blob: 32a128b2e2c955dc55bf85f6c93b7dbf4f249427 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#ifdef SK_HAS_HEIF_LIBRARY
#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkColorData.h"
#include "SkEndian.h"
#include "SkStream.h"
#include "SkHeifCodec.h"
#define FOURCC(c1, c2, c3, c4) \
((c1) << 24 | (c2) << 16 | (c3) << 8 | (c4))
bool SkHeifCodec::IsHeif(const void* buffer, size_t bytesRead) {
// Parse the ftyp box up to bytesRead to determine if this is HEIF.
// Any valid ftyp box should have at least 8 bytes.
if (bytesRead < 8) {
return false;
}
uint32_t* ptr = (uint32_t*)buffer;
uint64_t chunkSize = SkEndian_SwapBE32(ptr[0]);
uint32_t chunkType = SkEndian_SwapBE32(ptr[1]);
if (chunkType != FOURCC('f', 't', 'y', 'p')) {
return false;
}
int64_t offset = 8;
if (chunkSize == 1) {
// This indicates that the next 8 bytes represent the chunk size,
// and chunk data comes after that.
if (bytesRead < 16) {
return false;
}
auto* chunkSizePtr = SkTAddOffset<const uint64_t>(buffer, offset);
chunkSize = SkEndian_SwapBE64(*chunkSizePtr);
if (chunkSize < 16) {
// The smallest valid chunk is 16 bytes long in this case.
return false;
}
offset += 8;
} else if (chunkSize < 8) {
// The smallest valid chunk is 8 bytes long.
return false;
}
if (chunkSize > bytesRead) {
chunkSize = bytesRead;
}
int64_t chunkDataSize = chunkSize - offset;
// It should at least have major brand (4-byte) and minor version (4-bytes).
// The rest of the chunk (if any) is a list of (4-byte) compatible brands.
if (chunkDataSize < 8) {
return false;
}
uint32_t numCompatibleBrands = (chunkDataSize - 8) / 4;
for (size_t i = 0; i < numCompatibleBrands + 2; ++i) {
if (i == 1) {
// Skip this index, it refers to the minorVersion,
// not a brand.
continue;
}
auto* brandPtr = SkTAddOffset<const uint32_t>(buffer, offset + 4 * i);
uint32_t brand = SkEndian_SwapBE32(*brandPtr);
if (brand == FOURCC('m', 'i', 'f', '1') || brand == FOURCC('h', 'e', 'i', 'c')
|| brand == FOURCC('m', 's', 'f', '1') || brand == FOURCC('h', 'e', 'v', 'c')) {
return true;
}
}
return false;
}
static SkEncodedOrigin get_orientation(const HeifFrameInfo& frameInfo) {
switch (frameInfo.mRotationAngle) {
case 0: return kTopLeft_SkEncodedOrigin;
case 90: return kRightTop_SkEncodedOrigin;
case 180: return kBottomRight_SkEncodedOrigin;
case 270: return kLeftBottom_SkEncodedOrigin;
}
return kDefault_SkEncodedOrigin;
}
struct SkHeifStreamWrapper : public HeifStream {
SkHeifStreamWrapper(SkStream* stream) : fStream(stream) {}
~SkHeifStreamWrapper() override {}
size_t read(void* buffer, size_t size) override {
return fStream->read(buffer, size);
}
bool rewind() override {
return fStream->rewind();
}
bool seek(size_t position) override {
return fStream->seek(position);
}
bool hasLength() const override {
return fStream->hasLength();
}
size_t getLength() const override {
return fStream->getLength();
}
private:
std::unique_ptr<SkStream> fStream;
};
std::unique_ptr<SkCodec> SkHeifCodec::MakeFromStream(
std::unique_ptr<SkStream> stream, Result* result) {
std::unique_ptr<HeifDecoder> heifDecoder(createHeifDecoder());
if (heifDecoder.get() == nullptr) {
*result = kInternalError;
return nullptr;
}
HeifFrameInfo frameInfo;
if (!heifDecoder->init(new SkHeifStreamWrapper(stream.release()),
&frameInfo)) {
*result = kInvalidInput;
return nullptr;
}
std::unique_ptr<SkEncodedInfo::ICCProfile> profile = nullptr;
if ((frameInfo.mIccSize > 0) && (frameInfo.mIccData != nullptr)) {
// FIXME: Would it be possible to use MakeWithoutCopy?
auto icc = SkData::MakeWithCopy(frameInfo.mIccData.get(), frameInfo.mIccSize);
profile = SkEncodedInfo::ICCProfile::Make(std::move(icc));
}
if (profile && profile->profile()->data_color_space != skcms_Signature_RGB) {
// This will result in sRGB.
profile = nullptr;
}
SkEncodedInfo info = SkEncodedInfo::Make(frameInfo.mWidth, frameInfo.mHeight,
SkEncodedInfo::kYUV_Color, SkEncodedInfo::kOpaque_Alpha, 8, std::move(profile));
SkEncodedOrigin orientation = get_orientation(frameInfo);
*result = kSuccess;
return std::unique_ptr<SkCodec>(new SkHeifCodec(std::move(info), heifDecoder.release(),
orientation));
}
SkHeifCodec::SkHeifCodec(SkEncodedInfo&& info, HeifDecoder* heifDecoder, SkEncodedOrigin origin)
: INHERITED(std::move(info), skcms_PixelFormat_RGBA_8888, nullptr, origin)
, fHeifDecoder(heifDecoder)
, fSwizzleSrcRow(nullptr)
, fColorXformSrcRow(nullptr)
{}
bool SkHeifCodec::conversionSupported(const SkImageInfo& dstInfo, bool srcIsOpaque,
bool needsColorXform) {
SkASSERT(srcIsOpaque);
if (kUnknown_SkAlphaType == dstInfo.alphaType()) {
return false;
}
if (kOpaque_SkAlphaType != dstInfo.alphaType()) {
SkCodecPrintf("Warning: an opaque image should be decoded as opaque "
"- it is being decoded as non-opaque, which will draw slower\n");
}
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
case kBGRA_8888_SkColorType:
return fHeifDecoder->setOutputColor(kHeifColorFormat_BGRA_8888);
case kRGB_565_SkColorType:
if (needsColorXform) {
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
} else {
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGB565);
}
case kRGBA_F16_SkColorType:
SkASSERT(needsColorXform);
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
default:
return false;
}
}
int SkHeifCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count,
const Options& opts) {
// When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case,
// we will always decode into fSwizzlerSrcRow before swizzling into the next buffer.
// We can never swizzle "in place" because the swizzler may perform sampling and/or
// subsetting.
// When fColorXformSrcRow is non-null, it means that we need to color xform and that
// we cannot color xform "in place" (many times we can, but not when the dst is F16).
// In this case, we will color xform from fColorXformSrcRow into the dst.
uint8_t* decodeDst = (uint8_t*) dst;
uint32_t* swizzleDst = (uint32_t*) dst;
size_t decodeDstRowBytes = rowBytes;
size_t swizzleDstRowBytes = rowBytes;
int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width();
if (fSwizzleSrcRow && fColorXformSrcRow) {
decodeDst = fSwizzleSrcRow;
swizzleDst = fColorXformSrcRow;
decodeDstRowBytes = 0;
swizzleDstRowBytes = 0;
dstWidth = fSwizzler->swizzleWidth();
} else if (fColorXformSrcRow) {
decodeDst = (uint8_t*) fColorXformSrcRow;
swizzleDst = fColorXformSrcRow;
decodeDstRowBytes = 0;
swizzleDstRowBytes = 0;
} else if (fSwizzleSrcRow) {
decodeDst = fSwizzleSrcRow;
decodeDstRowBytes = 0;
dstWidth = fSwizzler->swizzleWidth();
}
for (int y = 0; y < count; y++) {
if (!fHeifDecoder->getScanline(decodeDst)) {
return y;
}
if (fSwizzler) {
fSwizzler->swizzle(swizzleDst, decodeDst);
}
if (this->colorXform()) {
this->applyColorXform(dst, swizzleDst, dstWidth);
dst = SkTAddOffset<void>(dst, rowBytes);
}
decodeDst = SkTAddOffset<uint8_t>(decodeDst, decodeDstRowBytes);
swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes);
}
return count;
}
/*
* Performs the heif decode
*/
SkCodec::Result SkHeifCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& options,
int* rowsDecoded) {
if (options.fSubset) {
// Not supporting subsets on this path for now.
// TODO: if the heif has tiles, we can support subset here, but
// need to retrieve tile config from metadata retriever first.
return kUnimplemented;
}
if (!fHeifDecoder->decode(&fFrameInfo)) {
return kInvalidInput;
}
fSwizzler.reset(nullptr);
this->allocateStorage(dstInfo);
int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options);
if (rows < dstInfo.height()) {
*rowsDecoded = rows;
return kIncompleteInput;
}
return kSuccess;
}
void SkHeifCodec::allocateStorage(const SkImageInfo& dstInfo) {
int dstWidth = dstInfo.width();
size_t swizzleBytes = 0;
if (fSwizzler) {
swizzleBytes = fFrameInfo.mBytesPerPixel * fFrameInfo.mWidth;
dstWidth = fSwizzler->swizzleWidth();
SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes));
}
size_t xformBytes = 0;
if (this->colorXform() && (kRGBA_F16_SkColorType == dstInfo.colorType() ||
kRGB_565_SkColorType == dstInfo.colorType())) {
xformBytes = dstWidth * sizeof(uint32_t);
}
size_t totalBytes = swizzleBytes + xformBytes;
fStorage.reset(totalBytes);
if (totalBytes > 0) {
fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr;
fColorXformSrcRow = (xformBytes > 0) ?
SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr;
}
}
void SkHeifCodec::initializeSwizzler(
const SkImageInfo& dstInfo, const Options& options) {
SkImageInfo swizzlerDstInfo = dstInfo;
if (this->colorXform()) {
// The color xform will be expecting RGBA 8888 input.
swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType);
}
fSwizzler.reset(SkSwizzler::CreateSwizzler(this->getEncodedInfo(), nullptr,
swizzlerDstInfo, options, nullptr, true));
SkASSERT(fSwizzler);
}
SkSampler* SkHeifCodec::getSampler(bool createIfNecessary) {
if (!createIfNecessary || fSwizzler) {
SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow));
return fSwizzler.get();
}
this->initializeSwizzler(this->dstInfo(), this->options());
this->allocateStorage(this->dstInfo());
return fSwizzler.get();
}
SkCodec::Result SkHeifCodec::onStartScanlineDecode(
const SkImageInfo& dstInfo, const Options& options) {
// TODO: For now, just decode the whole thing even when there is a subset.
// If the heif image has tiles, we could potentially do this much faster,
// but the tile configuration needs to be retrieved from the metadata.
if (!fHeifDecoder->decode(&fFrameInfo)) {
return kInvalidInput;
}
if (options.fSubset) {
this->initializeSwizzler(dstInfo, options);
} else {
fSwizzler.reset(nullptr);
}
this->allocateStorage(dstInfo);
return kSuccess;
}
int SkHeifCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) {
return this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options());
}
bool SkHeifCodec::onSkipScanlines(int count) {
return count == (int) fHeifDecoder->skipScanlines(count);
}
#endif // SK_HAS_HEIF_LIBRARY