blob: df44ba680ce52757ace4ef4d20ebd7396946ec14 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrPipeline_DEFINED
#define GrPipeline_DEFINED
#include "GrColor.h"
#include "GrFragmentProcessor.h"
#include "GrGpu.h"
#include "GrNonAtomicRef.h"
#include "GrPendingProgramElement.h"
#include "GrPrimitiveProcessor.h"
#include "GrProgramDesc.h"
#include "GrStencil.h"
#include "GrTypesPriv.h"
#include "SkMatrix.h"
#include "SkRefCnt.h"
class GrBatch;
class GrDeviceCoordTexture;
class GrPipelineBuilder;
/**
* Class that holds an optimized version of a GrPipelineBuilder. It is meant to be an immutable
* class, and contains all data needed to set the state for a gpu draw.
*/
class GrPipeline : public GrNonAtomicRef {
public:
///////////////////////////////////////////////////////////////////////////
/// @name Creation
struct CreateArgs {
const GrPipelineBuilder* fPipelineBuilder;
const GrCaps* fCaps;
GrProcOptInfo fColorPOI;
GrProcOptInfo fCoveragePOI;
const GrScissorState* fScissor;
GrXferProcessor::DstTexture fDstTexture;
};
/** Creates a pipeline into a pre-allocated buffer */
static GrPipeline* CreateAt(void* memory, const CreateArgs&, GrPipelineOptimizations*);
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Comparisons
/**
* Returns true if these pipelines are equivalent. Coord transforms may be applied either on
* the GPU or the CPU. When we apply them on the CPU then the matrices need not agree in order
* to combine draws. Therefore we take a param that indicates whether coord transforms should be
* compared."
*/
static bool AreEqual(const GrPipeline& a, const GrPipeline& b, bool ignoreCoordTransforms);
/**
* Allows a GrBatch subclass to determine whether two GrBatches can combine. This is a stricter
* test than isEqual because it also considers blend barriers when the two batches' bounds
* overlap
*/
static bool CanCombine(const GrPipeline& a, const SkRect& aBounds,
const GrPipeline& b, const SkRect& bBounds,
const GrCaps& caps,
bool ignoreCoordTransforms = false) {
if (!AreEqual(a, b, ignoreCoordTransforms)) {
return false;
}
if (a.xferBarrierType(caps)) {
return aBounds.fRight <= bBounds.fLeft ||
aBounds.fBottom <= bBounds.fTop ||
bBounds.fRight <= aBounds.fLeft ||
bBounds.fBottom <= aBounds.fTop;
}
return true;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name GrFragmentProcessors
int numColorFragmentProcessors() const { return fNumColorProcessors; }
int numCoverageFragmentProcessors() const {
return fFragmentProcessors.count() - fNumColorProcessors;
}
int numFragmentProcessors() const { return fFragmentProcessors.count(); }
const GrXferProcessor* getXferProcessor() const { return fXferProcessor.get(); }
const GrFragmentProcessor& getColorFragmentProcessor(int idx) const {
SkASSERT(idx < this->numColorFragmentProcessors());
return *fFragmentProcessors[idx].get();
}
const GrFragmentProcessor& getCoverageFragmentProcessor(int idx) const {
SkASSERT(idx < this->numCoverageFragmentProcessors());
return *fFragmentProcessors[fNumColorProcessors + idx].get();
}
const GrFragmentProcessor& getFragmentProcessor(int idx) const {
return *fFragmentProcessors[idx].get();
}
/// @}
/**
* Retrieves the currently set render-target.
*
* @return The currently set render target.
*/
GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
const GrStencilSettings& getStencil() const { return fStencilSettings; }
const GrScissorState& getScissorState() const { return fScissorState; }
bool isHWAntialiasState() const { return SkToBool(fFlags & kHWAA_Flag); }
bool snapVerticesToPixelCenters() const { return SkToBool(fFlags & kSnapVertices_Flag); }
GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
return fXferProcessor->xferBarrierType(fRenderTarget.get(), caps);
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
GrPipelineBuilder::DrawFace getDrawFace() const { return fDrawFace; }
///////////////////////////////////////////////////////////////////////////
bool readsFragPosition() const { return fReadsFragPosition; }
private:
GrPipeline() { /** Initialized in factory function*/ }
/**
* Alter the program desc and inputs (attribs and processors) based on the blend optimization.
*/
void adjustProgramFromOptimizations(const GrPipelineBuilder& ds,
GrXferProcessor::OptFlags,
const GrProcOptInfo& colorPOI,
const GrProcOptInfo& coveragePOI,
int* firstColorProcessorIdx,
int* firstCoverageProcessorIdx);
/**
* Calculates the primary and secondary output types of the shader. For certain output types
* the function may adjust the blend coefficients. After this function is called the src and dst
* blend coeffs will represent those used by backend API.
*/
void setOutputStateInfo(const GrPipelineBuilder& ds, GrXferProcessor::OptFlags,
const GrCaps&);
enum Flags {
kHWAA_Flag = 0x1,
kSnapVertices_Flag = 0x2,
};
typedef GrPendingIOResource<GrRenderTarget, kWrite_GrIOType> RenderTarget;
typedef GrPendingProgramElement<const GrFragmentProcessor> PendingFragmentProcessor;
typedef SkAutoSTArray<8, PendingFragmentProcessor> FragmentProcessorArray;
typedef GrPendingProgramElement<const GrXferProcessor> ProgramXferProcessor;
RenderTarget fRenderTarget;
GrScissorState fScissorState;
GrStencilSettings fStencilSettings;
GrPipelineBuilder::DrawFace fDrawFace;
uint32_t fFlags;
ProgramXferProcessor fXferProcessor;
FragmentProcessorArray fFragmentProcessors;
bool fReadsFragPosition;
// This value is also the index in fFragmentProcessors where coverage processors begin.
int fNumColorProcessors;
typedef SkRefCnt INHERITED;
};
#endif