPos)) {
continue;
}
if (!isxdigit(*dataPos)) {
return false;
}
nibbles++;
}
*dataLen = (nibbles + 1) / 2;
return true;
}
int8_t hexToBin(uint8_t c) {
if (!isxdigit(c)) {
return -1;
} else if (c <= '9') {
return c - '0';
} else if (c <= 'F') {
return c - 'A' + 10;
} else if (c <= 'f') {
return c - 'a' + 10;
}
return -1;
}
static SkData* handle_type1_stream(SkStream* srcStream, size_t* headerLen,
size_t* dataLen, size_t* trailerLen) {
// srcStream may be backed by a file or a unseekable fd, so we may not be
// able to use skip(), rewind(), or getMemoryBase(). read()ing through
// the input only once is doable, but very ugly. Furthermore, it'd be nice
// if the data was NUL terminated so that we can use strstr() to search it.
// Make as few copies as possible given these constraints.
SkDynamicMemoryWStream dynamicStream;
SkAutoTDelete<SkMemoryStream> staticStream;
SkData* data = NULL;
const uint8_t* src;
size_t srcLen;
if ((srcLen = srcStream->getLength()) > 0) {
staticStream.reset(new SkMemoryStream(srcLen + 1));
src = (const uint8_t*)staticStream->getMemoryBase();
if (srcStream->getMemoryBase() != NULL) {
memcpy((void *)src, srcStream->getMemoryBase(), srcLen);
} else {
size_t read = 0;
while (read < srcLen) {
size_t got = srcStream->read((void *)staticStream->getAtPos(),
srcLen - read);
if (got == 0) {
return NULL;
}
read += got;
staticStream->seek(read);
}
}
((uint8_t *)src)[srcLen] = 0;
} else {
static const size_t kBufSize = 4096;
uint8_t buf[kBufSize];
size_t amount;
while ((amount = srcStream->read(buf, kBufSize)) > 0) {
dynamicStream.write(buf, amount);
}
amount = 0;
dynamicStream.write(&amount, 1); // NULL terminator.
data = dynamicStream.copyToData();
src = data->bytes();
srcLen = data->size() - 1;
}
// this handles releasing the data we may have gotten from dynamicStream.
// if data is null, it is a no-op
SkAutoDataUnref aud(data);
if (parsePFB(src, srcLen, headerLen, dataLen, trailerLen)) {
static const int kPFBSectionHeaderLength = 6;
const size_t length = *headerLen + *dataLen + *trailerLen;
SkASSERT(length > 0);
SkASSERT(length + (2 * kPFBSectionHeaderLength) <= srcLen);
SkData* data = SkData::NewUninitialized(length);
const uint8_t* const srcHeader = src + kPFBSectionHeaderLength;
// There is a six-byte section header before header and data
// (but not trailer) that we're not going to copy.
const uint8_t* const srcData = srcHeader + *headerLen + kPFBSectionHeaderLength;
const uint8_t* const srcTrailer = srcData + *headerLen;
uint8_t* const resultHeader = (uint8_t*)data->writable_data();
uint8_t* const resultData = resultHeader + *headerLen;
uint8_t* const resultTrailer = resultData + *dataLen;
SkASSERT(resultTrailer + *trailerLen == resultHeader + length);
memcpy(resultHeader, srcHeader, *headerLen);
memcpy(resultData, srcData, *dataLen);
memcpy(resultTrailer, srcTrailer, *trailerLen);
return data;
}
// A PFA has to be converted for PDF.
size_t hexDataLen;
if (parsePFA((const char*)src, srcLen, headerLen, &hexDataLen, dataLen,
trailerLen)) {
const size_t length = *headerLen + *dataLen + *trailerLen;
SkASSERT(length > 0);
SkAutoTMalloc<uint8_t> buffer(length);
memcpy(buffer.get(), src, *headerLen);
uint8_t* const resultData = &(buffer[SkToInt(*headerLen)]);
const uint8_t* hexData = src + *headerLen;
const uint8_t* trailer = hexData + hexDataLen;
size_t outputOffset = 0;
uint8_t dataByte = 0; // To hush compiler.
bool highNibble = true;
for (; hexData < trailer; hexData++) {
int8_t curNibble = hexToBin(*hexData);
if (curNibble < 0) {
continue;
}
if (highNibble) {
dataByte = curNibble << 4;
highNibble = false;
} else {
dataByte |= curNibble;
highNibble = true;
resultData[outputOffset++] = dataByte;
}
}
if (!highNibble) {
resultData[outputOffset++] = dataByte;
}
SkASSERT(outputOffset == *dataLen);
uint8_t* const resultTrailer = &(buffer[SkToInt(*headerLen + outputOffset)]);
memcpy(resultTrailer, src + *headerLen + hexDataLen, *trailerLen);
return SkData::NewFromMalloc(buffer.detach(), length);
}
return NULL;
}
// scale from em-units to base-1000, returning as a SkScalar
SkScalar scaleFromFontUnits(int16_t val, uint16_t emSize) {
SkScalar scaled = SkIntToScalar(val);
if (emSize == 1000) {
return scaled;
} else {
return SkScalarMulDiv(scaled, 1000, emSize);
}
}
void setGlyphWidthAndBoundingBox(SkScalar width, SkIRect box,
SkWStream* content) {
// Specify width and bounding box for the glyph.
SkPDFScalar::Append(width, content);
content->writeText(" 0 ");
content->writeDecAsText(box.fLeft);
content->writeText(" ");
content->writeDecAsText(box.fTop);
content->writeText(" ");
content->writeDecAsText(box.fRight);
content->writeText(" ");
content->writeDecAsText(box.fBottom);
content->writeText(" d1\n");
}
SkPDFArray* makeFontBBox(SkIRect glyphBBox, uint16_t emSize) {
SkPDFArray* bbox = new SkPDFArray;
bbox->reserve(4);
bbox->appendScalar(scaleFromFontUnits(glyphBBox.fLeft, emSize));
bbox->appendScalar(scaleFromFontUnits(glyphBBox.fBottom, emSize));
bbox->appendScalar(scaleFromFontUnits(glyphBBox.fRight, emSize));
bbox->appendScalar(scaleFromFontUnits(glyphBBox.fTop, emSize));
return bbox;
}
SkPDFArray* appendWidth(const int16_t& width, uint16_t emSize,
SkPDFArray* array) {
array->appendScalar(scaleFromFontUnits(width, emSize));
return array;
}
SkPDFArray* appendVerticalAdvance(
const SkAdvancedTypefaceMetrics::VerticalMetric& advance,
uint16_t emSize, SkPDFArray* array) {
appendWidth(advance.fVerticalAdvance, emSize, array);
appendWidth(advance.fOriginXDisp, emSize, array);
appendWidth(advance.fOriginYDisp, emSize, array);
return array;
}
template <typename Data>
SkPDFArray* composeAdvanceData(
SkAdvancedTypefaceMetrics::AdvanceMetric<Data>* advanceInfo,
uint16_t emSize,
SkPDFArray* (*appendAdvance)(const Data& advance, uint16_t emSize,
SkPDFArray* array),
Data* defaultAdvance) {
SkPDFArray* result = new SkPDFArray();
for (; advanceInfo != NULL; advanceInfo = advanceInfo->fNext.get()) {
switch (advanceInfo->fType) {
case SkAdvancedTypefaceMetrics::WidthRange::kDefault: {
SkASSERT(advanceInfo->fAdvance.count() == 1);
*defaultAdvance = advanceInfo->fAdvance[0];
break;
}
case SkAdvancedTypefaceMetrics::WidthRange::kRange: {
SkAutoTUnref<SkPDFArray> advanceArray(new SkPDFArray());
for (int j = 0; j < advanceInfo->fAdvance.count(); j++)
appendAdvance(advanceInfo->fAdvance[j], emSize,
advanceArray.get());
result->appendInt(advanceInfo->fStartId);
result->append(advanceArray.get());
break;
}
case SkAdvancedTypefaceMetrics::WidthRange::kRun: {
SkASSERT(advanceInfo->fAdvance.count() == 1);
result->appendInt(advanceInfo->fStartId);
result->appendInt(advanceInfo->fEndId);
appendAdvance(advanceInfo->fAdvance[0], emSize, result);
break;
}
}
}
return result;
}
} // namespace
static void append_tounicode_header(SkDynamicMemoryWStream* cmap,
uint16_t firstGlyphID,
uint16_t lastGlyphID) {
// 12 dict begin: 12 is an Adobe-suggested value. Shall not change.
// It's there to prevent old version Adobe Readers from malfunctioning.
const char* kHeader =
"/CIDInit /ProcSet findresource begin\n"
"12 dict begin\n"
"begincmap\n";
cmap->writeText(kHeader);
// The /CIDSystemInfo must be consistent to the one in
// SkPDFFont::populateCIDFont().
// We can not pass over the system info object here because the format is
// different. This is not a reference object.
const char* kSysInfo =
"/CIDSystemInfo\n"
"<< /Registry (Adobe)\n"
"/Ordering (UCS)\n"
"/Supplement 0\n"
">> def\n";
cmap->writeText(kSysInfo);
// The CMapName must be consistent to /CIDSystemInfo above.
// /CMapType 2 means ToUnicode.
// Codespace range just tells the PDF processor the valid range.
const char* kTypeInfoHeader =
"/CMapName /Adobe-Identity-UCS def\n"
"/CMapType 2 def\n"
"1 begincodespacerange\n";
cmap->writeText(kTypeInfoHeader);
// e.g. "<0000> <FFFF>\n"
SkString range;
range.appendf("<%04X> <%04X>\n", firstGlyphID, lastGlyphID);
cmap->writeText(range.c_str());
const char* kTypeInfoFooter = "endcodespacerange\n";
cmap->writeText(kTypeInfoFooter);
}
static void append_cmap_footer(SkDynamicMemoryWStream* cmap) {
const char* kFooter =
"endcmap\n"
"CMapName currentdict /CMap defineresource pop\n"
"end\n"
"end";
cmap->writeText(kFooter);
}
struct BFChar {
uint16_t fGlyphId;
SkUnichar fUnicode;
};
struct BFRange {
uint16_t fStart;
uint16_t fEnd;
SkUnichar fUnicode;
};
static void append_bfchar_section(const SkTDArray<BFChar>& bfchar,
SkDynamicMemoryWStream* cmap) {
// PDF spec defines that every bf* list can have at most 100 entries.
for (int i = 0; i < bfchar.count(); i += 100) {
int count = bfchar.count() - i;
count = SkMin32(count, 100);
cmap->writeDecAsText(count);
cmap->writeText(" beginbfchar\n");
for (int j = 0; j < count; ++j) {
cmap->writeText("<");
cmap->writeHexAsText(bfchar[i + j].fGlyphId, 4);
cmap->writeText("> <");
cmap->writeHexAsText(bfchar[i + j].fUnicode, 4);
cmap->writeText(">\n");
}
cmap->writeText("endbfchar\n");
}
}
static void append_bfrange_section(const SkTDArray<BFRange>& bfrange,
SkDynamicMemoryWStream* cmap) {
// PDF spec defines that every bf* list can have at most 100 entries.
for (int i = 0; i < bfrange.count(); i += 100) {
int count = bfrange.count() - i;
count = SkMin32(count, 100);
cmap->writeDecAsText(count);
cmap->writeText(" beginbfrange\n");
for (int j = 0; j < count; ++j) {
cmap->writeText("<");
cmap->writeHexAsText(bfrange[i + j].fStart, 4);
cmap->writeText("> <");
cmap->writeHexAsText(bfrange[i + j].fEnd, 4);
cmap->writeText("> <");
cmap->writeHexAsText(bfrange[i + j].fUnicode, 4);
cmap->writeText(">\n");
}
cmap->writeText("endbfrange\n");
}
}
// Generate <bfchar> and <bfrange> table according to PDF spec 1.4 and Adobe
// Technote 5014.
// The function is not static so we can test it in unit tests.
//
// Current implementation guarantees bfchar and bfrange entries do not overlap.
//
// Current implementation does not attempt aggresive optimizations against
// following case because the specification is not clear.
//
// 4 beginbfchar 1 beginbfchar
// <0003> <0013> <0020> <0014>
// <0005> <0015> to endbfchar
// <0007> <0017> 1 beginbfrange
// <0020> <0014> <0003> <0007> <0013>
// endbfchar endbfrange
//
// Adobe Technote 5014 said: "Code mappings (unlike codespace ranges) may
// overlap, but succeeding maps supersede preceding maps."
//
// In case of searching text in PDF, bfrange will have higher precedence so
// typing char id 0x0014 in search box will get glyph id 0x0004 first. However,
// the spec does not mention how will this kind of conflict being resolved.
//
// For the worst case (having 65536 continuous unicode and we use every other
// one of them), the possible savings by aggressive optimization is 416KB
// pre-compressed and does not provide enough motivation for implementation.
// FIXME: this should be in a header so that it is separately testable
// ( see caller in tests/ToUnicode.cpp )
void append_cmap_sections(const SkTDArray<SkUnichar>& glyphToUnicode,
const SkPDFGlyphSet* subset,
SkDynamicMemoryWStream* cmap,
bool multiByteGlyphs,
uint16_t firstGlyphID,
uint16_t lastGlyphID);
void append_cmap_sections(const SkTDArray<SkUnichar>& glyphToUnicode,
const SkPDFGlyphSet* subset,
SkDynamicMemoryWStream* cmap,
bool multiByteGlyphs,
uint16_t firstGlyphID,
uint16_t lastGlyphID) {
if (glyphToUnicode.isEmpty()) {
return;
}
int glyphOffset = 0;
if (!multiByteGlyphs) {
glyphOffset = firstGlyphID - 1;
}
SkTDArray<BFChar> bfcharEntries;
SkTDArray<BFRange> bfrangeEntries;
BFRange currentRangeEntry = {0, 0, 0};
bool rangeEmpty = true;
const int limit =
SkMin32(lastGlyphID + 1, glyphToUnicode.count()) - glyphOffset;
for (int i = firstGlyphID - glyphOffset; i < limit + 1; ++i) {
bool inSubset = i < limit &&
(subset == NULL || subset->has(i + glyphOffset));
if (!rangeEmpty) {
// PDF spec requires bfrange not changing the higher byte,
// e.g. <1035> <10FF> <2222> is ok, but
// <1035> <1100> <2222> is no good
bool inRange =
i == currentRangeEntry.fEnd + 1 &&
i >> 8 == currentRangeEntry.fStart >> 8 &&
i < limit &&
glyphToUnicode[i + glyphOffset] ==
currentRangeEntry.fUnicode + i - currentRangeEntry.fStart;
if (!inSubset || !inRange) {
if (currentRangeEntry.fEnd > currentRangeEntry.fStart) {
bfrangeEntries.push(currentRangeEntry);
} else {
BFChar* entry = bfcharEntries.append();
entry->fGlyphId = currentRangeEntry.fStart;
entry->fUnicode = currentRangeEntry.fUnicode;
}
rangeEmpty = true;
}
}
if (inSubset) {
currentRangeEntry.fEnd = i;
if (rangeEmpty) {
currentRangeEntry.fStart = i;
currentRangeEntry.fUnicode = glyphToUnicode[i + glyphOffset];
rangeEmpty = false;
}
}
}
// The spec requires all bfchar entries for a font must come before bfrange
// entries.
append_bfchar_section(bfcharEntries, cmap);
append_bfrange_section(bfrangeEntries, cmap);
}
static SkPDFStream* generate_tounicode_cmap(
const SkTDArray<SkUnichar>& glyphToUnicode,
const SkPDFGlyphSet* subset,
bool multiByteGlyphs,
uint16_t firstGlyphID,
uint16_t lastGlyphID) {
SkDynamicMemoryWStream cmap;
if (multiByteGlyphs) {
append_tounicode_header(&cmap, firstGlyphID, lastGlyphID);
} else {
append_tounicode_header(&cmap, 1, lastGlyphID - firstGlyphID + 1);
}
append_cmap_sections(glyphToUnicode, subset, &cmap, multiByteGlyphs,
firstGlyphID, lastGlyphID);
append_cmap_footer(&cmap);
SkAutoTUnref<SkData> cmapData(cmap.copyToData());
return new SkPDFStream(cmapData.get());
}
#if defined (SK_SFNTLY_SUBSETTER)
static void sk_delete_array(const void* ptr, size_t, void*) {
// Use C-style cast to cast away const and cast type simultaneously.
delete[] (unsigned char*)ptr;
}
#endif
static size_t get_subset_font_stream(const char* fontName,
const SkTypeface* typeface,
const SkTDArray<uint32_t>& subset,
SkPDFStream** fontStream) {
int ttcIndex;
SkAutoTDelete<SkStream> fontData(typeface->openStream(&ttcIndex));
SkASSERT(fontData.get());
size_t fontSize = fontData->getLength();
#if defined (SK_SFNTLY_SUBSETTER)
// Read font into buffer.
SkPDFStream* subsetFontStream = NULL;
SkTDArray<unsigned char> originalFont;
originalFont.setCount(SkToInt(fontSize));
if (fontData->read(originalFont.begin(), fontSize) == fontSize) {
unsigned char* subsetFont = NULL;
// sfntly requires unsigned int* to be passed in, as far as we know,
// unsigned int is equivalent to uint32_t on all platforms.
SK_COMPILE_ASSERT(sizeof(unsigned int) == sizeof(uint32_t),
unsigned_int_not_32_bits);
int subsetFontSize = SfntlyWrapper::SubsetFont(fontName,
originalFont.begin(),
fontSize,
subset.begin(),
subset.count(),
&subsetFont);
if (subsetFontSize > 0 && subsetFont != NULL) {
SkAutoDataUnref data(SkData::NewWithProc(subsetFont,
subsetFontSize,
sk_delete_array,
NULL));
subsetFontStream = new SkPDFStream(data.get());
fontSize = subsetFontSize;
}
}
if (subsetFontStream) {
*fontStream = subsetFontStream;
return fontSize;
}
fontData->rewind();
#else
sk_ignore_unused_variable(fontName);
sk_ignore_unused_variable(subset);
#endif
// Fail over: just embed the whole font.
*fontStream = new SkPDFStream(fontData.get());
return fontSize;
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFGlyphSet
///////////////////////////////////////////////////////////////////////////////
SkPDFGlyphSet::SkPDFGlyphSet() : fBitSet(SK_MaxU16 + 1) {
}
void SkPDFGlyphSet::set(const uint16_t* glyphIDs, int numGlyphs) {
for (int i = 0; i < numGlyphs; ++i) {
fBitSet.setBit(glyphIDs[i], true);
}
}
bool SkPDFGlyphSet::has(uint16_t glyphID) const {
return fBitSet.isBitSet(glyphID);
}
void SkPDFGlyphSet::merge(const SkPDFGlyphSet& usage) {
fBitSet.orBits(usage.fBitSet);
}
void SkPDFGlyphSet::exportTo(SkTDArray<unsigned int>* glyphIDs) const {
fBitSet.exportTo(glyphIDs);
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFGlyphSetMap
///////////////////////////////////////////////////////////////////////////////
SkPDFGlyphSetMap::FontGlyphSetPair::FontGlyphSetPair(SkPDFFont* font,
SkPDFGlyphSet* glyphSet)
: fFont(font),
fGlyphSet(glyphSet) {
}
SkPDFGlyphSetMap::F2BIter::F2BIter(const SkPDFGlyphSetMap& map) {
reset(map);
}
const SkPDFGlyphSetMap::FontGlyphSetPair* SkPDFGlyphSetMap::F2BIter::next() const {
if (fIndex >= fMap->count()) {
return NULL;
}
return &((*fMap)[fIndex++]);
}
void SkPDFGlyphSetMap::F2BIter::reset(const SkPDFGlyphSetMap& map) {
fMap = &(map.fMap);
fIndex = 0;
}
SkPDFGlyphSetMap::SkPDFGlyphSetMap() {
}
SkPDFGlyphSetMap::~SkPDFGlyphSetMap() {
reset();
}
void SkPDFGlyphSetMap::merge(const SkPDFGlyphSetMap& usage) {
for (int i = 0; i < usage.fMap.count(); ++i) {
SkPDFGlyphSet* myUsage = getGlyphSetForFont(usage.fMap[i].fFont);
myUsage->merge(*(usage.fMap[i].fGlyphSet));
}
}
void SkPDFGlyphSetMap::reset() {
for (int i = 0; i < fMap.count(); ++i) {
delete fMap[i].fGlyphSet; // Should not be NULL.
}
fMap.reset();
}
void SkPDFGlyphSetMap::noteGlyphUsage(SkPDFFont* font, const uint16_t* glyphIDs,
int numGlyphs) {
SkPDFGlyphSet* subset = getGlyphSetForFont(font);
if (subset) {
subset->set(glyphIDs, numGlyphs);
}
}
SkPDFGlyphSet* SkPDFGlyphSetMap::getGlyphSetForFont(SkPDFFont* font) {
int index = fMap.count();
for (int i = 0; i < index; ++i) {
if (fMap[i].fFont == font) {
return fMap[i].fGlyphSet;
}
}
fMap.append();
index = fMap.count() - 1;
fMap[index].fFont = font;
fMap[index].fGlyphSet = new SkPDFGlyphSet();
return fMap[index].fGlyphSet;
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFFont
///////////////////////////////////////////////////////////////////////////////
/* Font subset design: It would be nice to be able to subset fonts
* (particularly type 3 fonts), but it's a lot of work and not a priority.
*
* Resources are canonicalized and uniqueified by pointer so there has to be
* some additional state indicating which subset of the font is used. It
* must be maintained at the page granularity and then combined at the document
* granularity. a) change SkPDFFont to fill in its state on demand, kind of
* like SkPDFGraphicState. b) maintain a per font glyph usage class in each
* page/pdf device. c) in the document, retrieve the per font glyph usage
* from each page and combine it and ask for a resource with that subset.
*/
SkPDFFont::~SkPDFFont() {}
SkTypeface* SkPDFFont::typeface() {
return fTypeface.get();
}
SkAdvancedTypefaceMetrics::FontType SkPDFFont::getType() {
return fFontType;
}
bool SkPDFFont::canEmbed() const {
if (!fFontInfo.get()) {
SkASSERT(fFontType == SkAdvancedTypefaceMetrics::kOther_Font);
return true;
}
return (fFontInfo->fFlags &
SkAdvancedTypefaceMetrics::kNotEmbeddable_FontFlag) == 0;
}
bool SkPDFFont::canSubset() const {
if (!fFontInfo.get()) {
SkASSERT(fFontType == SkAdvancedTypefaceMetrics::kOther_Font);
return true;
}
return (fFontInfo->fFlags &
SkAdvancedTypefaceMetrics::kNotSubsettable_FontFlag) == 0;
}
bool SkPDFFont::hasGlyph(uint16_t id) {
return (id >= fFirstGlyphID && id <= fLastGlyphID) || id == 0;
}
int SkPDFFont::glyphsToPDFFontEncoding(uint16_t* glyphIDs, int numGlyphs) {
// A font with multibyte glyphs will support all glyph IDs in a single font.
if (this->multiByteGlyphs()) {
return numGlyphs;
}
for (int i = 0; i < numGlyphs; i++) {
if (glyphIDs[i] == 0) {
continue;
}
if (glyphIDs[i] < fFirstGlyphID || glyphIDs[i] > fLastGlyphID) {
return i;
}
glyphIDs[i] -= (fFirstGlyphID - 1);
}
return numGlyphs;
}
// static
SkPDFFont* SkPDFFont::GetFontResource(SkPDFCanon* canon,
SkTypeface* typeface,
uint16_t glyphID) {
SkASSERT(canon);
SkAutoResolveDefaultTypeface autoResolve(typeface);
typeface = autoResolve.get();
const uint32_t fontID = typeface->uniqueID();
SkPDFFont* relatedFont;
if (SkPDFFont* pdfFont = canon->findFont(fontID, glyphID, &relatedFont)) {
return SkRef(pdfFont);
}
SkAutoTUnref<const SkAdvancedTypefaceMetrics> fontMetrics;
SkPDFDict* relatedFontDescriptor = NULL;
if (relatedFont) {
fontMetrics.reset(SkSafeRef(relatedFont->fontInfo()));
relatedFontDescriptor = relatedFont->getFontDescriptor();
// This only is to catch callers who pass invalid glyph ids.
// If glyph id is invalid, then we will create duplicate entries
// for TrueType fonts.
SkAdvancedTypefaceMetrics::FontType fontType =
fontMetrics.get() ? fontMetrics.get()->fType :
SkAdvancedTypefaceMetrics::kOther_Font;
if (fontType == SkAdvancedTypefaceMetrics::kType1CID_Font ||
fontType == SkAdvancedTypefaceMetrics::kTrueType_Font) {
return SkRef(relatedFont);
}
} else {
SkAdvancedTypefaceMetrics::PerGlyphInfo info;
info = SkAdvancedTypefaceMetrics::kGlyphNames_PerGlyphInfo;
info = SkTBitOr<SkAdvancedTypefaceMetrics::PerGlyphInfo>(
info, SkAdvancedTypefaceMetrics::kToUnicode_PerGlyphInfo);
#if !defined (SK_SFNTLY_SUBSETTER)
info = SkTBitOr<SkAdvancedTypefaceMetrics::PerGlyphInfo>(
info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo);
#endif
fontMetrics.reset(
typeface->getAdvancedTypefaceMetrics(info, NULL, 0));
#if defined (SK_SFNTLY_SUBSETTER)
if (fontMetrics.get() &&
fontMetrics->fType != SkAdvancedTypefaceMetrics::kTrueType_Font) {
// Font does not support subsetting, get new info with advance.
info = SkTBitOr<SkAdvancedTypefaceMetrics::PerGlyphInfo>(
info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo);
fontMetrics.reset(
typeface->getAdvancedTypefaceMetrics(info, NULL, 0));
}
#endif
}
SkPDFFont* font = SkPDFFont::Create(canon, fontMetrics.get(), typeface,
glyphID, relatedFontDescriptor);
canon->addFont(font, fontID, font->fFirstGlyphID);
return font;
}
SkPDFFont* SkPDFFont::getFontSubset(const SkPDFGlyphSet*) {
return NULL; // Default: no support.
}
SkPDFFont::SkPDFFont(const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface,
SkPDFDict* relatedFontDescriptor)
: SkPDFDict("Font")
, fTypeface(ref_or_default(typeface))
, fFirstGlyphID(1)
, fLastGlyphID(info ? info->fLastGlyphID : 0)
, fFontInfo(SkSafeRef(info))
, fDescriptor(SkSafeRef(relatedFontDescriptor)) {
if (info == NULL ||
info->fFlags & SkAdvancedTypefaceMetrics::kMultiMaster_FontFlag) {
fFontType = SkAdvancedTypefaceMetrics::kOther_Font;
} else {
fFontType = info->fType;
}
}
// static
SkPDFFont* SkPDFFont::Create(SkPDFCanon* canon,
const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface,
uint16_t glyphID,
SkPDFDict* relatedFontDescriptor) {
SkAdvancedTypefaceMetrics::FontType type =
info ? info->fType : SkAdvancedTypefaceMetrics::kOther_Font;
if (info &&
(info->fFlags & SkAdvancedTypefaceMetrics::kMultiMaster_FontFlag)) {
NOT_IMPLEMENTED(true, true);
return new SkPDFType3Font(info, typeface, glyphID);
}
if (type == SkAdvancedTypefaceMetrics::kType1CID_Font ||
type == SkAdvancedTypefaceMetrics::kTrueType_Font) {
SkASSERT(relatedFontDescriptor == NULL);
return new SkPDFType0Font(info, typeface);
}
if (type == SkAdvancedTypefaceMetrics::kType1_Font) {
return new SkPDFType1Font(info, typeface, glyphID,
relatedFontDescriptor);
}
SkASSERT(type == SkAdvancedTypefaceMetrics::kCFF_Font ||
type == SkAdvancedTypefaceMetrics::kOther_Font);
return new SkPDFType3Font(info, typeface, glyphID);
}
const SkAdvancedTypefaceMetrics* SkPDFFont::fontInfo() {
return fFontInfo.get();
}
void SkPDFFont::setFontInfo(const SkAdvancedTypefaceMetrics* info) {
if (info == NULL || info == fFontInfo.get()) {
return;
}
fFontInfo.reset(info);
SkSafeRef(info);
}
uint16_t SkPDFFont::firstGlyphID() const {
return fFirstGlyphID;
}
uint16_t SkPDFFont::lastGlyphID() const {
return fLastGlyphID;
}
void SkPDFFont::setLastGlyphID(uint16_t glyphID) {
fLastGlyphID = glyphID;
}
SkPDFDict* SkPDFFont::getFontDescriptor() {
return fDescriptor.get();
}
void SkPDFFont::setFontDescriptor(SkPDFDict* descriptor) {
fDescriptor.reset(descriptor);
SkSafeRef(descriptor);
}
bool SkPDFFont::addCommonFontDescriptorEntries(int16_t defaultWidth) {
if (fDescriptor.get() == NULL) {
return false;
}
const uint16_t emSize = fFontInfo->fEmSize;
fDescriptor->insertName("FontName", fFontInfo->fFontName);
fDescriptor->insertInt("Flags", fFontInfo->fStyle | kPdfSymbolic);
fDescriptor->insertScalar("Ascent",
scaleFromFontUnits(fFontInfo->fAscent, emSize));
fDescriptor->insertScalar("Descent",
scaleFromFontUnits(fFontInfo->fDescent, emSize));
fDescriptor->insertScalar("StemV",
scaleFromFontUnits(fFontInfo->fStemV, emSize));
fDescriptor->insertScalar("CapHeight",
scaleFromFontUnits(fFontInfo->fCapHeight, emSize));
fDescriptor->insertInt("ItalicAngle", fFontInfo->fItalicAngle);
fDescriptor->insert("FontBBox", makeFontBBox(fFontInfo->fBBox,
fFontInfo->fEmSize))->unref();
if (defaultWidth > 0) {
fDescriptor->insertScalar("MissingWidth",
scaleFromFontUnits(defaultWidth, emSize));
}
return true;
}
void SkPDFFont::adjustGlyphRangeForSingleByteEncoding(uint16_t glyphID) {
// Single byte glyph encoding supports a max of 255 glyphs.
fFirstGlyphID = glyphID - (glyphID - 1) % 255;
if (fLastGlyphID > fFirstGlyphID + 255 - 1) {
fLastGlyphID = fFirstGlyphID + 255 - 1;
}
}
void SkPDFFont::populateToUnicodeTable(const SkPDFGlyphSet* subset) {
if (fFontInfo == NULL || fFontInfo->fGlyphToUnicode.begin() == NULL) {
return;
}
SkAutoTUnref<SkPDFStream> pdfCmap(
generate_tounicode_cmap(fFontInfo->fGlyphToUnicode, subset,
multiByteGlyphs(), firstGlyphID(),
lastGlyphID()));
insert("ToUnicode", new SkPDFObjRef(pdfCmap.get()))->unref();
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFType0Font
///////////////////////////////////////////////////////////////////////////////
SkPDFType0Font::SkPDFType0Font(const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface)
: SkPDFFont(info, typeface, NULL) {
SkDEBUGCODE(fPopulated = false);
if (!canSubset()) {
populate(NULL);
}
}
SkPDFType0Font::~SkPDFType0Font() {}
SkPDFFont* SkPDFType0Font::getFontSubset(const SkPDFGlyphSet* subset) {
if (!canSubset()) {
return NULL;
}
SkPDFType0Font* newSubset =
new SkPDFType0Font(fontInfo(), typeface());
newSubset->populate(subset);
return newSubset;
}
#ifdef SK_DEBUG
void SkPDFType0Font::emitObject(SkWStream* stream, SkPDFCatalog* catalog) {
SkASSERT(fPopulated);
return INHERITED::emitObject(stream, catalog);
}
#endif
bool SkPDFType0Font::populate(const SkPDFGlyphSet* subset) {
insertName("Subtype", "Type0");
insertName("BaseFont", fontInfo()->fFontName);
insertName("Encoding", "Identity-H");
SkAutoTUnref<SkPDFCIDFont> newCIDFont(
new SkPDFCIDFont(fontInfo(), typeface(), subset));
SkAutoTUnref<SkPDFArray> descendantFonts(new SkPDFArray());
descendantFonts->append(new SkPDFObjRef(newCIDFont.get()))->unref();
insert("DescendantFonts", descendantFonts.get());
populateToUnicodeTable(subset);
SkDEBUGCODE(fPopulated = true);
return true;
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFCIDFont
///////////////////////////////////////////////////////////////////////////////
SkPDFCIDFont::SkPDFCIDFont(const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface,
const SkPDFGlyphSet* subset)
: SkPDFFont(info, typeface, NULL) {
populate(subset);
}
SkPDFCIDFont::~SkPDFCIDFont() {}
bool SkPDFCIDFont::addFontDescriptor(int16_t defaultWidth,
const SkTDArray<uint32_t>* subset) {
SkAutoTUnref<SkPDFDict> descriptor(new SkPDFDict("FontDescriptor"));
setFontDescriptor(descriptor.get());
insert("FontDescriptor", new SkPDFObjRef(descriptor.get()))->unref();
if (!addCommonFontDescriptorEntries(defaultWidth)) {
return false;
}
if (!canEmbed()) {
return true;
}
switch (getType()) {
case SkAdvancedTypefaceMetrics::kTrueType_Font: {
SkAutoTUnref<SkPDFStream> fontStream;
size_t fontSize = 0;
if (canSubset()) {
SkPDFStream* rawStream = NULL;
fontSize = get_subset_font_stream(fontInfo()->fFontName.c_str(),
typeface(),
*subset,
&rawStream);
fontStream.reset(rawStream);
} else {
int ttcIndex;
SkAutoTDelete<SkStream> fontData(
typeface()->openStream(&ttcIndex));
fontStream.reset(new SkPDFStream(fontData.get()));
fontSize = fontData->getLength();
}
SkASSERT(fontSize);
SkASSERT(fontStream.get());
fontStream->insertInt("Length1", fontSize);
descriptor->insert("FontFile2",
new SkPDFObjRef(fontStream.get()))->unref();
break;
}
case SkAdvancedTypefaceMetrics::kCFF_Font:
case SkAdvancedTypefaceMetrics::kType1CID_Font: {
int ttcIndex;
SkAutoTDelete<SkStream> fontData(typeface()->openStream(&ttcIndex));
SkAutoTUnref<SkPDFStream> fontStream(
new SkPDFStream(fontData.get()));
if (getType() == SkAdvancedTypefaceMetrics::kCFF_Font) {
fontStream->insertName("Subtype", "Type1C");
} else {
fontStream->insertName("Subtype", "CIDFontType0c");
}
descriptor->insert("FontFile3",
new SkPDFObjRef(fontStream.get()))->unref();
break;
}
default:
SkASSERT(false);
}
return true;
}
bool SkPDFCIDFont::populate(const SkPDFGlyphSet* subset) {
// Generate new font metrics with advance info for true type fonts.
if (fontInfo()->fType == SkAdvancedTypefaceMetrics::kTrueType_Font) {
// Generate glyph id array.
SkTDArray<uint32_t> glyphIDs;
if (subset) {
// Always include glyph 0.
if (!subset->has(0)) {
glyphIDs.push(0);
}
subset->exportTo(&glyphIDs);
}
SkAdvancedTypefaceMetrics::PerGlyphInfo info;
info = SkAdvancedTypefaceMetrics::kGlyphNames_PerGlyphInfo;
info = SkTBitOr<SkAdvancedTypefaceMetrics::PerGlyphInfo>(
info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo);
uint32_t* glyphs = (glyphIDs.count() == 0) ? NULL : glyphIDs.begin();
uint32_t glyphsCount = glyphs ? glyphIDs.count() : 0;
SkAutoTUnref<const SkAdvancedTypefaceMetrics> fontMetrics(
typeface()->getAdvancedTypefaceMetrics(info, glyphs, glyphsCount));
setFontInfo(fontMetrics.get());
addFontDescriptor(0, &glyphIDs);
} else {
// Other CID fonts
addFontDescriptor(0, NULL);
}
insertName("BaseFont", fontInfo()->fFontName);
if (getType() == SkAdvancedTypefaceMetrics::kType1CID_Font) {
insertName("Subtype", "CIDFontType0");
} else if (getType() == SkAdvancedTypefaceMetrics::kTrueType_Font) {
insertName("Subtype", "CIDFontType2");
insertName("CIDToGIDMap", "Identity");
} else {
SkASSERT(false);
}
SkAutoTUnref<SkPDFDict> sysInfo(new SkPDFDict);
sysInfo->insert("Registry", new SkPDFString("Adobe"))->unref();
sysInfo->insert("Ordering", new SkPDFString("Identity"))->unref();
sysInfo->insertInt("Supplement", 0);
insert("CIDSystemInfo", sysInfo.get());
if (fontInfo()->fGlyphWidths.get()) {
int16_t defaultWidth = 0;
SkAutoTUnref<SkPDFArray> widths(
composeAdvanceData(fontInfo()->fGlyphWidths.get(),
fontInfo()->fEmSize, &appendWidth,
&defaultWidth));
if (widths->size())
insert("W", widths.get());
if (defaultWidth != 0) {
insertScalar("DW", scaleFromFontUnits(defaultWidth,
fontInfo()->fEmSize));
}
}
if (fontInfo()->fVerticalMetrics.get()) {
struct SkAdvancedTypefaceMetrics::VerticalMetric defaultAdvance;
defaultAdvance.fVerticalAdvance = 0;
defaultAdvance.fOriginXDisp = 0;
defaultAdvance.fOriginYDisp = 0;
SkAutoTUnref<SkPDFArray> advances(
composeAdvanceData(fontInfo()->fVerticalMetrics.get(),
fontInfo()->fEmSize, &appendVerticalAdvance,
&defaultAdvance));
if (advances->size())
insert("W2", advances.get());
if (defaultAdvance.fVerticalAdvance ||
defaultAdvance.fOriginXDisp ||
defaultAdvance.fOriginYDisp) {
insert("DW2", appendVerticalAdvance(defaultAdvance,
fontInfo()->fEmSize,
new SkPDFArray))->unref();
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFType1Font
///////////////////////////////////////////////////////////////////////////////
SkPDFType1Font::SkPDFType1Font(const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface,
uint16_t glyphID,
SkPDFDict* relatedFontDescriptor)
: SkPDFFont(info, typeface, relatedFontDescriptor) {
populate(glyphID);
}
SkPDFType1Font::~SkPDFType1Font() {}
bool SkPDFType1Font::addFontDescriptor(int16_t defaultWidth) {
if (getFontDescriptor() != NULL) {
SkPDFDict* descriptor = getFontDescriptor();
insert("FontDescriptor", new SkPDFObjRef(descriptor))->unref();
return true;
}
SkAutoTUnref<SkPDFDict> descriptor(new SkPDFDict("FontDescriptor"));
setFontDescriptor(descriptor.get());
int ttcIndex;
size_t header SK_INIT_TO_AVOID_WARNING;
size_t data SK_INIT_TO_AVOID_WARNING;
size_t trailer SK_INIT_TO_AVOID_WARNING;
SkAutoTDelete<SkStream> rawFontData(typeface()->openStream(&ttcIndex));
SkAutoTUnref<SkData> fontData(handle_type1_stream(rawFontData.get(), &header,
&data, &trailer));
if (fontData.get() == NULL) {
return false;
}
if (canEmbed()) {
SkAutoTUnref<SkPDFStream> fontStream(new SkPDFStream(fontData.get()));
fontStream->insertInt("Length1", header);
fontStream->insertInt("Length2", data);
fontStream->insertInt("Length3", trailer);
descriptor->insert("FontFile",
new SkPDFObjRef(fontStream.get()))->unref();
}
insert("FontDescriptor", new SkPDFObjRef(descriptor.get()))->unref();
return addCommonFontDescriptorEntries(defaultWidth);
}
bool SkPDFType1Font::populate(int16_t glyphID) {
SkASSERT(!fontInfo()->fVerticalMetrics.get());
SkASSERT(fontInfo()->fGlyphWidths.get());
adjustGlyphRangeForSingleByteEncoding(glyphID);
int16_t defaultWidth = 0;
const SkAdvancedTypefaceMetrics::WidthRange* widthRangeEntry = NULL;
const SkAdvancedTypefaceMetrics::WidthRange* widthEntry;
for (widthEntry = fontInfo()->fGlyphWidths.get();
widthEntry != NULL;
widthEntry = widthEntry->fNext.get()) {
switch (widthEntry->fType) {
case SkAdvancedTypefaceMetrics::WidthRange::kDefault:
defaultWidth = widthEntry->fAdvance[0];
break;
case SkAdvancedTypefaceMetrics::WidthRange::kRun:
SkASSERT(false);
break;
case SkAdvancedTypefaceMetrics::WidthRange::kRange:
SkASSERT(widthRangeEntry == NULL);
widthRangeEntry = widthEntry;
break;
}
}
if (!addFontDescriptor(defaultWidth)) {
return false;
}
insertName("Subtype", "Type1");
insertName("BaseFont", fontInfo()->fFontName);
addWidthInfoFromRange(defaultWidth, widthRangeEntry);
SkAutoTUnref<SkPDFDict> encoding(new SkPDFDict("Encoding"));
insert("Encoding", encoding.get());
SkAutoTUnref<SkPDFArray> encDiffs(new SkPDFArray);
encoding->insert("Differences", encDiffs.get());
encDiffs->reserve(lastGlyphID() - firstGlyphID() + 2);
encDiffs->appendInt(1);
for (int gID = firstGlyphID(); gID <= lastGlyphID(); gID++) {
encDiffs->appendName(fontInfo()->fGlyphNames->get()[gID].c_str());
}
return true;
}
void SkPDFType1Font::addWidthInfoFromRange(
int16_t defaultWidth,
const SkAdvancedTypefaceMetrics::WidthRange* widthRangeEntry) {
SkAutoTUnref<SkPDFArray> widthArray(new SkPDFArray());
int firstChar = 0;
if (widthRangeEntry) {
const uint16_t emSize = fontInfo()->fEmSize;
int startIndex = firstGlyphID() - widthRangeEntry->fStartId;
int endIndex = startIndex + lastGlyphID() - firstGlyphID() + 1;
if (startIndex < 0)
startIndex = 0;
if (endIndex > widthRangeEntry->fAdvance.count())
endIndex = widthRangeEntry->fAdvance.count();
if (widthRangeEntry->fStartId == 0) {
appendWidth(widthRangeEntry->fAdvance[0], emSize, widthArray.get());
} else {
firstChar = startIndex + widthRangeEntry->fStartId;
}
for (int i = startIndex; i < endIndex; i++) {
appendWidth(widthRangeEntry->fAdvance[i], emSize, widthArray.get());
}
} else {
appendWidth(defaultWidth, 1000, widthArray.get());
}
insertInt("FirstChar", firstChar);
insertInt("LastChar", firstChar + widthArray->size() - 1);
insert("Widths", widthArray.get());
}
///////////////////////////////////////////////////////////////////////////////
// class SkPDFType3Font
///////////////////////////////////////////////////////////////////////////////
SkPDFType3Font::SkPDFType3Font(const SkAdvancedTypefaceMetrics* info,
SkTypeface* typeface,
uint16_t glyphID)
: SkPDFFont(info, typeface, NULL) {
populate(glyphID);
}
SkPDFType3Font::~SkPDFType3Font() {}
bool SkPDFType3Font::populate(uint16_t glyphID) {
SkPaint paint;
paint.setTypeface(typeface());
paint.setTextSize(1000);
SkAutoGlyphCache autoCache(paint, NULL, NULL);
SkGlyphCache* cache = autoCache.getCache();
// If fLastGlyphID isn't set (because there is not fFontInfo), look it up.
if (lastGlyphID() == 0) {
setLastGlyphID(cache->getGlyphCount() - 1);
}
adjustGlyphRangeForSingleByteEncoding(glyphID);
insertName("Subtype", "Type3");
// Flip about the x-axis and scale by 1/1000.
SkMatrix fontMatrix;
fontMatrix.setScale(SkScalarInvert(1000), -SkScalarInvert(1000));
insert("FontMatrix", SkPDFUtils::MatrixToArray(fontMatrix))->unref();
SkAutoTUnref<SkPDFDict> charProcs(new SkPDFDict);
insert("CharProcs", charProcs.get());
SkAutoTUnref<SkPDFDict> encoding(new SkPDFDict("Encoding"));
insert("Encoding", encoding.get());
SkAutoTUnref<SkPDFArray> encDiffs(new SkPDFArray);
encoding->insert("Differences", encDiffs.get());
encDiffs->reserve(lastGlyphID() - firstGlyphID() + 2);
encDiffs->appendInt(1);
SkAutoTUnref<SkPDFArray> widthArray(new SkPDFArray());
SkIRect bbox = SkIRect::MakeEmpty();
for (int gID = firstGlyphID(); gID <= lastGlyphID(); gID++) {
SkString characterName;
characterName.printf("gid%d", gID);
encDiffs->appendName(characterName.c_str());
const SkGlyph& glyph = cache->getGlyphIDMetrics(gID);
widthArray->appendScalar(SkFixedToScalar(glyph.fAdvanceX));
SkIRect glyphBBox = SkIRect::MakeXYWH(glyph.fLeft, glyph.fTop,
glyph.fWidth, glyph.fHeight);
bbox.join(glyphBBox);
SkDynamicMemoryWStream content;
setGlyphWidthAndBoundingBox(SkFixedToScalar(glyph.fAdvanceX), glyphBBox,
&content);
const SkPath* path = cache->findPath(glyph);
if (path) {
SkPDFUtils::EmitPath(*path, paint.getStyle(), &content);
SkPDFUtils::PaintPath(paint.getStyle(), path->getFillType(),
&content);
}
SkAutoTDelete<SkMemoryStream> glyphStream(new SkMemoryStream());
glyphStream->setData(content.copyToData())->unref();
SkAutoTUnref<SkPDFStream> glyphDescription(
new SkPDFStream(glyphStream.get()));
charProcs->insert(characterName.c_str(),
new SkPDFObjRef(glyphDescription.get()))->unref();
}
insert("FontBBox", makeFontBBox(bbox, 1000))->unref();
insertInt("FirstChar", 1);
insertInt("LastChar", lastGlyphID() - firstGlyphID() + 1);
insert("Widths", widthArray.get());
insertName("CIDToGIDMap", "Identity");
populateToUnicodeTable(NULL);
return true;
}
SkPDFFont::Match SkPDFFont::IsMatch(SkPDFFont* existingFont,
uint32_t existingFontID,
uint16_t existingGlyphID,
uint32_t searchFontID,
uint16_t searchGlyphID) {
if (existingFontID != searchFontID) {
return SkPDFFont::kNot_Match;
}
if (existingGlyphID == 0 || searchGlyphID == 0) {
return SkPDFFont::kExact_Match;
}
if (existingFont != NULL) {
return (existingFont->fFirstGlyphID <= searchGlyphID &&
searchGlyphID <= existingFont->fLastGlyphID)
? SkPDFFont::kExact_Match
: SkPDFFont::kRelated_Match;
}
return (existingGlyphID == searchGlyphID) ? SkPDFFont::kExact_Match
: SkPDFFont::kRelated_Match;
}