blob: b06c97b34b80cef9a2e830653154a9f5e039f382 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDrawingManager.h"
#include "GrContext.h"
#include "GrGpu.h"
#include "GrOnFlushResourceProvider.h"
#include "GrRenderTargetContext.h"
#include "GrPathRenderingRenderTargetContext.h"
#include "GrRenderTargetProxy.h"
#include "GrResourceProvider.h"
#include "GrSoftwarePathRenderer.h"
#include "GrSurfacePriv.h"
#include "GrSurfaceProxyPriv.h"
#include "GrTextureContext.h"
#include "GrTextureOpList.h"
#include "SkSurface_Gpu.h"
#include "SkTTopoSort.h"
#include "text/GrAtlasTextContext.h"
#include "text/GrStencilAndCoverTextContext.h"
void GrDrawingManager::cleanup() {
for (int i = 0; i < fOpLists.count(); ++i) {
// no opList should receive a new command after this
fOpLists[i]->makeClosed(*fContext->caps());
// We shouldn't need to do this, but it turns out some clients still hold onto opLists
// after a cleanup.
// MDB TODO: is this still true?
fOpLists[i]->reset();
}
fOpLists.reset();
delete fPathRendererChain;
fPathRendererChain = nullptr;
SkSafeSetNull(fSoftwarePathRenderer);
}
GrDrawingManager::~GrDrawingManager() {
this->cleanup();
}
void GrDrawingManager::abandon() {
fAbandoned = true;
for (int i = 0; i < fOpLists.count(); ++i) {
fOpLists[i]->abandonGpuResources();
}
this->cleanup();
}
void GrDrawingManager::freeGpuResources() {
// a path renderer may be holding onto resources
delete fPathRendererChain;
fPathRendererChain = nullptr;
SkSafeSetNull(fSoftwarePathRenderer);
for (int i = 0; i < fOpLists.count(); ++i) {
fOpLists[i]->freeGpuResources();
}
}
void GrDrawingManager::reset() {
for (int i = 0; i < fOpLists.count(); ++i) {
fOpLists[i]->reset();
}
fFlushState.reset();
}
gr_instanced::OpAllocator* GrDrawingManager::instancingAllocator() {
if (fInstancingAllocator) {
return fInstancingAllocator.get();
}
fInstancingAllocator = fContext->getGpu()->createInstancedRenderingAllocator();
return fInstancingAllocator.get();
}
// MDB TODO: make use of the 'proxy' parameter.
void GrDrawingManager::internalFlush(GrSurfaceProxy*, GrResourceCache::FlushType type) {
if (fFlushing || this->wasAbandoned()) {
return;
}
fFlushing = true;
bool flushed = false;
for (int i = 0; i < fOpLists.count(); ++i) {
// Semi-usually the GrOpLists are already closed at this point, but sometimes Ganesh
// needs to flush mid-draw. In that case, the SkGpuDevice's GrOpLists won't be closed
// but need to be flushed anyway. Closing such GrOpLists here will mean new
// GrOpLists will be created to replace them if the SkGpuDevice(s) write to them again.
fOpLists[i]->makeClosed(*fContext->caps());
}
#ifdef SK_DEBUG
// This block checks for any unnecessary splits in the opLists. If two sequential opLists
// share the same backing GrSurfaceProxy it means the opList was artificially split.
if (fOpLists.count()) {
GrRenderTargetOpList* prevOpList = fOpLists[0]->asRenderTargetOpList();
for (int i = 1; i < fOpLists.count(); ++i) {
GrRenderTargetOpList* curOpList = fOpLists[i]->asRenderTargetOpList();
if (prevOpList && curOpList) {
SkASSERT(prevOpList->fTarget.get() != curOpList->fTarget.get());
}
prevOpList = curOpList;
}
}
#endif
#ifdef ENABLE_MDB
SkDEBUGCODE(bool result =)
SkTTopoSort<GrOpList, GrOpList::TopoSortTraits>(&fOpLists);
SkASSERT(result);
#endif
GrOnFlushResourceProvider onFlushProvider(this);
if (!fOnFlushCBObjects.empty()) {
// MDB TODO: pre-MDB '1' is the correct pre-allocated size. Post-MDB it will need
// to be larger.
SkAutoSTArray<1, uint32_t> opListIds(fOpLists.count());
for (int i = 0; i < fOpLists.count(); ++i) {
opListIds[i] = fOpLists[i]->uniqueID();
}
SkSTArray<1, sk_sp<GrRenderTargetContext>> renderTargetContexts;
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->preFlush(&onFlushProvider,
opListIds.get(), opListIds.count(),
&renderTargetContexts);
if (!renderTargetContexts.count()) {
continue; // This is fine. No atlases of this type are required for this flush
}
for (int j = 0; j < renderTargetContexts.count(); ++j) {
GrOpList* opList = renderTargetContexts[j]->getOpList();
if (!opList) {
continue; // Odd - but not a big deal
}
opList->makeClosed(*fContext->caps());
opList->prepareOps(&fFlushState);
if (!opList->executeOps(&fFlushState)) {
continue; // This is bad
}
}
renderTargetContexts.reset();
}
}
#if 0
// Enable this to print out verbose GrOp information
for (int i = 0; i < fOpLists.count(); ++i) {
SkDEBUGCODE(fOpLists[i]->dump();)
}
#endif
for (int i = 0; i < fOpLists.count(); ++i) {
if (!fOpLists[i]->instantiate(fContext->resourceProvider())) {
fOpLists[i] = nullptr;
continue;
}
fOpLists[i]->prepareOps(&fFlushState);
}
// Upload all data to the GPU
fFlushState.preIssueDraws();
for (int i = 0; i < fOpLists.count(); ++i) {
if (!fOpLists[i]) {
continue;
}
if (fOpLists[i]->executeOps(&fFlushState)) {
flushed = true;
}
fOpLists[i]->reset();
}
fOpLists.reset();
SkASSERT(fFlushState.nextDrawToken() == fFlushState.nextTokenToFlush());
fContext->getGpu()->finishFlush();
fFlushState.reset();
// We always have to notify the cache when it requested a flush so it can reset its state.
if (flushed || type == GrResourceCache::FlushType::kCacheRequested) {
fContext->getResourceCache()->notifyFlushOccurred(type);
}
for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) {
onFlushCBObject->postFlush();
}
fFlushing = false;
}
void GrDrawingManager::prepareSurfaceForExternalIO(GrSurfaceProxy* proxy) {
if (this->wasAbandoned()) {
return;
}
SkASSERT(proxy);
if (proxy->priv().hasPendingIO()) {
this->flush(proxy);
}
if (!proxy->instantiate(fContext->resourceProvider())) {
return;
}
GrSurface* surface = proxy->priv().peekSurface();
if (fContext->getGpu() && surface->asRenderTarget()) {
fContext->getGpu()->resolveRenderTarget(surface->asRenderTarget());
}
}
void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) {
fOnFlushCBObjects.push_back(onFlushCBObject);
}
sk_sp<GrRenderTargetOpList> GrDrawingManager::newRTOpList(GrRenderTargetProxy* rtp,
bool managedOpList) {
SkASSERT(fContext);
// This is a temporary fix for the partial-MDB world. In that world we're not reordering
// so ops that (in the single opList world) would've just glommed onto the end of the single
// opList but referred to a far earlier RT need to appear in their own opList.
if (!fOpLists.empty()) {
fOpLists.back()->makeClosed(*fContext->caps());
}
sk_sp<GrRenderTargetOpList> opList(new GrRenderTargetOpList(rtp,
fContext->getGpu(),
fContext->getAuditTrail()));
SkASSERT(rtp->getLastOpList() == opList.get());
if (managedOpList) {
fOpLists.push_back() = opList;
}
return opList;
}
sk_sp<GrTextureOpList> GrDrawingManager::newTextureOpList(GrTextureProxy* textureProxy) {
SkASSERT(fContext);
// This is a temporary fix for the partial-MDB world. In that world we're not reordering
// so ops that (in the single opList world) would've just glommed onto the end of the single
// opList but referred to a far earlier RT need to appear in their own opList.
if (!fOpLists.empty()) {
fOpLists.back()->makeClosed(*fContext->caps());
}
sk_sp<GrTextureOpList> opList(new GrTextureOpList(fContext->resourceProvider(),
textureProxy,
fContext->getAuditTrail()));
SkASSERT(textureProxy->getLastOpList() == opList.get());
fOpLists.push_back() = opList;
return opList;
}
GrAtlasTextContext* GrDrawingManager::getAtlasTextContext() {
if (!fAtlasTextContext) {
fAtlasTextContext.reset(GrAtlasTextContext::Create());
}
return fAtlasTextContext.get();
}
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args,
bool allowSW,
GrPathRendererChain::DrawType drawType,
GrPathRenderer::StencilSupport* stencilSupport) {
if (!fPathRendererChain) {
fPathRendererChain = new GrPathRendererChain(fContext, fOptionsForPathRendererChain);
}
GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport);
if (!pr && allowSW) {
if (!fSoftwarePathRenderer) {
fSoftwarePathRenderer =
new GrSoftwarePathRenderer(fContext->resourceProvider(),
fOptionsForPathRendererChain.fAllowPathMaskCaching);
}
if (fSoftwarePathRenderer->canDrawPath(args)) {
pr = fSoftwarePathRenderer;
}
}
return pr;
}
sk_sp<GrRenderTargetContext> GrDrawingManager::makeRenderTargetContext(
sk_sp<GrSurfaceProxy> sProxy,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps* surfaceProps,
bool managedOpList) {
if (this->wasAbandoned() || !sProxy->asRenderTargetProxy()) {
return nullptr;
}
// SkSurface catches bad color space usage at creation. This check handles anything that slips
// by, including internal usage. We allow a null color space here, for read/write pixels and
// other special code paths. If a color space is provided, though, enforce all other rules.
if (colorSpace && !SkSurface_Gpu::Valid(fContext, sProxy->config(), colorSpace.get())) {
SkDEBUGFAIL("Invalid config and colorspace combination");
return nullptr;
}
sk_sp<GrRenderTargetProxy> rtp(sk_ref_sp(sProxy->asRenderTargetProxy()));
bool useDIF = false;
if (surfaceProps) {
useDIF = surfaceProps->isUseDeviceIndependentFonts();
}
if (useDIF && fContext->caps()->shaderCaps()->pathRenderingSupport() &&
GrFSAAType::kNone != rtp->fsaaType()) {
// TODO: defer stencil buffer attachment for PathRenderingDrawContext
if (!rtp->instantiate(fContext->resourceProvider())) {
return nullptr;
}
GrRenderTarget* rt = rtp->priv().peekRenderTarget();
GrStencilAttachment* sb = fContext->resourceProvider()->attachStencilAttachment(rt);
if (sb) {
return sk_sp<GrRenderTargetContext>(new GrPathRenderingRenderTargetContext(
fContext, this, std::move(rtp),
std::move(colorSpace), surfaceProps,
fContext->getAuditTrail(), fSingleOwner));
}
}
return sk_sp<GrRenderTargetContext>(new GrRenderTargetContext(fContext, this, std::move(rtp),
std::move(colorSpace),
surfaceProps,
fContext->getAuditTrail(),
fSingleOwner, managedOpList));
}
sk_sp<GrTextureContext> GrDrawingManager::makeTextureContext(sk_sp<GrSurfaceProxy> sProxy,
sk_sp<SkColorSpace> colorSpace) {
if (this->wasAbandoned() || !sProxy->asTextureProxy()) {
return nullptr;
}
// SkSurface catches bad color space usage at creation. This check handles anything that slips
// by, including internal usage. We allow a null color space here, for read/write pixels and
// other special code paths. If a color space is provided, though, enforce all other rules.
if (colorSpace && !SkSurface_Gpu::Valid(fContext, sProxy->config(), colorSpace.get())) {
SkDEBUGFAIL("Invalid config and colorspace combination");
return nullptr;
}
// GrTextureRenderTargets should always be using GrRenderTargetContext
SkASSERT(!sProxy->asRenderTargetProxy());
sk_sp<GrTextureProxy> textureProxy(sk_ref_sp(sProxy->asTextureProxy()));
return sk_sp<GrTextureContext>(new GrTextureContext(fContext, this, std::move(textureProxy),
std::move(colorSpace),
fContext->getAuditTrail(),
fSingleOwner));
}