| /* |
| * Copyright 2010 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkGr.h" |
| |
| #include "GrCaps.h" |
| #include "GrContext.h" |
| #include "GrTextureParamsAdjuster.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrImageIDTextureAdjuster.h" |
| #include "GrXferProcessor.h" |
| #include "GrYUVProvider.h" |
| |
| #include "SkColorFilter.h" |
| #include "SkConfig8888.h" |
| #include "SkCanvas.h" |
| #include "SkData.h" |
| #include "SkErrorInternals.h" |
| #include "SkGrPixelRef.h" |
| #include "SkMessageBus.h" |
| #include "SkPixelRef.h" |
| #include "SkResourceCache.h" |
| #include "SkTextureCompressor.h" |
| #include "SkYUVPlanesCache.h" |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrConstColorProcessor.h" |
| #include "effects/GrDitherEffect.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "effects/GrXfermodeFragmentProcessor.h" |
| #include "effects/GrYUVtoRGBEffect.h" |
| |
| #ifndef SK_IGNORE_ETC1_SUPPORT |
| # include "ktx.h" |
| # include "etc1.h" |
| #endif |
| |
| GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info) { |
| GrSurfaceDesc desc; |
| desc.fFlags = kNone_GrSurfaceFlags; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fConfig = SkImageInfo2GrPixelConfig(info); |
| desc.fSampleCnt = 0; |
| return desc; |
| } |
| |
| void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { |
| SkASSERT(key); |
| SkASSERT(imageID); |
| SkASSERT(!imageBounds.isEmpty()); |
| static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kImageIDDomain, 5); |
| builder[0] = imageID; |
| builder[1] = imageBounds.fLeft; |
| builder[2] = imageBounds.fTop; |
| builder[3] = imageBounds.fRight; |
| builder[4] = imageBounds.fBottom; |
| } |
| |
| GrPixelConfig GrIsCompressedTextureDataSupported(GrContext* ctx, SkData* data, |
| int expectedW, int expectedH, |
| const void** outStartOfDataToUpload) { |
| *outStartOfDataToUpload = nullptr; |
| #ifndef SK_IGNORE_ETC1_SUPPORT |
| if (!ctx->caps()->isConfigTexturable(kETC1_GrPixelConfig)) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| const uint8_t* bytes = data->bytes(); |
| if (data->size() > ETC_PKM_HEADER_SIZE && etc1_pkm_is_valid(bytes)) { |
| // Does the data match the dimensions of the bitmap? If not, |
| // then we don't know how to scale the image to match it... |
| if (etc1_pkm_get_width(bytes) != (unsigned)expectedW || |
| etc1_pkm_get_height(bytes) != (unsigned)expectedH) |
| { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| *outStartOfDataToUpload = bytes + ETC_PKM_HEADER_SIZE; |
| return kETC1_GrPixelConfig; |
| } else if (SkKTXFile::is_ktx(bytes)) { |
| SkKTXFile ktx(data); |
| |
| // Is it actually an ETC1 texture? |
| if (!ktx.isCompressedFormat(SkTextureCompressor::kETC1_Format)) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| // Does the data match the dimensions of the bitmap? If not, |
| // then we don't know how to scale the image to match it... |
| if (ktx.width() != expectedW || ktx.height() != expectedH) { |
| return kUnknown_GrPixelConfig; |
| } |
| |
| *outStartOfDataToUpload = ktx.pixelData(); |
| return kETC1_GrPixelConfig; |
| } |
| #endif |
| return kUnknown_GrPixelConfig; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Fill out buffer with the compressed format Ganesh expects from a colortable |
| * based bitmap. [palette (colortable) + indices]. |
| * |
| * At the moment Ganesh only supports 8bit version. If Ganesh allowed we others |
| * we could detect that the colortable.count is <= 16, and then repack the |
| * indices as nibbles to save RAM, but it would take more time (i.e. a lot |
| * slower than memcpy), so skipping that for now. |
| * |
| * Ganesh wants a full 256 palette entry, even though Skia's ctable is only as big |
| * as the colortable.count says it is. |
| */ |
| static void build_index8_data(void* buffer, const SkBitmap& bitmap) { |
| SkASSERT(kIndex_8_SkColorType == bitmap.colorType()); |
| |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| SkDEBUGFAIL("bitmap not ready to draw!"); |
| return; |
| } |
| |
| SkColorTable* ctable = bitmap.getColorTable(); |
| char* dst = (char*)buffer; |
| |
| const int count = ctable->count(); |
| |
| SkDstPixelInfo dstPI; |
| dstPI.fColorType = kRGBA_8888_SkColorType; |
| dstPI.fAlphaType = kPremul_SkAlphaType; |
| dstPI.fPixels = buffer; |
| dstPI.fRowBytes = count * sizeof(SkPMColor); |
| |
| SkSrcPixelInfo srcPI; |
| srcPI.fColorType = kN32_SkColorType; |
| srcPI.fAlphaType = kPremul_SkAlphaType; |
| srcPI.fPixels = ctable->readColors(); |
| srcPI.fRowBytes = count * sizeof(SkPMColor); |
| |
| srcPI.convertPixelsTo(&dstPI, count, 1); |
| |
| // always skip a full 256 number of entries, even if we memcpy'd fewer |
| dst += 256 * sizeof(GrColor); |
| |
| if ((unsigned)bitmap.width() == bitmap.rowBytes()) { |
| memcpy(dst, bitmap.getPixels(), bitmap.getSize()); |
| } else { |
| // need to trim off the extra bytes per row |
| size_t width = bitmap.width(); |
| size_t rowBytes = bitmap.rowBytes(); |
| const char* src = (const char*)bitmap.getPixels(); |
| for (int y = 0; y < bitmap.height(); y++) { |
| memcpy(dst, src, width); |
| src += rowBytes; |
| dst += width; |
| } |
| } |
| } |
| |
| /** |
| * Once we have made SkImages handle all lazy/deferred/generated content, the YUV apis will |
| * be gone from SkPixelRef, and we can remove this subclass entirely. |
| */ |
| class PixelRef_GrYUVProvider : public GrYUVProvider { |
| SkPixelRef* fPR; |
| |
| public: |
| PixelRef_GrYUVProvider(SkPixelRef* pr) : fPR(pr) {} |
| |
| uint32_t onGetID() override { return fPR->getGenerationID(); } |
| bool onGetYUVSizes(SkISize sizes[3]) override { |
| return fPR->getYUV8Planes(sizes, nullptr, nullptr, nullptr); |
| } |
| bool onGetYUVPlanes(SkISize sizes[3], void* planes[3], size_t rowBytes[3], |
| SkYUVColorSpace* space) override { |
| return fPR->getYUV8Planes(sizes, planes, rowBytes, space); |
| } |
| }; |
| |
| static GrTexture* create_texture_from_yuv(GrContext* ctx, const SkBitmap& bm, |
| const GrSurfaceDesc& desc) { |
| // Subsets are not supported, the whole pixelRef is loaded when using YUV decoding |
| SkPixelRef* pixelRef = bm.pixelRef(); |
| if ((nullptr == pixelRef) || |
| (pixelRef->info().width() != bm.info().width()) || |
| (pixelRef->info().height() != bm.info().height())) { |
| return nullptr; |
| } |
| |
| PixelRef_GrYUVProvider provider(pixelRef); |
| |
| return provider.refAsTexture(ctx, desc, !bm.isVolatile()); |
| } |
| |
| static GrTexture* load_etc1_texture(GrContext* ctx, const SkBitmap &bm, GrSurfaceDesc desc) { |
| SkAutoTUnref<SkData> data(bm.pixelRef()->refEncodedData()); |
| if (!data) { |
| return nullptr; |
| } |
| |
| const void* startOfTexData; |
| desc.fConfig = GrIsCompressedTextureDataSupported(ctx, data, bm.width(), bm.height(), |
| &startOfTexData); |
| if (kUnknown_GrPixelConfig == desc.fConfig) { |
| return nullptr; |
| } |
| |
| return ctx->textureProvider()->createTexture(desc, true, startOfTexData, 0); |
| } |
| |
| GrTexture* GrUploadBitmapToTexture(GrContext* ctx, const SkBitmap& bmp) { |
| SkASSERT(!bmp.getTexture()); |
| |
| SkBitmap tmpBitmap; |
| const SkBitmap* bitmap = &bmp; |
| |
| GrSurfaceDesc desc = GrImageInfoToSurfaceDesc(bitmap->info()); |
| const GrCaps* caps = ctx->caps(); |
| |
| if (kIndex_8_SkColorType == bitmap->colorType()) { |
| if (caps->isConfigTexturable(kIndex_8_GrPixelConfig)) { |
| size_t imageSize = GrCompressedFormatDataSize(kIndex_8_GrPixelConfig, |
| bitmap->width(), bitmap->height()); |
| SkAutoMalloc storage(imageSize); |
| build_index8_data(storage.get(), bmp); |
| |
| // our compressed data will be trimmed, so pass width() for its |
| // "rowBytes", since they are the same now. |
| return ctx->textureProvider()->createTexture(desc, true, storage.get(), |
| bitmap->width()); |
| } else { |
| bmp.copyTo(&tmpBitmap, kN32_SkColorType); |
| // now bitmap points to our temp, which has been promoted to 32bits |
| bitmap = &tmpBitmap; |
| desc.fConfig = SkImageInfo2GrPixelConfig(bitmap->info()); |
| } |
| } else if (!bitmap->readyToDraw()) { |
| // If the bitmap had compressed data and was then uncompressed, it'll still return |
| // compressed data on 'refEncodedData' and upload it. Probably not good, since if |
| // the bitmap has available pixels, then they might not be what the decompressed |
| // data is. |
| |
| // Really?? We aren't doing this with YUV. |
| |
| GrTexture *texture = load_etc1_texture(ctx, *bitmap, desc); |
| if (texture) { |
| return texture; |
| } |
| } |
| |
| GrTexture *texture = create_texture_from_yuv(ctx, *bitmap, desc); |
| if (texture) { |
| return texture; |
| } |
| |
| SkAutoLockPixels alp(*bitmap); |
| if (!bitmap->readyToDraw()) { |
| return nullptr; |
| } |
| |
| return ctx->textureProvider()->createTexture(desc, true, bitmap->getPixels(), |
| bitmap->rowBytes()); |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) { |
| class Invalidator : public SkPixelRef::GenIDChangeListener { |
| public: |
| explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {} |
| private: |
| GrUniqueKeyInvalidatedMessage fMsg; |
| |
| void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); } |
| }; |
| |
| pixelRef->addGenIDChangeListener(new Invalidator(key)); |
| } |
| |
| GrTexture* GrRefCachedBitmapTexture(GrContext* ctx, const SkBitmap& bitmap, |
| const GrTextureParams& params) { |
| if (bitmap.getTexture()) { |
| return GrBitmapTextureAdjuster(&bitmap).refTextureSafeForParams(params, nullptr); |
| } |
| return GrBitmapTextureMaker(ctx, bitmap).refTextureForParams(params); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // alphatype is ignore for now, but if GrPixelConfig is expanded to encompass |
| // alpha info, that will be considered. |
| GrPixelConfig SkImageInfo2GrPixelConfig(SkColorType ct, SkAlphaType, SkColorProfileType pt) { |
| switch (ct) { |
| case kUnknown_SkColorType: |
| return kUnknown_GrPixelConfig; |
| case kAlpha_8_SkColorType: |
| return kAlpha_8_GrPixelConfig; |
| case kRGB_565_SkColorType: |
| return kRGB_565_GrPixelConfig; |
| case kARGB_4444_SkColorType: |
| return kRGBA_4444_GrPixelConfig; |
| case kRGBA_8888_SkColorType: |
| //if (kSRGB_SkColorProfileType == pt) { |
| // return kSRGBA_8888_GrPixelConfig; |
| //} |
| return kRGBA_8888_GrPixelConfig; |
| case kBGRA_8888_SkColorType: |
| return kBGRA_8888_GrPixelConfig; |
| case kIndex_8_SkColorType: |
| return kIndex_8_GrPixelConfig; |
| case kGray_8_SkColorType: |
| return kAlpha_8_GrPixelConfig; // TODO: gray8 support on gpu |
| } |
| SkASSERT(0); // shouldn't get here |
| return kUnknown_GrPixelConfig; |
| } |
| |
| bool GrPixelConfig2ColorAndProfileType(GrPixelConfig config, SkColorType* ctOut, |
| SkColorProfileType* ptOut) { |
| SkColorType ct; |
| SkColorProfileType pt = kLinear_SkColorProfileType; |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| ct = kAlpha_8_SkColorType; |
| break; |
| case kIndex_8_GrPixelConfig: |
| ct = kIndex_8_SkColorType; |
| break; |
| case kRGB_565_GrPixelConfig: |
| ct = kRGB_565_SkColorType; |
| break; |
| case kRGBA_4444_GrPixelConfig: |
| ct = kARGB_4444_SkColorType; |
| break; |
| case kRGBA_8888_GrPixelConfig: |
| ct = kRGBA_8888_SkColorType; |
| break; |
| case kBGRA_8888_GrPixelConfig: |
| ct = kBGRA_8888_SkColorType; |
| break; |
| case kSRGBA_8888_GrPixelConfig: |
| ct = kRGBA_8888_SkColorType; |
| pt = kSRGB_SkColorProfileType; |
| break; |
| default: |
| return false; |
| } |
| if (ctOut) { |
| *ctOut = ct; |
| } |
| if (ptOut) { |
| *ptOut = pt; |
| } |
| return true; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static inline bool blend_requires_shader(const SkXfermode::Mode mode, bool primitiveIsSrc) { |
| if (primitiveIsSrc) { |
| return SkXfermode::kSrc_Mode != mode; |
| } else { |
| return SkXfermode::kDst_Mode != mode; |
| } |
| } |
| |
| static inline bool skpaint_to_grpaint_impl(GrContext* context, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| const GrFragmentProcessor** shaderProcessor, |
| SkXfermode::Mode* primColorMode, |
| bool primitiveIsSrc, |
| GrPaint* grPaint) { |
| grPaint->setAntiAlias(skPaint.isAntiAlias()); |
| |
| // Setup the initial color considering the shader, the SkPaint color, and the presence or not |
| // of per-vertex colors. |
| SkAutoTUnref<const GrFragmentProcessor> aufp; |
| const GrFragmentProcessor* shaderFP = nullptr; |
| if (!primColorMode || blend_requires_shader(*primColorMode, primitiveIsSrc)) { |
| if (shaderProcessor) { |
| shaderFP = *shaderProcessor; |
| } else if (const SkShader* shader = skPaint.getShader()) { |
| aufp.reset(shader->asFragmentProcessor(context, viewM, nullptr, |
| skPaint.getFilterQuality())); |
| shaderFP = aufp; |
| if (!shaderFP) { |
| return false; |
| } |
| } |
| } |
| |
| // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is |
| // a known constant value. In that case we can simply apply a color filter during this |
| // conversion without converting the color filter to a GrFragmentProcessor. |
| bool applyColorFilterToPaintColor = false; |
| if (shaderFP) { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the shader color. The shader sees |
| // the opaque paint color. The shader's output is blended using the provided mode by |
| // the primitive color. The blended color is then modulated by the paint's alpha. |
| |
| // The geometry processor will insert the primitive color to start the color chain, so |
| // the GrPaint color will be ignored. |
| |
| GrColor shaderInput = SkColorToOpaqueGrColor(skPaint.getColor()); |
| |
| shaderFP = GrFragmentProcessor::OverrideInput(shaderFP, shaderInput); |
| aufp.reset(shaderFP); |
| |
| if (primitiveIsSrc) { |
| shaderFP = GrXfermodeFragmentProcessor::CreateFromDstProcessor(shaderFP, |
| *primColorMode); |
| } else { |
| shaderFP = GrXfermodeFragmentProcessor::CreateFromSrcProcessor(shaderFP, |
| *primColorMode); |
| } |
| aufp.reset(shaderFP); |
| // The above may return null if compose results in a pass through of the prim color. |
| if (shaderFP) { |
| grPaint->addColorFragmentProcessor(shaderFP); |
| } |
| |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Create( |
| paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode))->unref(); |
| } |
| } else { |
| // The shader's FP sees the paint unpremul color |
| grPaint->setColor(SkColorToUnpremulGrColor(skPaint.getColor())); |
| grPaint->addColorFragmentProcessor(shaderFP); |
| } |
| } else { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the paint color. The blend considers |
| // the opaque paint color. The paint's alpha is applied to the post-blended color. |
| SkAutoTUnref<const GrFragmentProcessor> processor( |
| GrConstColorProcessor::Create(SkColorToOpaqueGrColor(skPaint.getColor()), |
| GrConstColorProcessor::kIgnore_InputMode)); |
| if (primitiveIsSrc) { |
| processor.reset(GrXfermodeFragmentProcessor::CreateFromDstProcessor(processor, |
| *primColorMode)); |
| } else { |
| processor.reset(GrXfermodeFragmentProcessor::CreateFromSrcProcessor(processor, |
| *primColorMode)); |
| |
| } |
| if (processor) { |
| grPaint->addColorFragmentProcessor(processor); |
| } |
| |
| grPaint->setColor(SkColorToOpaqueGrColor(skPaint.getColor())); |
| |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Create( |
| paintAlpha, GrConstColorProcessor::kModulateRGBA_InputMode))->unref(); |
| } |
| } else { |
| // No shader, no primitive color. |
| grPaint->setColor(SkColorToPremulGrColor(skPaint.getColor())); |
| applyColorFilterToPaintColor = true; |
| } |
| } |
| |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (colorFilter) { |
| if (applyColorFilterToPaintColor) { |
| grPaint->setColor(SkColorToPremulGrColor(colorFilter->filterColor(skPaint.getColor()))); |
| } else { |
| SkAutoTUnref<const GrFragmentProcessor> cfFP( |
| colorFilter->asFragmentProcessor(context)); |
| if (cfFP) { |
| grPaint->addColorFragmentProcessor(cfFP); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| SkXfermode* mode = skPaint.getXfermode(); |
| GrXPFactory* xpFactory = nullptr; |
| SkXfermode::AsXPFactory(mode, &xpFactory); |
| SkSafeUnref(grPaint->setXPFactory(xpFactory)); |
| |
| #ifndef SK_IGNORE_GPU_DITHER |
| if (skPaint.isDither() && grPaint->numColorFragmentProcessors() > 0) { |
| grPaint->addColorFragmentProcessor(GrDitherEffect::Create())->unref(); |
| } |
| #endif |
| return true; |
| } |
| |
| bool SkPaintToGrPaint(GrContext* context, const SkPaint& skPaint, const SkMatrix& viewM, |
| GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, skPaint, viewM, nullptr, nullptr, false, grPaint); |
| } |
| |
| /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ |
| bool SkPaintToGrPaintReplaceShader(GrContext* context, |
| const SkPaint& skPaint, |
| const GrFragmentProcessor* shaderFP, |
| GrPaint* grPaint) { |
| if (!shaderFP) { |
| return false; |
| } |
| return skpaint_to_grpaint_impl(context, skPaint, SkMatrix::I(), &shaderFP, nullptr, false, |
| grPaint); |
| } |
| |
| /** Ignores the SkShader (if any) on skPaint. */ |
| bool SkPaintToGrPaintNoShader(GrContext* context, |
| const SkPaint& skPaint, |
| GrPaint* grPaint) { |
| // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. |
| static const GrFragmentProcessor* kNullShaderFP = nullptr; |
| static const GrFragmentProcessor** kIgnoreShader = &kNullShaderFP; |
| return skpaint_to_grpaint_impl(context, skPaint, SkMatrix::I(), kIgnoreShader, nullptr, false, |
| grPaint); |
| } |
| |
| /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must |
| be setup as a vertex attribute using the specified SkXfermode::Mode. */ |
| bool SkPaintToGrPaintWithXfermode(GrContext* context, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| SkXfermode::Mode primColorMode, |
| bool primitiveIsSrc, |
| GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, skPaint, viewM, nullptr, &primColorMode, primitiveIsSrc, |
| grPaint); |
| } |
| |
| bool SkPaintToGrPaintWithTexture(GrContext* context, |
| const SkPaint& paint, |
| const SkMatrix& viewM, |
| const GrFragmentProcessor* fp, |
| bool textureIsAlphaOnly, |
| GrPaint* grPaint) { |
| SkAutoTUnref<const GrFragmentProcessor> shaderFP; |
| if (textureIsAlphaOnly) { |
| if (const SkShader* shader = paint.getShader()) { |
| shaderFP.reset(shader->asFragmentProcessor(context, |
| viewM, |
| nullptr, |
| paint.getFilterQuality())); |
| if (!shaderFP) { |
| return false; |
| } |
| const GrFragmentProcessor* fpSeries[] = { shaderFP.get(), fp }; |
| shaderFP.reset(GrFragmentProcessor::RunInSeries(fpSeries, 2)); |
| } else { |
| shaderFP.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); |
| } |
| } else { |
| shaderFP.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); |
| } |
| |
| return SkPaintToGrPaintReplaceShader(context, paint, shaderFP.get(), grPaint); |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkImageInfo GrMakeInfoFromTexture(GrTexture* tex, int w, int h, bool isOpaque) { |
| #ifdef SK_DEBUG |
| const GrSurfaceDesc& desc = tex->desc(); |
| SkASSERT(w <= desc.fWidth); |
| SkASSERT(h <= desc.fHeight); |
| #endif |
| const GrPixelConfig config = tex->config(); |
| SkColorType ct; |
| SkAlphaType at = isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType; |
| if (!GrPixelConfig2ColorAndProfileType(config, &ct, nullptr)) { |
| ct = kUnknown_SkColorType; |
| } |
| return SkImageInfo::Make(w, h, ct, at); |
| } |
| |
| |
| void GrWrapTextureInBitmap(GrTexture* src, int w, int h, bool isOpaque, SkBitmap* dst) { |
| const SkImageInfo info = GrMakeInfoFromTexture(src, w, h, isOpaque); |
| dst->setInfo(info); |
| dst->setPixelRef(new SkGrPixelRef(info, src))->unref(); |
| } |
| |
| GrTextureParams::FilterMode GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality, |
| const SkMatrix& viewM, |
| const SkMatrix& localM, |
| bool* doBicubic) { |
| *doBicubic = false; |
| GrTextureParams::FilterMode textureFilterMode; |
| switch (paintFilterQuality) { |
| case kNone_SkFilterQuality: |
| textureFilterMode = GrTextureParams::kNone_FilterMode; |
| break; |
| case kLow_SkFilterQuality: |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| break; |
| case kMedium_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| if (matrix.getMinScale() < SK_Scalar1) { |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| } else { |
| // Don't trigger MIP level generation unnecessarily. |
| textureFilterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| break; |
| } |
| case kHigh_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); |
| break; |
| } |
| default: |
| SkErrorInternals::SetError( kInvalidPaint_SkError, |
| "Sorry, I don't understand the filtering " |
| "mode you asked for. Falling back to " |
| "MIPMaps."); |
| textureFilterMode = GrTextureParams::kMipMap_FilterMode; |
| break; |
| |
| } |
| return textureFilterMode; |
| } |