blob: d13be5a03bf797fc9b0cb0da1da10d330331ba27 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h" // Keep this before any #ifdef ...
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
#ifdef SK_BUILD_FOR_MAC
#import <ApplicationServices/ApplicationServices.h>
#endif
#ifdef SK_BUILD_FOR_IOS
#include <CoreText/CoreText.h>
#include <CoreText/CTFontManager.h>
#include <CoreGraphics/CoreGraphics.h>
#include <CoreFoundation/CoreFoundation.h>
#endif
#include "SkAdvancedTypefaceMetrics.h"
#include "SkAutoMalloc.h"
#include "SkCGUtils.h"
#include "SkColorPriv.h"
#include "SkDescriptor.h"
#include "SkEndian.h"
#include "SkFloatingPoint.h"
#include "SkFontDescriptor.h"
#include "SkFontMgr.h"
#include "SkGlyph.h"
#include "SkMakeUnique.h"
#include "SkMaskGamma.h"
#include "SkMathPriv.h"
#include "SkMutex.h"
#include "SkOTTable_OS_2.h"
#include "SkOTUtils.h"
#include "SkOnce.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkSFNTHeader.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkTemplates.h"
#include "SkTypefaceCache.h"
#include "SkTypeface_mac.h"
#include "SkUtils.h"
#include <dlfcn.h>
// Experimental code to use a global lock whenever we access CG, to see if this reduces
// crashes in Chrome
#define USE_GLOBAL_MUTEX_FOR_CG_ACCESS
#ifdef USE_GLOBAL_MUTEX_FOR_CG_ACCESS
SK_DECLARE_STATIC_MUTEX(gCGMutex);
#define AUTO_CG_LOCK() SkAutoMutexAcquire amc(gCGMutex)
#else
#define AUTO_CG_LOCK()
#endif
// Set to make glyph bounding boxes visible.
#define SK_SHOW_TEXT_BLIT_COVERAGE 0
class SkScalerContext_Mac;
struct CFSafeRelease {
void operator()(CFTypeRef cfTypeRef) {
if (cfTypeRef) {
CFRelease(cfTypeRef);
}
}
};
template <typename CFRef> using UniqueCFRef =
std::unique_ptr<skstd::remove_pointer_t<CFRef>, CFSafeRelease>;
static UniqueCFRef<CFStringRef> make_CFString(const char str[]) {
return UniqueCFRef<CFStringRef>(CFStringCreateWithCString(nullptr, str, kCFStringEncodingUTF8));
}
// inline versions of these rect helpers
static bool CGRectIsEmpty_inline(const CGRect& rect) {
return rect.size.width <= 0 || rect.size.height <= 0;
}
static CGFloat CGRectGetMinX_inline(const CGRect& rect) {
return rect.origin.x;
}
static CGFloat CGRectGetMaxX_inline(const CGRect& rect) {
return rect.origin.x + rect.size.width;
}
static CGFloat CGRectGetMinY_inline(const CGRect& rect) {
return rect.origin.y;
}
static CGFloat CGRectGetMaxY_inline(const CGRect& rect) {
return rect.origin.y + rect.size.height;
}
static CGFloat CGRectGetWidth_inline(const CGRect& rect) {
return rect.size.width;
}
///////////////////////////////////////////////////////////////////////////////
static void sk_memset_rect32(uint32_t* ptr, uint32_t value,
int width, int height, size_t rowBytes) {
SkASSERT(width);
SkASSERT(width * sizeof(uint32_t) <= rowBytes);
if (width >= 32) {
while (height) {
sk_memset32(ptr, value, width);
ptr = (uint32_t*)((char*)ptr + rowBytes);
height -= 1;
}
return;
}
rowBytes -= width * sizeof(uint32_t);
if (width >= 8) {
while (height) {
int w = width;
do {
*ptr++ = value; *ptr++ = value;
*ptr++ = value; *ptr++ = value;
*ptr++ = value; *ptr++ = value;
*ptr++ = value; *ptr++ = value;
w -= 8;
} while (w >= 8);
while (--w >= 0) {
*ptr++ = value;
}
ptr = (uint32_t*)((char*)ptr + rowBytes);
height -= 1;
}
} else {
while (height) {
int w = width;
do {
*ptr++ = value;
} while (--w > 0);
ptr = (uint32_t*)((char*)ptr + rowBytes);
height -= 1;
}
}
}
typedef uint32_t CGRGBPixel;
static unsigned CGRGBPixel_getAlpha(CGRGBPixel pixel) {
return pixel & 0xFF;
}
static CGFloat ScalarToCG(SkScalar scalar) {
if (sizeof(CGFloat) == sizeof(float)) {
return SkScalarToFloat(scalar);
} else {
SkASSERT(sizeof(CGFloat) == sizeof(double));
return (CGFloat) SkScalarToDouble(scalar);
}
}
static SkScalar CGToScalar(CGFloat cgFloat) {
if (sizeof(CGFloat) == sizeof(float)) {
return SkFloatToScalar(cgFloat);
} else {
SkASSERT(sizeof(CGFloat) == sizeof(double));
return SkDoubleToScalar(cgFloat);
}
}
static float CGToFloat(CGFloat cgFloat) {
if (sizeof(CGFloat) == sizeof(float)) {
return cgFloat;
} else {
SkASSERT(sizeof(CGFloat) == sizeof(double));
return static_cast<float>(cgFloat);
}
}
static CGAffineTransform MatrixToCGAffineTransform(const SkMatrix& matrix) {
return CGAffineTransformMake( ScalarToCG(matrix[SkMatrix::kMScaleX]),
-ScalarToCG(matrix[SkMatrix::kMSkewY] ),
-ScalarToCG(matrix[SkMatrix::kMSkewX] ),
ScalarToCG(matrix[SkMatrix::kMScaleY]),
ScalarToCG(matrix[SkMatrix::kMTransX]),
ScalarToCG(matrix[SkMatrix::kMTransY]));
}
///////////////////////////////////////////////////////////////////////////////
#define BITMAP_INFO_RGB (kCGImageAlphaNoneSkipFirst | kCGBitmapByteOrder32Host)
/**
* There does not appear to be a publicly accessable API for determining if lcd
* font smoothing will be applied if we request it. The main issue is that if
* smoothing is applied a gamma of 2.0 will be used, if not a gamma of 1.0.
*/
static bool supports_LCD() {
static int gSupportsLCD = -1;
if (gSupportsLCD >= 0) {
return (bool) gSupportsLCD;
}
uint32_t rgb = 0;
UniqueCFRef<CGColorSpaceRef> colorspace(CGColorSpaceCreateDeviceRGB());
UniqueCFRef<CGContextRef> cgContext(
CGBitmapContextCreate(&rgb, 1, 1, 8, 4, colorspace.get(), BITMAP_INFO_RGB));
UniqueCFRef<CTFontRef> ctFont(CTFontCreateWithName(CFSTR("Helvetica"), 16, nullptr));
CGContextSetShouldSmoothFonts(cgContext.get(), true);
CGContextSetShouldAntialias(cgContext.get(), true);
CGContextSetTextDrawingMode(cgContext.get(), kCGTextFill);
CGContextSetGrayFillColor(cgContext.get(), 1, 1);
CGPoint point = CGPointMake(-1, 0);
static const UniChar pipeChar = '|';
CGGlyph pipeGlyph;
CTFontGetGlyphsForCharacters(ctFont.get(), &pipeChar, &pipeGlyph, 1);
CTFontDrawGlyphs(ctFont.get(), &pipeGlyph, &point, 1, cgContext.get());
uint32_t r = (rgb >> 16) & 0xFF;
uint32_t g = (rgb >> 8) & 0xFF;
uint32_t b = (rgb >> 0) & 0xFF;
gSupportsLCD = (r != g || r != b);
return (bool) gSupportsLCD;
}
class Offscreen {
public:
Offscreen()
: fRGBSpace(nullptr)
, fCG(nullptr)
, fDoAA(false)
, fDoLCD(false)
{
fSize.set(0, 0);
}
CGRGBPixel* getCG(const SkScalerContext_Mac& context, const SkGlyph& glyph,
CGGlyph glyphID, size_t* rowBytesPtr, bool generateA8FromLCD);
private:
enum {
kSize = 32 * 32 * sizeof(CGRGBPixel)
};
SkAutoSMalloc<kSize> fImageStorage;
UniqueCFRef<CGColorSpaceRef> fRGBSpace;
// cached state
UniqueCFRef<CGContextRef> fCG;
SkISize fSize;
bool fDoAA;
bool fDoLCD;
static int RoundSize(int dimension) {
return SkNextPow2(dimension);
}
};
///////////////////////////////////////////////////////////////////////////////
static bool find_dict_CGFloat(CFDictionaryRef dict, CFStringRef name, CGFloat* value) {
CFNumberRef num;
return CFDictionaryGetValueIfPresent(dict, name, (const void**)&num)
&& CFNumberIsFloatType(num)
&& CFNumberGetValue(num, kCFNumberCGFloatType, value);
}
template <typename S, typename D, typename C> struct LinearInterpolater {
struct Mapping {
S src_val;
D dst_val;
};
constexpr LinearInterpolater(Mapping const mapping[], int mappingCount)
: fMapping(mapping), fMappingCount(mappingCount) {}
static D map(S value, S src_min, S src_max, D dst_min, D dst_max) {
SkASSERT(src_min < src_max);
SkASSERT(dst_min <= dst_max);
return C()(dst_min + (((value - src_min) * (dst_max - dst_min)) / (src_max - src_min)));
}
D map(S val) const {
// -Inf to [0]
if (val < fMapping[0].src_val) {
return fMapping[0].dst_val;
}
// Linear from [i] to [i+1]
for (int i = 0; i < fMappingCount - 1; ++i) {
if (val < fMapping[i+1].src_val) {
return map(val, fMapping[i].src_val, fMapping[i+1].src_val,
fMapping[i].dst_val, fMapping[i+1].dst_val);
}
}
// From [n] to +Inf
// if (fcweight < Inf)
return fMapping[fMappingCount - 1].dst_val;
}
Mapping const * fMapping;
int fMappingCount;
};
struct RoundCGFloatToInt {
int operator()(CGFloat s) { return s + 0.5; }
};
struct CGFloatIdentity {
CGFloat operator()(CGFloat s) { return s; }
};
/** Returns the [-1, 1] CTFontDescriptor weights for the
* <0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000> CSS weights.
*
* It is assumed that the values will be interpolated linearly between these points.
* NSFontWeightXXX were added in 10.11, appear in 10.10, but do not appear in 10.9.
* The actual values appear to be stable, but they may change in the future without notice.
*/
static CGFloat(&get_NSFontWeight_mapping())[11] {
// Declarations in <AppKit/AppKit.h> on macOS, <UIKit/UIKit.h> on iOS
#ifdef SK_BUILD_FOR_MAC
# define SK_KIT_FONT_WEIGHT_PREFIX "NS"
#endif
#ifdef SK_BUILD_FOR_IOS
# define SK_KIT_FONT_WEIGHT_PREFIX "UI"
#endif
static constexpr struct {
CGFloat defaultValue;
const char* name;
} nsFontWeightLoaderInfos[] = {
{ -0.80f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightUltraLight" },
{ -0.60f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightThin" },
{ -0.40f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightLight" },
{ 0.00f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightRegular" },
{ 0.23f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightMedium" },
{ 0.30f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightSemibold" },
{ 0.40f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightBold" },
{ 0.56f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightHeavy" },
{ 0.62f, SK_KIT_FONT_WEIGHT_PREFIX "FontWeightBlack" },
};
static_assert(SK_ARRAY_COUNT(nsFontWeightLoaderInfos) == 9, "");
static CGFloat nsFontWeights[11];
static SkOnce once;
once([&] {
size_t i = 0;
nsFontWeights[i++] = -1.00;
for (const auto& nsFontWeightLoaderInfo : nsFontWeightLoaderInfos) {
void* nsFontWeightValuePtr = dlsym(RTLD_DEFAULT, nsFontWeightLoaderInfo.name);
if (nsFontWeightValuePtr) {
nsFontWeights[i++] = *(static_cast<CGFloat*>(nsFontWeightValuePtr));
} else {
nsFontWeights[i++] = nsFontWeightLoaderInfo.defaultValue;
}
}
nsFontWeights[i++] = 1.00;
});
return nsFontWeights;
}
/** Convert the [0, 1000] CSS weight to [-1, 1] CTFontDescriptor weight (for system fonts).
*
* The -1 to 1 weights reported by CTFontDescriptors have different mappings depending on if the
* CTFont is native or created from a CGDataProvider.
*/
static CGFloat fontstyle_to_ct_weight(int fontstyleWeight) {
using Interpolator = LinearInterpolater<int, CGFloat, CGFloatIdentity>;
// Note that Mac supports the old OS2 version A so 0 through 10 are as if multiplied by 100.
// However, on this end we can't tell, so this is ignored.
static Interpolator::Mapping nativeWeightMappings[11];
static SkOnce once;
once([&] {
CGFloat(&nsFontWeights)[11] = get_NSFontWeight_mapping();
for (int i = 0; i < 11; ++i) {
nativeWeightMappings[i].src_val = i * 100;
nativeWeightMappings[i].dst_val = nsFontWeights[i];
}
});
static constexpr Interpolator nativeInterpolator(
nativeWeightMappings, SK_ARRAY_COUNT(nativeWeightMappings));
return nativeInterpolator.map(fontstyleWeight);
}
/** Convert the [-1, 1] CTFontDescriptor weight to [0, 1000] CSS weight.
*
* The -1 to 1 weights reported by CTFontDescriptors have different mappings depending on if the
* CTFont is native or created from a CGDataProvider.
*/
static int ct_weight_to_fontstyle(CGFloat cgWeight, bool fromDataProvider) {
using Interpolator = LinearInterpolater<CGFloat, int, RoundCGFloatToInt>;
// Note that Mac supports the old OS2 version A so 0 through 10 are as if multiplied by 100.
// However, on this end we can't tell, so this is ignored.
/** This mapping for CGDataProvider created fonts is determined by creating font data with every
* weight, creating a CTFont, and asking the CTFont for its weight. See the TypefaceStyle test
* in tests/TypefaceTest.cpp for the code used to determine these values.
*/
static constexpr Interpolator::Mapping dataProviderWeightMappings[] = {
{ -1.00, 0 },
{ -0.70, 100 },
{ -0.50, 200 },
{ -0.23, 300 },
{ 0.00, 400 },
{ 0.20, 500 },
{ 0.30, 600 },
{ 0.40, 700 },
{ 0.60, 800 },
{ 0.80, 900 },
{ 1.00, 1000 },
};
static constexpr Interpolator dataProviderInterpolator(
dataProviderWeightMappings, SK_ARRAY_COUNT(dataProviderWeightMappings));
static Interpolator::Mapping nativeWeightMappings[11];
static SkOnce once;
once([&] {
CGFloat(&nsFontWeights)[11] = get_NSFontWeight_mapping();
for (int i = 0; i < 11; ++i) {
nativeWeightMappings[i].src_val = nsFontWeights[i];
nativeWeightMappings[i].dst_val = i * 100;
}
});
static constexpr Interpolator nativeInterpolator(
nativeWeightMappings, SK_ARRAY_COUNT(nativeWeightMappings));
return fromDataProvider ? dataProviderInterpolator.map(cgWeight)
: nativeInterpolator.map(cgWeight);
}
/** Convert the [0, 10] CSS weight to [-1, 1] CTFontDescriptor width. */
static int fontstyle_to_ct_width(int fontstyleWidth) {
using Interpolator = LinearInterpolater<int, CGFloat, CGFloatIdentity>;
// Values determined by creating font data with every width, creating a CTFont,
// and asking the CTFont for its width. See TypefaceStyle test for basics.
static constexpr Interpolator::Mapping widthMappings[] = {
{ 0, -0.5 },
{ 10, 0.5 },
};
static constexpr Interpolator interpolator(widthMappings, SK_ARRAY_COUNT(widthMappings));
return interpolator.map(fontstyleWidth);
}
/** Convert the [-1, 1] CTFontDescriptor width to [0, 10] CSS weight. */
static int ct_width_to_fontstyle(CGFloat cgWidth) {
using Interpolator = LinearInterpolater<CGFloat, int, RoundCGFloatToInt>;
// Values determined by creating font data with every width, creating a CTFont,
// and asking the CTFont for its width. See TypefaceStyle test for basics.
static constexpr Interpolator::Mapping widthMappings[] = {
{ -0.5, 0 },
{ 0.5, 10 },
};
static constexpr Interpolator interpolator(widthMappings, SK_ARRAY_COUNT(widthMappings));
return interpolator.map(cgWidth);
}
static SkFontStyle fontstyle_from_descriptor(CTFontDescriptorRef desc, bool fromDataProvider) {
UniqueCFRef<CFTypeRef> fontTraits(CTFontDescriptorCopyAttribute(desc, kCTFontTraitsAttribute));
if (!fontTraits || CFDictionaryGetTypeID() != CFGetTypeID(fontTraits.get())) {
return SkFontStyle();
}
UniqueCFRef<CFDictionaryRef> fontTraitsDict(static_cast<CFDictionaryRef>(fontTraits.release()));
CGFloat weight, width, slant;
if (!find_dict_CGFloat(fontTraitsDict.get(), kCTFontWeightTrait, &weight)) {
weight = 0;
}
if (!find_dict_CGFloat(fontTraitsDict.get(), kCTFontWidthTrait, &width)) {
width = 0;
}
if (!find_dict_CGFloat(fontTraitsDict.get(), kCTFontSlantTrait, &slant)) {
slant = 0;
}
return SkFontStyle(ct_weight_to_fontstyle(weight, fromDataProvider),
ct_width_to_fontstyle(width),
slant ? SkFontStyle::kItalic_Slant
: SkFontStyle::kUpright_Slant);
}
class SkTypeface_Mac : public SkTypeface {
public:
SkTypeface_Mac(UniqueCFRef<CTFontRef> fontRef, UniqueCFRef<CFTypeRef> resourceRef,
const SkFontStyle& fs, bool isFixedPitch,
bool isLocalStream)
: SkTypeface(fs, isFixedPitch)
, fFontRef(std::move(fontRef))
, fOriginatingCFTypeRef(std::move(resourceRef))
, fHasColorGlyphs(
SkToBool(CTFontGetSymbolicTraits(fFontRef.get()) & kCTFontColorGlyphsTrait))
, fIsLocalStream(isLocalStream)
{
SkASSERT(fFontRef);
}
UniqueCFRef<CTFontRef> fFontRef;
UniqueCFRef<CFTypeRef> fOriginatingCFTypeRef;
const bool fHasColorGlyphs;
protected:
int onGetUPEM() const override;
SkStreamAsset* onOpenStream(int* ttcIndex) const override;
std::unique_ptr<SkFontData> onMakeFontData() const override;
int onGetVariationDesignPosition(SkFontArguments::VariationPosition::Coordinate coordinates[],
int coordinateCount) const override;
void onGetFamilyName(SkString* familyName) const override;
SkTypeface::LocalizedStrings* onCreateFamilyNameIterator() const override;
int onGetTableTags(SkFontTableTag tags[]) const override;
size_t onGetTableData(SkFontTableTag, size_t offset, size_t length, void* data) const override;
SkScalerContext* onCreateScalerContext(const SkScalerContextEffects&,
const SkDescriptor*) const override;
void onFilterRec(SkScalerContextRec*) const override;
void onGetFontDescriptor(SkFontDescriptor*, bool*) const override;
SkAdvancedTypefaceMetrics* onGetAdvancedTypefaceMetrics(
PerGlyphInfo, const uint32_t* glyphIDs, uint32_t glyphIDsCount) const override;
int onCharsToGlyphs(const void* chars, Encoding,
uint16_t glyphs[], int glyphCount) const override;
int onCountGlyphs() const override;
private:
bool fIsLocalStream;
typedef SkTypeface INHERITED;
};
static bool find_by_CTFontRef(SkTypeface* cached, void* context) {
CTFontRef self = (CTFontRef)context;
CTFontRef other = ((SkTypeface_Mac*)cached)->fFontRef.get();
return CFEqual(self, other);
}
/** Creates a typeface, searching the cache if isLocalStream is false. */
static SkTypeface* create_from_CTFontRef(UniqueCFRef<CTFontRef> font,
UniqueCFRef<CFTypeRef> resource,
bool isLocalStream) {
SkASSERT(font);
if (!isLocalStream) {
SkTypeface* face = SkTypefaceCache::FindByProcAndRef(find_by_CTFontRef, (void*)font.get());
if (face) {
return face;
}
}
UniqueCFRef<CTFontDescriptorRef> desc(CTFontCopyFontDescriptor(font.get()));
SkFontStyle style = fontstyle_from_descriptor(desc.get(), isLocalStream);
CTFontSymbolicTraits traits = CTFontGetSymbolicTraits(font.get());
bool isFixedPitch = SkToBool(traits & kCTFontMonoSpaceTrait);
SkTypeface* face = new SkTypeface_Mac(std::move(font), std::move(resource),
style, isFixedPitch, isLocalStream);
if (!isLocalStream) {
SkTypefaceCache::Add(face);
}
return face;
}
/** Creates a typeface from a descriptor, searching the cache. */
static SkTypeface* create_from_desc(CTFontDescriptorRef desc) {
UniqueCFRef<CTFontRef> ctFont(CTFontCreateWithFontDescriptor(desc, 0, nullptr));
if (!ctFont) {
return nullptr;
}
return create_from_CTFontRef(std::move(ctFont), nullptr, false);
}
static UniqueCFRef<CTFontDescriptorRef> create_descriptor(const char familyName[],
const SkFontStyle& style) {
UniqueCFRef<CFMutableDictionaryRef> cfAttributes(
CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
UniqueCFRef<CFMutableDictionaryRef> cfTraits(
CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
if (!cfAttributes || !cfTraits) {
return nullptr;
}
// CTFontTraits (symbolic)
CTFontSymbolicTraits ctFontTraits = 0;
if (style.weight() >= SkFontStyle::kBold_Weight) {
ctFontTraits |= kCTFontBoldTrait;
}
if (style.slant() != SkFontStyle::kUpright_Slant) {
ctFontTraits |= kCTFontItalicTrait;
}
UniqueCFRef<CFNumberRef> cfFontTraits(
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &ctFontTraits));
if (cfFontTraits) {
CFDictionaryAddValue(cfTraits.get(), kCTFontSymbolicTrait, cfFontTraits.get());
}
// CTFontTraits (weight)
CGFloat ctWeight = fontstyle_to_ct_weight(style.weight());
UniqueCFRef<CFNumberRef> cfFontWeight(
CFNumberCreate(kCFAllocatorDefault, kCFNumberCGFloatType, &ctWeight));
if (cfFontWeight) {
CFDictionaryAddValue(cfTraits.get(), kCTFontWeightTrait, cfFontWeight.get());
}
// CTFontTraits (width)
CGFloat ctWidth = fontstyle_to_ct_width(style.weight());
UniqueCFRef<CFNumberRef> cfFontWidth(
CFNumberCreate(kCFAllocatorDefault, kCFNumberCGFloatType, &ctWidth));
if (cfFontWidth) {
CFDictionaryAddValue(cfTraits.get(), kCTFontWidthTrait, cfFontWidth.get());
}
// CTFontTraits (slant)
CGFloat ctSlant = style.slant() == SkFontStyle::kUpright_Slant ? 0 : 1;
UniqueCFRef<CFNumberRef> cfFontSlant(
CFNumberCreate(kCFAllocatorDefault, kCFNumberCGFloatType, &ctSlant));
if (cfFontSlant) {
CFDictionaryAddValue(cfTraits.get(), kCTFontSlantTrait, cfFontSlant.get());
}
// CTFontTraits
CFDictionaryAddValue(cfAttributes.get(), kCTFontTraitsAttribute, cfTraits.get());
// CTFontFamilyName
if (familyName) {
UniqueCFRef<CFStringRef> cfFontName = make_CFString(familyName);
if (cfFontName) {
CFDictionaryAddValue(cfAttributes.get(), kCTFontFamilyNameAttribute, cfFontName.get());
}
}
return UniqueCFRef<CTFontDescriptorRef>(
CTFontDescriptorCreateWithAttributes(cfAttributes.get()));
}
/** Creates a typeface from a name, searching the cache. */
static SkTypeface* create_from_name(const char familyName[], const SkFontStyle& style) {
UniqueCFRef<CTFontDescriptorRef> desc = create_descriptor(familyName, style);
if (!desc) {
return nullptr;
}
return create_from_desc(desc.get());
}
///////////////////////////////////////////////////////////////////////////////
extern CTFontRef SkTypeface_GetCTFontRef(const SkTypeface* face);
CTFontRef SkTypeface_GetCTFontRef(const SkTypeface* face) {
const SkTypeface_Mac* macface = (const SkTypeface_Mac*)face;
return macface ? macface->fFontRef.get() : nullptr;
}
/* This function is visible on the outside. It first searches the cache, and if
* not found, returns a new entry (after adding it to the cache).
*/
SkTypeface* SkCreateTypefaceFromCTFont(CTFontRef font, CFTypeRef resource) {
CFRetain(font);
if (resource) {
CFRetain(resource);
}
return create_from_CTFontRef(UniqueCFRef<CTFontRef>(font),
UniqueCFRef<CFTypeRef>(resource),
false);
}
static const char* map_css_names(const char* name) {
static const struct {
const char* fFrom; // name the caller specified
const char* fTo; // "canonical" name we map to
} gPairs[] = {
{ "sans-serif", "Helvetica" },
{ "serif", "Times" },
{ "monospace", "Courier" }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) {
if (strcmp(name, gPairs[i].fFrom) == 0) {
return gPairs[i].fTo;
}
}
return name; // no change
}
///////////////////////////////////////////////////////////////////////////////
class SkScalerContext_Mac : public SkScalerContext {
public:
SkScalerContext_Mac(sk_sp<SkTypeface_Mac>, const SkScalerContextEffects&, const SkDescriptor*);
protected:
unsigned generateGlyphCount(void) override;
uint16_t generateCharToGlyph(SkUnichar uni) override;
void generateAdvance(SkGlyph* glyph) override;
void generateMetrics(SkGlyph* glyph) override;
void generateImage(const SkGlyph& glyph) override;
void generatePath(SkGlyphID glyph, SkPath* path) override;
void generateFontMetrics(SkPaint::FontMetrics*) override;
private:
static void CTPathElement(void *info, const CGPathElement *element);
/** Returns the offset from the horizontal origin to the vertical origin in SkGlyph units. */
void getVerticalOffset(CGGlyph glyphID, SkPoint* offset) const;
Offscreen fOffscreen;
/** Unrotated variant of fCTFont.
*
* In 10.10.1 CTFontGetAdvancesForGlyphs applies the font transform to the width of the
* advances, but always sets the height to 0. This font is used to get the advances of the
* unrotated glyph, and then the rotation is applied separately.
*
* CT vertical metrics are pre-rotated (in em space, before transform) 90deg clock-wise.
* This makes kCTFontOrientationDefault dangerous, because the metrics from
* kCTFontOrientationHorizontal are in a different space from kCTFontOrientationVertical.
* With kCTFontOrientationVertical the advances must be unrotated.
*
* Sometimes, creating a copy of a CTFont with the same size but different trasform will select
* different underlying font data. As a result, avoid ever creating more than one CTFont per
* SkScalerContext to ensure that only one CTFont is used.
*
* As a result of the above (and other constraints) this font contains the size, but not the
* transform. The transform must always be applied separately.
*/
UniqueCFRef<CTFontRef> fCTFont;
/** The transform without the font size. */
CGAffineTransform fTransform;
CGAffineTransform fInvTransform;
UniqueCFRef<CGFontRef> fCGFont;
uint16_t fGlyphCount;
const bool fDoSubPosition;
const bool fVertical;
friend class Offscreen;
typedef SkScalerContext INHERITED;
};
// CTFontCreateCopyWithAttributes or CTFontCreateCopyWithSymbolicTraits cannot be used on 10.10
// and later, as they will return different underlying fonts depending on the size requested.
// It is not possible to use descriptors with CTFontCreateWithFontDescriptor, since that does not
// work with non-system fonts. As a result, create the strike specific CTFonts from the underlying
// CGFont.
static UniqueCFRef<CTFontRef> ctfont_create_exact_copy(CTFontRef baseFont, CGFloat textSize,
const CGAffineTransform* transform)
{
UniqueCFRef<CGFontRef> baseCGFont(CTFontCopyGraphicsFont(baseFont, nullptr));
// The last parameter (CTFontDescriptorRef attributes) *must* be nullptr.
// If non-nullptr then with fonts with variation axes, the copy will fail in
// CGFontVariationFromDictCallback when it assumes kCGFontVariationAxisName is CFNumberRef
// which it quite obviously is not.
// Because we cannot setup the CTFont descriptor to match, the same restriction applies here
// as other uses of CTFontCreateWithGraphicsFont which is that such CTFonts should not escape
// the scaler context, since they aren't 'normal'.
return UniqueCFRef<CTFontRef>(
CTFontCreateWithGraphicsFont(baseCGFont.get(), textSize, transform, nullptr));
}
SkScalerContext_Mac::SkScalerContext_Mac(sk_sp<SkTypeface_Mac> typeface,
const SkScalerContextEffects& effects,
const SkDescriptor* desc)
: INHERITED(std::move(typeface), effects, desc)
, fDoSubPosition(SkToBool(fRec.fFlags & kSubpixelPositioning_Flag))
, fVertical(SkToBool(fRec.fFlags & kVertical_Flag))
{
AUTO_CG_LOCK();
CTFontRef ctFont = static_cast<SkTypeface_Mac*>(this->getTypeface())->fFontRef.get();
CFIndex numGlyphs = CTFontGetGlyphCount(ctFont);
SkASSERT(numGlyphs >= 1 && numGlyphs <= 0xFFFF);
fGlyphCount = SkToU16(numGlyphs);
// CT on (at least) 10.9 will size color glyphs down from the requested size, but not up.
// As a result, it is necessary to know the actual device size and request that.
SkVector scale;
SkMatrix skTransform;
bool invertible = fRec.computeMatrices(SkScalerContextRec::kVertical_PreMatrixScale,
&scale, &skTransform, nullptr, nullptr, nullptr);
fTransform = MatrixToCGAffineTransform(skTransform);
// CGAffineTransformInvert documents that if the transform is non-invertible it will return the
// passed transform unchanged. It does so, but then also prints a message to stdout. Avoid this.
if (invertible) {
fInvTransform = CGAffineTransformInvert(fTransform);
} else {
fInvTransform = fTransform;
}
// The transform contains everything except the requested text size.
// Some properties, like 'trak', are based on the text size (before applying the matrix).
CGFloat textSize = ScalarToCG(scale.y());
fCTFont = ctfont_create_exact_copy(ctFont, textSize, nullptr);
fCGFont.reset(CTFontCopyGraphicsFont(fCTFont.get(), nullptr));
}
CGRGBPixel* Offscreen::getCG(const SkScalerContext_Mac& context, const SkGlyph& glyph,
CGGlyph glyphID, size_t* rowBytesPtr,
bool generateA8FromLCD) {
if (!fRGBSpace) {
//It doesn't appear to matter what color space is specified.
//Regular blends and antialiased text are always (s*a + d*(1-a))
//and smoothed text is always g=2.0.
fRGBSpace.reset(CGColorSpaceCreateDeviceRGB());
}
// default to kBW_Format
bool doAA = false;
bool doLCD = false;
if (SkMask::kBW_Format != glyph.fMaskFormat) {
doLCD = true;
doAA = true;
}
// FIXME: lcd smoothed un-hinted rasterization unsupported.
if (!generateA8FromLCD && SkMask::kA8_Format == glyph.fMaskFormat) {
doLCD = false;
doAA = true;
}
// If this font might have color glyphs, disable LCD as there's no way to support it.
// CoreText doesn't tell us which format it ended up using, so we can't detect it.
// A8 will end up black on transparent, but TODO: we can detect gray and set to A8.
if (SkMask::kARGB32_Format == glyph.fMaskFormat) {
doLCD = false;
}
size_t rowBytes = fSize.fWidth * sizeof(CGRGBPixel);
if (!fCG || fSize.fWidth < glyph.fWidth || fSize.fHeight < glyph.fHeight) {
if (fSize.fWidth < glyph.fWidth) {
fSize.fWidth = RoundSize(glyph.fWidth);
}
if (fSize.fHeight < glyph.fHeight) {
fSize.fHeight = RoundSize(glyph.fHeight);
}
rowBytes = fSize.fWidth * sizeof(CGRGBPixel);
void* image = fImageStorage.reset(rowBytes * fSize.fHeight);
const CGImageAlphaInfo alpha = (SkMask::kARGB32_Format == glyph.fMaskFormat)
? kCGImageAlphaPremultipliedFirst
: kCGImageAlphaNoneSkipFirst;
const CGBitmapInfo bitmapInfo = kCGBitmapByteOrder32Host | alpha;
fCG.reset(CGBitmapContextCreate(image, fSize.fWidth, fSize.fHeight, 8,
rowBytes, fRGBSpace.get(), bitmapInfo));
// Skia handles quantization and subpixel positioning,
// so disable quantization and enabe subpixel positioning in CG.
CGContextSetAllowsFontSubpixelQuantization(fCG.get(), false);
CGContextSetShouldSubpixelQuantizeFonts(fCG.get(), false);
// Because CG always draws from the horizontal baseline,
// if there is a non-integral translation from the horizontal origin to the vertical origin,
// then CG cannot draw the glyph in the correct location without subpixel positioning.
CGContextSetAllowsFontSubpixelPositioning(fCG.get(), true);
CGContextSetShouldSubpixelPositionFonts(fCG.get(), true);
CGContextSetTextDrawingMode(fCG.get(), kCGTextFill);
// Draw black on white to create mask. (Special path exists to speed this up in CG.)
CGContextSetGrayFillColor(fCG.get(), 0.0f, 1.0f);
// force our checks below to happen
fDoAA = !doAA;
fDoLCD = !doLCD;
CGContextSetTextMatrix(fCG.get(), context.fTransform);
}
if (fDoAA != doAA) {
CGContextSetShouldAntialias(fCG.get(), doAA);
fDoAA = doAA;
}
if (fDoLCD != doLCD) {
CGContextSetShouldSmoothFonts(fCG.get(), doLCD);
fDoLCD = doLCD;
}
CGRGBPixel* image = (CGRGBPixel*)fImageStorage.get();
// skip rows based on the glyph's height
image += (fSize.fHeight - glyph.fHeight) * fSize.fWidth;
// Erase to white (or transparent black if it's a color glyph, to not composite against white).
uint32_t bgColor = (SkMask::kARGB32_Format != glyph.fMaskFormat) ? 0xFFFFFFFF : 0x00000000;
sk_memset_rect32(image, bgColor, glyph.fWidth, glyph.fHeight, rowBytes);
float subX = 0;
float subY = 0;
if (context.fDoSubPosition) {
subX = SkFixedToFloat(glyph.getSubXFixed());
subY = SkFixedToFloat(glyph.getSubYFixed());
}
// CoreText and CoreGraphics always draw using the horizontal baseline origin.
if (context.fVertical) {
SkPoint offset;
context.getVerticalOffset(glyphID, &offset);
subX += offset.fX;
subY += offset.fY;
}
CGPoint point = CGPointMake(-glyph.fLeft + subX, glyph.fTop + glyph.fHeight - subY);
// Prior to 10.10, CTFontDrawGlyphs acted like CGContextShowGlyphsAtPositions and took
// 'positions' which are in text space. The glyph location (in device space) must be
// mapped into text space, so that CG can convert it back into device space.
// In 10.10.1, this is handled directly in CTFontDrawGlyphs.
//
// However, in 10.10.2 color glyphs no longer rotate based on the font transform.
// So always make the font transform identity and place the transform on the context.
point = CGPointApplyAffineTransform(point, context.fInvTransform);
CTFontDrawGlyphs(context.fCTFont.get(), &glyphID, &point, 1, fCG.get());
SkASSERT(rowBytesPtr);
*rowBytesPtr = rowBytes;
return image;
}
void SkScalerContext_Mac::getVerticalOffset(CGGlyph glyphID, SkPoint* offset) const {
// CTFontGetVerticalTranslationsForGlyphs produces cgVertOffset in CG units (pixels, y up).
CGSize cgVertOffset;
CTFontGetVerticalTranslationsForGlyphs(fCTFont.get(), &glyphID, &cgVertOffset, 1);
cgVertOffset = CGSizeApplyAffineTransform(cgVertOffset, fTransform);
SkPoint skVertOffset = { CGToScalar(cgVertOffset.width), CGToScalar(cgVertOffset.height) };
// From CG units (pixels, y up) to SkGlyph units (pixels, y down).
skVertOffset.fY = -skVertOffset.fY;
*offset = skVertOffset;
}
unsigned SkScalerContext_Mac::generateGlyphCount(void) {
return fGlyphCount;
}
uint16_t SkScalerContext_Mac::generateCharToGlyph(SkUnichar uni) {
AUTO_CG_LOCK();
CGGlyph cgGlyph[2];
UniChar theChar[2]; // UniChar is a UTF-16 16-bit code unit.
// Get the glyph
size_t numUniChar = SkUTF16_FromUnichar(uni, theChar);
SkASSERT(sizeof(CGGlyph) <= sizeof(uint16_t));
// Undocumented behavior of CTFontGetGlyphsForCharacters with non-bmp code points:
// When a surrogate pair is detected, the glyph index used is the index of the high surrogate.
// It is documented that if a mapping is unavailable, the glyph will be set to 0.
CTFontGetGlyphsForCharacters(fCTFont.get(), theChar, cgGlyph, numUniChar);
return cgGlyph[0];
}
void SkScalerContext_Mac::generateAdvance(SkGlyph* glyph) {
this->generateMetrics(glyph);
}
void SkScalerContext_Mac::generateMetrics(SkGlyph* glyph) {
AUTO_CG_LOCK();
const CGGlyph cgGlyph = (CGGlyph) glyph->getGlyphID();
glyph->zeroMetrics();
// The following block produces cgAdvance in CG units (pixels, y up).
CGSize cgAdvance;
if (fVertical) {
CTFontGetAdvancesForGlyphs(fCTFont.get(), kCTFontOrientationVertical,
&cgGlyph, &cgAdvance, 1);
// Vertical advances are returned as widths instead of heights.
SkTSwap(cgAdvance.height, cgAdvance.width);
cgAdvance.height = -cgAdvance.height;
} else {
CTFontGetAdvancesForGlyphs(fCTFont.get(), kCTFontOrientationHorizontal,
&cgGlyph, &cgAdvance, 1);
}
cgAdvance = CGSizeApplyAffineTransform(cgAdvance, fTransform);
glyph->fAdvanceX = CGToFloat(cgAdvance.width);
glyph->fAdvanceY = -CGToFloat(cgAdvance.height);
// The following produces skBounds in SkGlyph units (pixels, y down),
// or returns early if skBounds would be empty.
SkRect skBounds;
// Glyphs are always drawn from the horizontal origin. The caller must manually use the result
// of CTFontGetVerticalTranslationsForGlyphs to calculate where to draw the glyph for vertical
// glyphs. As a result, always get the horizontal bounds of a glyph and translate it if the
// glyph is vertical. This avoids any diagreement between the various means of retrieving
// vertical metrics.
{
// CTFontGetBoundingRectsForGlyphs produces cgBounds in CG units (pixels, y up).
CGRect cgBounds;
CTFontGetBoundingRectsForGlyphs(fCTFont.get(), kCTFontOrientationHorizontal,
&cgGlyph, &cgBounds, 1);
cgBounds = CGRectApplyAffineTransform(cgBounds, fTransform);
// BUG?
// 0x200B (zero-advance space) seems to return a huge (garbage) bounds, when
// it should be empty. So, if we see a zero-advance, we check if it has an
// empty path or not, and if so, we jam the bounds to 0. Hopefully a zero-advance
// is rare, so we won't incur a big performance cost for this extra check.
if (0 == cgAdvance.width && 0 == cgAdvance.height) {
UniqueCFRef<CGPathRef> path(CTFontCreatePathForGlyph(fCTFont.get(), cgGlyph, nullptr));
if (!path || CGPathIsEmpty(path.get())) {
return;
}
}
if (CGRectIsEmpty_inline(cgBounds)) {
return;
}
// Convert cgBounds to SkGlyph units (pixels, y down).
skBounds = SkRect::MakeXYWH(cgBounds.origin.x, -cgBounds.origin.y - cgBounds.size.height,
cgBounds.size.width, cgBounds.size.height);
}
if (fVertical) {
// Due to possible vertical bounds bugs and simplicity, skBounds is the horizontal bounds.
// Convert these horizontal bounds into vertical bounds.
SkPoint offset;
this->getVerticalOffset(cgGlyph, &offset);
skBounds.offset(offset);
}
// Currently the bounds are based on being rendered at (0,0).
// The top left must not move, since that is the base from which subpixel positioning is offset.
if (fDoSubPosition) {
skBounds.fRight += SkFixedToFloat(glyph->getSubXFixed());
skBounds.fBottom += SkFixedToFloat(glyph->getSubYFixed());
}
SkIRect skIBounds;
skBounds.roundOut(&skIBounds);
// Expand the bounds by 1 pixel, to give CG room for anti-aliasing.
// Note that this outset is to allow room for LCD smoothed glyphs. However, the correct outset
// is not currently known, as CG dilates the outlines by some percentage.
// Note that if this context is A8 and not back-forming from LCD, there is no need to outset.
skIBounds.outset(1, 1);
glyph->fLeft = SkToS16(skIBounds.fLeft);
glyph->fTop = SkToS16(skIBounds.fTop);
glyph->fWidth = SkToU16(skIBounds.width());
glyph->fHeight = SkToU16(skIBounds.height());
}
#include "SkColorPriv.h"
static void build_power_table(uint8_t table[]) {
for (int i = 0; i < 256; i++) {
float x = i / 255.f;
int xx = SkScalarRoundToInt(x * x * 255);
table[i] = SkToU8(xx);
}
}
/**
* This will invert the gamma applied by CoreGraphics, so we can get linear
* values.
*
* CoreGraphics obscurely defaults to 2.0 as the smoothing gamma value.
* The color space used does not appear to affect this choice.
*/
static const uint8_t* getInverseGammaTableCoreGraphicSmoothing() {
static bool gInited;
static uint8_t gTableCoreGraphicsSmoothing[256];
if (!gInited) {
build_power_table(gTableCoreGraphicsSmoothing);
gInited = true;
}
return gTableCoreGraphicsSmoothing;
}
static void cgpixels_to_bits(uint8_t dst[], const CGRGBPixel src[], int count) {
while (count > 0) {
uint8_t mask = 0;
for (int i = 7; i >= 0; --i) {
mask |= ((CGRGBPixel_getAlpha(*src++) >> 7) ^ 0x1) << i;
if (0 == --count) {
break;
}
}
*dst++ = mask;
}
}
template<bool APPLY_PREBLEND>
static inline uint8_t rgb_to_a8(CGRGBPixel rgb, const uint8_t* table8) {
U8CPU r = 0xFF - ((rgb >> 16) & 0xFF);
U8CPU g = 0xFF - ((rgb >> 8) & 0xFF);
U8CPU b = 0xFF - ((rgb >> 0) & 0xFF);
U8CPU lum = sk_apply_lut_if<APPLY_PREBLEND>(SkComputeLuminance(r, g, b), table8);
#if SK_SHOW_TEXT_BLIT_COVERAGE
lum = SkTMax(lum, (U8CPU)0x30);
#endif
return lum;
}
template<bool APPLY_PREBLEND>
static void rgb_to_a8(const CGRGBPixel* SK_RESTRICT cgPixels, size_t cgRowBytes,
const SkGlyph& glyph, const uint8_t* table8) {
const int width = glyph.fWidth;
size_t dstRB = glyph.rowBytes();
uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
for (int y = 0; y < glyph.fHeight; y++) {
for (int i = 0; i < width; ++i) {
dst[i] = rgb_to_a8<APPLY_PREBLEND>(cgPixels[i], table8);
}
cgPixels = SkTAddOffset<const CGRGBPixel>(cgPixels, cgRowBytes);
dst = SkTAddOffset<uint8_t>(dst, dstRB);
}
}
template<bool APPLY_PREBLEND>
static inline uint16_t rgb_to_lcd16(CGRGBPixel rgb, const uint8_t* tableR,
const uint8_t* tableG,
const uint8_t* tableB) {
U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(0xFF - ((rgb >> 16) & 0xFF), tableR);
U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(0xFF - ((rgb >> 8) & 0xFF), tableG);
U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(0xFF - ((rgb >> 0) & 0xFF), tableB);
#if SK_SHOW_TEXT_BLIT_COVERAGE
r = SkTMax(r, (U8CPU)0x30);
g = SkTMax(g, (U8CPU)0x30);
b = SkTMax(b, (U8CPU)0x30);
#endif
return SkPack888ToRGB16(r, g, b);
}
template<bool APPLY_PREBLEND>
static void rgb_to_lcd16(const CGRGBPixel* SK_RESTRICT cgPixels, size_t cgRowBytes, const SkGlyph& glyph,
const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB) {
const int width = glyph.fWidth;
size_t dstRB = glyph.rowBytes();
uint16_t* SK_RESTRICT dst = (uint16_t*)glyph.fImage;
for (int y = 0; y < glyph.fHeight; y++) {
for (int i = 0; i < width; i++) {
dst[i] = rgb_to_lcd16<APPLY_PREBLEND>(cgPixels[i], tableR, tableG, tableB);
}
cgPixels = SkTAddOffset<const CGRGBPixel>(cgPixels, cgRowBytes);
dst = SkTAddOffset<uint16_t>(dst, dstRB);
}
}
static SkPMColor cgpixels_to_pmcolor(CGRGBPixel rgb) {
U8CPU a = (rgb >> 24) & 0xFF;
U8CPU r = (rgb >> 16) & 0xFF;
U8CPU g = (rgb >> 8) & 0xFF;
U8CPU b = (rgb >> 0) & 0xFF;
#if SK_SHOW_TEXT_BLIT_COVERAGE
a = SkTMax(a, (U8CPU)0x30);
#endif
return SkPackARGB32(a, r, g, b);
}
void SkScalerContext_Mac::generateImage(const SkGlyph& glyph) {
CGGlyph cgGlyph = SkTo<CGGlyph>(glyph.getGlyphID());
// FIXME: lcd smoothed un-hinted rasterization unsupported.
bool generateA8FromLCD = fRec.getHinting() != SkPaint::kNo_Hinting;
// Draw the glyph
size_t cgRowBytes;
CGRGBPixel* cgPixels = fOffscreen.getCG(*this, glyph, cgGlyph, &cgRowBytes, generateA8FromLCD);
if (cgPixels == nullptr) {
return;
}
// Fix the glyph
if ((glyph.fMaskFormat == SkMask::kLCD16_Format) ||
(glyph.fMaskFormat == SkMask::kA8_Format && supports_LCD() && generateA8FromLCD))
{
const uint8_t* table = getInverseGammaTableCoreGraphicSmoothing();
//Note that the following cannot really be integrated into the
//pre-blend, since we may not be applying the pre-blend; when we aren't
//applying the pre-blend it means that a filter wants linear anyway.
//Other code may also be applying the pre-blend, so we'd need another
//one with this and one without.
CGRGBPixel* addr = cgPixels;
for (int y = 0; y < glyph.fHeight; ++y) {
for (int x = 0; x < glyph.fWidth; ++x) {
int r = (addr[x] >> 16) & 0xFF;
int g = (addr[x] >> 8) & 0xFF;
int b = (addr[x] >> 0) & 0xFF;
addr[x] = (table[r] << 16) | (table[g] << 8) | table[b];
}
addr = SkTAddOffset<CGRGBPixel>(addr, cgRowBytes);
}
}
// Convert glyph to mask
switch (glyph.fMaskFormat) {
case SkMask::kLCD16_Format: {
if (fPreBlend.isApplicable()) {
rgb_to_lcd16<true>(cgPixels, cgRowBytes, glyph,
fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
} else {
rgb_to_lcd16<false>(cgPixels, cgRowBytes, glyph,
fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
}
} break;
case SkMask::kA8_Format: {
if (fPreBlend.isApplicable()) {
rgb_to_a8<true>(cgPixels, cgRowBytes, glyph, fPreBlend.fG);
} else {
rgb_to_a8<false>(cgPixels, cgRowBytes, glyph, fPreBlend.fG);
}
} break;
case SkMask::kBW_Format: {
const int width = glyph.fWidth;
size_t dstRB = glyph.rowBytes();
uint8_t* dst = (uint8_t*)glyph.fImage;
for (int y = 0; y < glyph.fHeight; y++) {
cgpixels_to_bits(dst, cgPixels, width);
cgPixels = SkTAddOffset<CGRGBPixel>(cgPixels, cgRowBytes);
dst = SkTAddOffset<uint8_t>(dst, dstRB);
}
} break;
case SkMask::kARGB32_Format: {
const int width = glyph.fWidth;
size_t dstRB = glyph.rowBytes();
SkPMColor* dst = (SkPMColor*)glyph.fImage;
for (int y = 0; y < glyph.fHeight; y++) {
for (int x = 0; x < width; ++x) {
dst[x] = cgpixels_to_pmcolor(cgPixels[x]);
}
cgPixels = SkTAddOffset<CGRGBPixel>(cgPixels, cgRowBytes);
dst = SkTAddOffset<SkPMColor>(dst, dstRB);
}
} break;
default:
SkDEBUGFAIL("unexpected mask format");
break;
}
}
/*
* Our subpixel resolution is only 2 bits in each direction, so a scale of 4
* seems sufficient, and possibly even correct, to allow the hinted outline
* to be subpixel positioned.
*/
#define kScaleForSubPixelPositionHinting (4.0f)
void SkScalerContext_Mac::generatePath(SkGlyphID glyph, SkPath* path) {
AUTO_CG_LOCK();
SkScalar scaleX = SK_Scalar1;
SkScalar scaleY = SK_Scalar1;
CGAffineTransform xform = fTransform;
/*
* For subpixel positioning, we want to return an unhinted outline, so it
* can be positioned nicely at fractional offsets. However, we special-case
* if the baseline of the (horizontal) text is axis-aligned. In those cases
* we want to retain hinting in the direction orthogonal to the baseline.
* e.g. for horizontal baseline, we want to retain hinting in Y.
* The way we remove hinting is to scale the font by some value (4) in that
* direction, ask for the path, and then scale the path back down.
*/
if (fDoSubPosition) {
// start out by assuming that we want no hining in X and Y
scaleX = scaleY = kScaleForSubPixelPositionHinting;
// now see if we need to restore hinting for axis-aligned baselines
switch (this->computeAxisAlignmentForHText()) {
case kX_SkAxisAlignment:
scaleY = SK_Scalar1; // want hinting in the Y direction
break;
case kY_SkAxisAlignment:
scaleX = SK_Scalar1; // want hinting in the X direction
break;
default:
break;
}
CGAffineTransform scale(CGAffineTransformMakeScale(ScalarToCG(scaleX), ScalarToCG(scaleY)));
xform = CGAffineTransformConcat(fTransform, scale);
}
CGGlyph cgGlyph = SkTo<CGGlyph>(glyph);
UniqueCFRef<CGPathRef> cgPath(CTFontCreatePathForGlyph(fCTFont.get(), cgGlyph, &xform));
path->reset();
if (cgPath != nullptr) {
CGPathApply(cgPath.get(), path, SkScalerContext_Mac::CTPathElement);
}
if (fDoSubPosition) {
SkMatrix m;
m.setScale(SkScalarInvert(scaleX), SkScalarInvert(scaleY));
path->transform(m);
}
if (fVertical) {
SkPoint offset;
getVerticalOffset(cgGlyph, &offset);
path->offset(offset.fX, offset.fY);
}
}
void SkScalerContext_Mac::generateFontMetrics(SkPaint::FontMetrics* metrics) {
if (nullptr == metrics) {
return;
}
AUTO_CG_LOCK();
CGRect theBounds = CTFontGetBoundingBox(fCTFont.get());
metrics->fTop = CGToScalar(-CGRectGetMaxY_inline(theBounds));
metrics->fAscent = CGToScalar(-CTFontGetAscent(fCTFont.get()));
metrics->fDescent = CGToScalar( CTFontGetDescent(fCTFont.get()));
metrics->fBottom = CGToScalar(-CGRectGetMinY_inline(theBounds));
metrics->fLeading = CGToScalar( CTFontGetLeading(fCTFont.get()));
metrics->fAvgCharWidth = CGToScalar( CGRectGetWidth_inline(theBounds));
metrics->fXMin = CGToScalar( CGRectGetMinX_inline(theBounds));
metrics->fXMax = CGToScalar( CGRectGetMaxX_inline(theBounds));
metrics->fMaxCharWidth = metrics->fXMax - metrics->fXMin;
metrics->fXHeight = CGToScalar( CTFontGetXHeight(fCTFont.get()));
metrics->fCapHeight = CGToScalar( CTFontGetCapHeight(fCTFont.get()));
metrics->fUnderlineThickness = CGToScalar( CTFontGetUnderlineThickness(fCTFont.get()));
metrics->fUnderlinePosition = -CGToScalar( CTFontGetUnderlinePosition(fCTFont.get()));
metrics->fFlags |= SkPaint::FontMetrics::kUnderlineThicknessIsValid_Flag;
metrics->fFlags |= SkPaint::FontMetrics::kUnderlinePositionIsValid_Flag;
// See https://bugs.chromium.org/p/skia/issues/detail?id=6203
// At least on 10.12.3 with memory based fonts the x-height is always 0.6666 of the ascent and
// the cap-height is always 0.8888 of the ascent. It appears that the values from the 'OS/2'
// table are read, but then overwritten if the font is not a system font. As a result, if there
// is a valid 'OS/2' table available use the values from the table if they aren't too strange.
struct OS2HeightMetrics {
SK_OT_SHORT sxHeight;
SK_OT_SHORT sCapHeight;
} heights;
size_t bytesRead = this->getTypeface()->getTableData(
SkTEndian_SwapBE32(SkOTTableOS2::TAG), offsetof(SkOTTableOS2, version.v2.sxHeight),
sizeof(heights), &heights);
if (bytesRead == sizeof(heights)) {
// 'fontSize' is correct because the entire resolved size is set by the constructor.
CGFloat fontSize = CTFontGetSize(this->fCTFont.get());
unsigned upem = CTFontGetUnitsPerEm(this->fCTFont.get());
unsigned maxSaneHeight = upem * 2;
uint16_t xHeight = SkEndian_SwapBE16(heights.sxHeight);
if (xHeight && xHeight < maxSaneHeight) {
metrics->fXHeight = CGToScalar(xHeight * fontSize / upem);
}
uint16_t capHeight = SkEndian_SwapBE16(heights.sCapHeight);
if (capHeight && capHeight < maxSaneHeight) {
metrics->fCapHeight = CGToScalar(capHeight * fontSize / upem);
}
}
}
void SkScalerContext_Mac::CTPathElement(void *info, const CGPathElement *element) {
SkPath* skPath = (SkPath*)info;
// Process the path element
switch (element->type) {
case kCGPathElementMoveToPoint:
skPath->moveTo(element->points[0].x, -element->points[0].y);
break;
case kCGPathElementAddLineToPoint:
skPath->lineTo(element->points[0].x, -element->points[0].y);
break;
case kCGPathElementAddQuadCurveToPoint:
skPath->quadTo(element->points[0].x, -element->points[0].y,
element->points[1].x, -element->points[1].y);
break;
case kCGPathElementAddCurveToPoint:
skPath->cubicTo(element->points[0].x, -element->points[0].y,
element->points[1].x, -element->points[1].y,
element->points[2].x, -element->points[2].y);
break;
case kCGPathElementCloseSubpath:
skPath->close();
break;
default:
SkDEBUGFAIL("Unknown path element!");
break;
}
}
///////////////////////////////////////////////////////////////////////////////
// Returns nullptr on failure
// Call must still manage its ownership of provider
static SkTypeface* create_from_dataProvider(UniqueCFRef<CGDataProviderRef> provider, int ttcIndex) {
if (ttcIndex != 0) {
return nullptr;
}
UniqueCFRef<CGFontRef> cg(CGFontCreateWithDataProvider(provider.get()));
if (!cg) {
return nullptr;
}
UniqueCFRef<CTFontRef> ct(CTFontCreateWithGraphicsFont(cg.get(), 0, nullptr, nullptr));
if (!ct) {
return nullptr;
}
return create_from_CTFontRef(std::move(ct), nullptr, true);
}
// Web fonts added to the CTFont registry do not return their character set.
// Iterate through the font in this case. The existing caller caches the result,
// so the performance impact isn't too bad.
static void populate_glyph_to_unicode_slow(CTFontRef ctFont, CFIndex glyphCount,
SkTDArray<SkUnichar>* glyphToUnicode) {
glyphToUnicode->setCount(SkToInt(glyphCount));
SkUnichar* out = glyphToUnicode->begin();
sk_bzero(out, glyphCount * sizeof(SkUnichar));
UniChar unichar = 0;
while (glyphCount > 0) {
CGGlyph glyph;
if (CTFontGetGlyphsForCharacters(ctFont, &unichar, &glyph, 1)) {
out[glyph] = unichar;
--glyphCount;
}
if (++unichar == 0) {
break;
}
}
}
// Construct Glyph to Unicode table.
// Unicode code points that require conjugate pairs in utf16 are not
// supported.
static void populate_glyph_to_unicode(CTFontRef ctFont, CFIndex glyphCount,
SkTDArray<SkUnichar>* glyphToUnicode) {
UniqueCFRef<CFCharacterSetRef> charSet(CTFontCopyCharacterSet(ctFont));
if (!charSet) {
populate_glyph_to_unicode_slow(ctFont, glyphCount, glyphToUnicode);
return;
}
UniqueCFRef<CFDataRef> bitmap(CFCharacterSetCreateBitmapRepresentation(nullptr, charSet.get()));
if (!bitmap) {
return;
}
CFIndex length = CFDataGetLength(bitmap.get());
if (!length) {
return;
}
if (length > 8192) {
// TODO: Add support for Unicode above 0xFFFF
// Consider only the BMP portion of the Unicode character points.
// The bitmap may contain other planes, up to plane 16.
// See http://developer.apple.com/library/ios/#documentation/CoreFoundation/Reference/CFCharacterSetRef/Reference/reference.html
length = 8192;
}
const UInt8* bits = CFDataGetBytePtr(bitmap.get());
glyphToUnicode->setCount(SkToInt(glyphCount));
SkUnichar* out = glyphToUnicode->begin();
sk_bzero(out, glyphCount * sizeof(SkUnichar));
for (int i = 0; i < length; i++) {
int mask = bits[i];
if (!mask) {
continue;
}
for (int j = 0; j < 8; j++) {
CGGlyph glyph;
UniChar unichar = static_cast<UniChar>((i << 3) + j);
if (mask & (1 << j) && CTFontGetGlyphsForCharacters(ctFont, &unichar, &glyph, 1)) {
out[glyph] = unichar;
}
}
}
}
/** Assumes src and dst are not nullptr. */
static void CFStringToSkString(CFStringRef src, SkString* dst) {
// Reserve enough room for the worst-case string,
// plus 1 byte for the trailing null.
CFIndex length = CFStringGetMaximumSizeForEncoding(CFStringGetLength(src),
kCFStringEncodingUTF8) + 1;
dst->resize(length);
CFStringGetCString(src, dst->writable_str(), length, kCFStringEncodingUTF8);
// Resize to the actual UTF-8 length used, stripping the null character.
dst->resize(strlen(dst->c_str()));
}
SkAdvancedTypefaceMetrics* SkTypeface_Mac::onGetAdvancedTypefaceMetrics(
PerGlyphInfo perGlyphInfo,
const uint32_t* glyphIDs,
uint32_t glyphIDsCount) const {
AUTO_CG_LOCK();
UniqueCFRef<CTFontRef> ctFont =
ctfont_create_exact_copy(fFontRef.get(), CTFontGetUnitsPerEm(fFontRef.get()), nullptr);
SkAdvancedTypefaceMetrics* info = new SkAdvancedTypefaceMetrics;
{
UniqueCFRef<CFStringRef> fontName(CTFontCopyPostScriptName(ctFont.get()));
if (fontName.get()) {
CFStringToSkString(fontName.get(), &info->fFontName);
}
}
// In 10.10 and earlier, CTFontCopyVariationAxes and CTFontCopyVariation do not work when
// applied to fonts which started life with CGFontCreateWithDataProvider (they simply always
// return nullptr). As a result, we are limited to CGFontCopyVariationAxes and
// CGFontCopyVariations here until support for 10.10 and earlier is removed.
UniqueCFRef<CGFontRef> cgFont(CTFontCopyGraphicsFont(ctFont.get(), nullptr));
if (cgFont) {
UniqueCFRef<CFArrayRef> cgAxes(CGFontCopyVariationAxes(cgFont.get()));
if (cgAxes && CFArrayGetCount(cgAxes.get()) > 0) {
info->fFlags |= SkAdvancedTypefaceMetrics::kMultiMaster_FontFlag;
}
}
CFIndex glyphCount = CTFontGetGlyphCount(ctFont.get());
if (perGlyphInfo & kToUnicode_PerGlyphInfo) {
populate_glyph_to_unicode(ctFont.get(), glyphCount, &info->fGlyphToUnicode);
}
// If it's not a truetype font, mark it as 'other'. Assume that TrueType
// fonts always have both glyf and loca tables. At the least, this is what
// sfntly needs to subset the font. CTFontCopyAttribute() does not always
// succeed in determining this directly.
if (!this->getTableSize('glyf') || !this->getTableSize('loca')) {
return info;
}
info->fType = SkAdvancedTypefaceMetrics::kTrueType_Font;
CTFontSymbolicTraits symbolicTraits = CTFontGetSymbolicTraits(ctFont.get());
if (symbolicTraits & kCTFontMonoSpaceTrait) {
info->fStyle |= SkAdvancedTypefaceMetrics::kFixedPitch_Style;
}
if (symbolicTraits & kCTFontItalicTrait) {
info->fStyle |= SkAdvancedTypefaceMetrics::kItalic_Style;
}
CTFontStylisticClass stylisticClass = symbolicTraits & kCTFontClassMaskTrait;
if (stylisticClass >= kCTFontOldStyleSerifsClass && stylisticClass <= kCTFontSlabSerifsClass) {
info->fStyle |= SkAdvancedTypefaceMetrics::kSerif_Style;
} else if (stylisticClass & kCTFontScriptsClass) {
info->fStyle |= SkAdvancedTypefaceMetrics::kScript_Style;
}
info->fItalicAngle = (int16_t) CTFontGetSlantAngle(ctFont.get());
info->fAscent = (int16_t) CTFontGetAscent(ctFont.get());
info->fDescent = (int16_t) CTFontGetDescent(ctFont.get());
info->fCapHeight = (int16_t) CTFontGetCapHeight(ctFont.get());
CGRect bbox = CTFontGetBoundingBox(ctFont.get());
SkRect r;
r.set( CGToScalar(CGRectGetMinX_inline(bbox)), // Left
CGToScalar(CGRectGetMaxY_inline(bbox)), // Top
CGToScalar(CGRectGetMaxX_inline(bbox)), // Right
CGToScalar(CGRectGetMinY_inline(bbox))); // Bottom
r.roundOut(&(info->fBBox));
// Figure out a good guess for StemV - Min width of i, I, !, 1.
// This probably isn't very good with an italic font.
int16_t min_width = SHRT_MAX;
info->fStemV = 0;
static const UniChar stem_chars[] = {'i', 'I', '!', '1'};
const size_t count = sizeof(stem_chars) / sizeof(stem_chars[0]);
CGGlyph glyphs[count];
CGRect boundingRects[count];
if (CTFontGetGlyphsForCharacters(ctFont.get(), stem_chars, glyphs, count)) {
CTFontGetBoundingRectsForGlyphs(ctFont.get(), kCTFontOrientationHorizontal,
glyphs, boundingRects, count);
for (size_t i = 0; i < count; i++) {
int16_t width = (int16_t) boundingRects[i].size.width;
if (width > 0 && width < min_width) {
min_width = width;
info->fStemV = min_width;
}
}
}
return info;
}
///////////////////////////////////////////////////////////////////////////////
static SK_SFNT_ULONG get_font_type_tag(const SkTypeface_Mac* typeface) {
CTFontRef ctFont = typeface->fFontRef.get();
UniqueCFRef<CFNumberRef> fontFormatRef(
static_cast<CFNumberRef>(CTFontCopyAttribute(ctFont, kCTFontFormatAttribute)));
if (!fontFormatRef) {
return 0;
}
SInt32 fontFormatValue;
if (!CFNumberGetValue(fontFormatRef.get(), kCFNumberSInt32Type, &fontFormatValue)) {
return 0;
}
switch (fontFormatValue) {
case kCTFontFormatOpenTypePostScript:
return SkSFNTHeader::fontType_OpenTypeCFF::TAG;
case kCTFontFormatOpenTypeTrueType:
return SkSFNTHeader::fontType_WindowsTrueType::TAG;
case kCTFontFormatTrueType:
return SkSFNTHeader::fontType_MacTrueType::TAG;
case kCTFontFormatPostScript:
return SkSFNTHeader::fontType_PostScript::TAG;
case kCTFontFormatBitmap:
return SkSFNTHeader::fontType_MacTrueType::TAG;
case kCTFontFormatUnrecognized:
default:
//CT seems to be unreliable in being able to obtain the type,
//even if all we want is the first four bytes of the font resource.
//Just the presence of the FontForge 'FFTM' table seems to throw it off.
return SkSFNTHeader::fontType_WindowsTrueType::TAG;
}
}
SkStreamAsset* SkTypeface_Mac::onOpenStream(int* ttcIndex) const {
SK_SFNT_ULONG fontType = get_font_type_tag(this);
if (0 == fontType) {
return nullptr;
}
// get table tags
int numTables = this->countTables();
SkTDArray<SkFontTableTag> tableTags;
tableTags.setCount(numTables);
this->getTableTags(tableTags.begin());
// calc total size for font, save sizes
SkTDArray<size_t> tableSizes;
size_t totalSize = sizeof(SkSFNTHeader) + sizeof(SkSFNTHeader::TableDirectoryEntry) * numTables;
for (int tableIndex = 0; tableIndex < numTables; ++tableIndex) {
size_t tableSize = this->getTableSize(tableTags[tableIndex]);
totalSize += (tableSize + 3) & ~3;
*tableSizes.append() = tableSize;
}
// reserve memory for stream, and zero it (tables must be zero padded)
SkMemoryStream* stream = new SkMemoryStream(totalSize);
char* dataStart = (char*)stream->getMemoryBase();
sk_bzero(dataStart, totalSize);
char* dataPtr = dataStart;
// compute font header entries
uint16_t entrySelector = 0;
uint16_t searchRange = 1;
while (searchRange < numTables >> 1) {
entrySelector++;
searchRange <<= 1;
}
searchRange <<= 4;
uint16_t rangeShift = (numTables << 4) - searchRange;
// write font header
SkSFNTHeader* header = (SkSFNTHeader*)dataPtr;
header->fontType = fontType;
header->numTables = SkEndian_SwapBE16(numTables);
header->searchRange = SkEndian_SwapBE16(searchRange);
header->entrySelector = SkEndian_SwapBE16(entrySelector);
header->rangeShift = SkEndian_SwapBE16(rangeShift);
dataPtr += sizeof(SkSFNTHeader);
// write tables
SkSFNTHeader::TableDirectoryEntry* entry = (SkSFNTHeader::TableDirectoryEntry*)dataPtr;
dataPtr += sizeof(SkSFNTHeader::TableDirectoryEntry) * numTables;
for (int tableIndex = 0; tableIndex < numTables; ++tableIndex) {
size_t tableSize = tableSizes[tableIndex];
this->getTableData(tableTags[tableIndex], 0, tableSize, dataPtr);
entry->tag = SkEndian_SwapBE32(tableTags[tableIndex]);
entry->checksum = SkEndian_SwapBE32(SkOTUtils::CalcTableChecksum((SK_OT_ULONG*)dataPtr,
tableSize));
entry->offset = SkEndian_SwapBE32(SkToU32(dataPtr - dataStart));
entry->logicalLength = SkEndian_SwapBE32(SkToU32(tableSize));
dataPtr += (tableSize + 3) & ~3;
++entry;
}
*ttcIndex = 0;
return stream;
}
struct NonDefaultAxesContext {
SkFixed* axisValue;
CFArrayRef cgAxes;
};
static void set_non_default_axes(CFTypeRef key, CFTypeRef value, void* context) {
NonDefaultAxesContext* self = static_cast<NonDefaultAxesContext*>(context);
if (CFGetTypeID(key) != CFStringGetTypeID() || CFGetTypeID(value) != CFNumberGetTypeID()) {
return;
}
// The key is a CFString which is a string from the 'name' table.
// Search the cgAxes for an axis with this name, and use its index to store the value.
CFIndex keyIndex = -1;
CFStringRef keyString = static_cast<CFStringRef>(key);
for (CFIndex i = 0; i < CFArrayGetCount(self->cgAxes); ++i) {
CFTypeRef cgAxis = CFArrayGetValueAtIndex(self->cgAxes, i);
if (CFGetTypeID(cgAxis) != CFDictionaryGetTypeID()) {
continue;
}
CFDictionaryRef cgAxisDict = static_cast<CFDictionaryRef>(cgAxis);
CFTypeRef cgAxisName = CFDictionaryGetValue(cgAxisDict, kCGFontVariationAxisName);
if (!cgAxisName || CFGetTypeID(cgAxisName) != CFStringGetTypeID()) {
continue;
}
CFStringRef cgAxisNameString = static_cast<CFStringRef>(cgAxisName);
if (CFStringCompare(keyString, cgAxisNameString, 0) == kCFCompareEqualTo) {
keyIndex = i;
break;
}
}
if (keyIndex == -1) {
return;
}
CFNumberRef valueNumber = static_cast<CFNumberRef>(value);
double valueDouble;
if (!CFNumberGetValue(valueNumber, kCFNumberDoubleType, &valueDouble) ||
valueDouble < SkFixedToDouble(SK_FixedMin) || SkFixedToDouble(SK_FixedMax) < valueDouble)
{
return;
}
self->axisValue[keyIndex] = SkDoubleToFixed(valueDouble);
}
static bool get_variations(CTFontRef ctFont, CFIndex* cgAxisCount,
SkAutoSTMalloc<4, SkFixed>* axisValues)
{
// In 10.10 and earlier, CTFontCopyVariationAxes and CTFontCopyVariation do not work when
// applied to fonts which started life with CGFontCreateWithDataProvider (they simply always
// return nullptr). As a result, we are limited to CGFontCopyVariationAxes and
// CGFontCopyVariations here until support for 10.10 and earlier is removed.
UniqueCFRef<CGFontRef> cgFont(CTFontCopyGraphicsFont(ctFont, nullptr));
if (!cgFont) {
return false;
}
UniqueCFRef<CFDictionaryRef> cgVariations(CGFontCopyVariations(cgFont.get()));
// If a font has no variations CGFontCopyVariations returns nullptr (instead of an empty dict).
if (!cgVariations) {
return false;
}
UniqueCFRef<CFArrayRef> cgAxes(CGFontCopyVariationAxes(cgFont.get()));
if (!cgAxes) {
return false;
}
*cgAxisCount = CFArrayGetCount(cgAxes.get());
axisValues->reset(*cgAxisCount);
// Set all of the axes to their default values.
// Fail if any default value cannot be determined.
for (CFIndex i = 0; i < *cgAxisCount; ++i) {
CFTypeRef cgAxis = CFArrayGetValueAtIndex(cgAxes.get(), i);
if (CFGetTypeID(cgAxis) != CFDictionaryGetTypeID()) {
return false;
}
CFDictionaryRef cgAxisDict = static_cast<CFDictionaryRef>(cgAxis);
CFTypeRef axisDefaultValue = CFDictionaryGetValue(cgAxisDict,
kCGFontVariationAxisDefaultValue);
if (!axisDefaultValue || CFGetTypeID(axisDefaultValue) != CFNumberGetTypeID()) {
return false;
}
CFNumberRef axisDefaultValueNumber = static_cast<CFNumberRef>(axisDefaultValue);
double axisDefaultValueDouble;
if (!CFNumberGetValue(axisDefaultValueNumber, kCFNumberDoubleType, &axisDefaultValueDouble))
{
return false;
}
if (axisDefaultValueDouble < SkFixedToDouble(SK_FixedMin) ||
SkFixedToDouble(SK_FixedMax) < axisDefaultValueDouble)
{
return false;
}
(*axisValues)[(int)i] = SkDoubleToFixed(axisDefaultValueDouble);
}
// Override the default values with the given font's stated axis values.
NonDefaultAxesContext c = { axisValues->get(), cgAxes.get() };
CFDictionaryApplyFunction(cgVariations.get(), set_non_default_axes, &c);
return true;
}
std::unique_ptr<SkFontData> SkTypeface_Mac::onMakeFontData() const {
int index;
std::unique_ptr<SkStreamAsset> stream(this->onOpenStream(&index));
CFIndex cgAxisCount;
SkAutoSTMalloc<4, SkFixed> axisValues;
if (get_variations(fFontRef.get(), &cgAxisCount, &axisValues)) {
return skstd::make_unique<SkFontData>(std::move(stream), index,
axisValues.get(), cgAxisCount);
}
return skstd::make_unique<SkFontData>(std::move(stream), index, nullptr, 0);
}
/** Creates a CT variation dictionary {tag, value} from a CG variation dictionary {name, value}. */
static UniqueCFRef<CFDictionaryRef> ct_variation_from_cg_variation(CFDictionaryRef cgVariations,
CFArrayRef ctAxes) {
UniqueCFRef<CFMutableDictionaryRef> ctVariations(
CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
CFIndex axisCount = CFArrayGetCount(ctAxes);
for (CFIndex i = 0; i < axisCount; ++i) {
CFTypeRef axisInfo = CFArrayGetValueAtIndex(ctAxes, i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFDictionaryRef axisInfoDict = static_cast<CFDictionaryRef>(axisInfo);
// The assumption is that values produced by kCTFontVariationAxisNameKey and
// kCGFontVariationAxisName will always be equal.
CFTypeRef axisName = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisNameKey);
if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) {
return nullptr;
}
CFTypeRef axisValue = CFDictionaryGetValue(cgVariations, axisName);
if (!axisValue || CFGetTypeID(axisValue) != CFNumberGetTypeID()) {
return nullptr;
}
CFTypeRef axisTag = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisIdentifierKey);
if (!axisTag || CFGetTypeID(axisTag) != CFNumberGetTypeID()) {
return nullptr;
}
CFDictionaryAddValue(ctVariations.get(), axisTag, axisValue);
}
return std::move(ctVariations);
}
int SkTypeface_Mac::onGetVariationDesignPosition(
SkFontArguments::VariationPosition::Coordinate coordinates[], int coordinateCount) const
{
// The CGFont variation data does not contain the tag.
// This call always returns nullptr on 10.10 and under for CGFontCreateWithDataProvider fonts.
// When this happens, there is no API to provide the tag.
UniqueCFRef<CFArrayRef> ctAxes(CTFontCopyVariationAxes(fFontRef.get()));
if (!ctAxes) {
return -1;
}
CFIndex axisCount = CFArrayGetCount(ctAxes.get());
if (!coordinates || coordinateCount < axisCount) {
return axisCount;
}
// This call always returns nullptr on 10.11 and under for CGFontCreateWithDataProvider fonts.
// When this happens, try converting the CG variation to a CT variation.
// On 10.12 and later, this only returns non-default variations.
UniqueCFRef<CFDictionaryRef> ctVariations(CTFontCopyVariation(fFontRef.get()));
if (!ctVariations) {
// When 10.11 and earlier are no longer supported, the following code can be replaced with
// return -1 and ct_variation_from_cg_variation can be removed.
UniqueCFRef<CGFontRef> cgFont(CTFontCopyGraphicsFont(fFontRef.get(), nullptr));
if (!cgFont) {
return -1;
}
UniqueCFRef<CFDictionaryRef> cgVariations(CGFontCopyVariations(cgFont.get()));
if (!cgVariations) {
return -1;
}
ctVariations = ct_variation_from_cg_variation(cgVariations.get(), ctAxes.get());
if (!ctVariations) {
return -1;
}
}
for (int i = 0; i < axisCount; ++i) {
CFTypeRef axisInfo = CFArrayGetValueAtIndex(ctAxes.get(), i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return -1;
}
CFDictionaryRef axisInfoDict = static_cast<CFDictionaryRef>(axisInfo);
CFTypeRef tag = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisIdentifierKey);
if (!tag || CFGetTypeID(tag) != CFNumberGetTypeID()) {
return -1;
}
CFNumberRef tagNumber = static_cast<CFNumberRef>(tag);
int64_t tagLong;
if (!CFNumberGetValue(tagNumber, kCFNumberSInt64Type, &tagLong)) {
return -1;
}
coordinates[i].axis = tagLong;
CGFloat variationCGFloat;
CFTypeRef variationValue = CFDictionaryGetValue(ctVariations.get(), tagNumber);
if (variationValue) {
if (CFGetTypeID(variationValue) != CFNumberGetTypeID()) {
return -1;
}
CFNumberRef variationNumber = static_cast<CFNumberRef>(variationValue);
if (!CFNumberGetValue(variationNumber, kCFNumberCGFloatType, &variationCGFloat)) {
return -1;
}
} else {
CFTypeRef def = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisDefaultValueKey);
if (!def || CFGetTypeID(def) != CFNumberGetTypeID()) {
return -1;
}
CFNumberRef defNumber = static_cast<CFNumberRef>(def);
if (!CFNumberGetValue(defNumber, kCFNumberCGFloatType, &variationCGFloat)) {
return -1;
}
}
coordinates[i].value = CGToScalar(variationCGFloat);
}
return axisCount;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
int SkTypeface_Mac::onGetUPEM() const {
UniqueCFRef<CGFontRef> cgFont(CTFontCopyGraphicsFont(fFontRef.get(), nullptr));
return CGFontGetUnitsPerEm(cgFont.get());
}
SkTypeface::LocalizedStrings* SkTypeface_Mac::onCreateFamilyNameIterator() const {
SkTypeface::LocalizedStrings* nameIter =
SkOTUtils::LocalizedStrings_NameTable::CreateForFamilyNames(*this);
if (nullptr == nameIter) {
CFStringRef cfLanguageRaw;
UniqueCFRef<CFStringRef> cfFamilyName(
CTFontCopyLocalizedName(fFontRef.get(), kCTFontFamilyNameKey, &cfLanguageRaw));
UniqueCFRef<CFStringRef> cfLanguage(cfLanguageRaw);
SkString skLanguage;
SkString skFamilyName;
if (cfLanguage) {
CFStringToSkString(cfLanguage.get(), &skLanguage);
} else {
skLanguage = "und"; //undetermined
}
if (cfFamilyName) {
CFStringToSkString(cfFamilyName.get(), &skFamilyName);
}
nameIter = new SkOTUtils::LocalizedStrings_SingleName(skFamilyName, skLanguage);
}
return nameIter;
}
int SkTypeface_Mac::onGetTableTags(SkFontTableTag tags[]) const {
UniqueCFRef<CFArrayRef> cfArray(
CTFontCopyAvailableTables(fFontRef.get(), kCTFontTableOptionNoOptions));
if (!cfArray) {
return 0;
}
int count = SkToInt(CFArrayGetCount(cfArray.get()));
if (tags) {
for (int i = 0; i < count; ++i) {
uintptr_t fontTag = reinterpret_cast<uintptr_t>(
CFArrayGetValueAtIndex(cfArray.get(), i));
tags[i] = static_cast<SkFontTableTag>(fontTag);
}
}
return count;
}
// If, as is the case with web fonts, the CTFont data isn't available,
// the CGFont data may work. While the CGFont may always provide the
// right result, leave the CTFont code path to minimize disruption.
static UniqueCFRef<CFDataRef> copy_table_from_font(CTFontRef ctFont, SkFontTableTag tag) {
UniqueCFRef<CFDataRef> data(CTFontCopyTable(ctFont, (CTFontTableTag) tag,
kCTFontTableOptionNoOptions));
if (!data) {
UniqueCFRef<CGFontRef> cgFont(CTFontCopyGraphicsFont(ctFont, nullptr));
data.reset(CGFontCopyTableForTag(cgFont.get(), tag));
}
return data;
}
size_t SkTypeface_Mac::onGetTableData(SkFontTableTag tag, size_t offset,
size_t length, void* dstData) const {
UniqueCFRef<CFDataRef> srcData = copy_table_from_font(fFontRef.get(), tag);
if (!srcData) {
return 0;
}
size_t srcSize = CFDataGetLength(srcData.get());
if (offset >= srcSize) {
return 0;
}
if (length > srcSize - offset) {
length = srcSize - offset;
}
if (dstData) {
memcpy(dstData, CFDataGetBytePtr(srcData.get()) + offset, length);
}
return length;
}
SkScalerContext* SkTypeface_Mac::onCreateScalerContext(const SkScalerContextEffects& effects,
const SkDescriptor* desc) const {
return new SkScalerContext_Mac(sk_ref_sp(const_cast<SkTypeface_Mac*>(this)), effects, desc);
}
void SkTypeface_Mac::onFilterRec(SkScalerContextRec* rec) const {
if (rec->fFlags & SkScalerContext::kLCD_BGROrder_Flag ||
rec->fFlags & SkScalerContext::kLCD_Vertical_Flag)
{
rec->fMaskFormat = SkMask::kA8_Format;
// Render the glyphs as close as possible to what was requested.
// The above turns off subpixel rendering, but the user requested it.
// Normal hinting will cause the A8 masks to be generated from CoreGraphics subpixel masks.
// See comments below for more details.
rec->setHinting(SkPaint::kNormal_Hinting);
}
unsigned flagsWeDontSupport = SkScalerContext::kDevKernText_Flag |
SkScalerContext::kForceAutohinting_Flag |
SkScalerContext::kLCD_BGROrder_Flag |
SkScalerContext::kLCD_Vertical_Flag;
rec->fFlags &= ~flagsWeDontSupport;
bool lcdSupport = supports_LCD();
// Only two levels of hinting are supported.
// kNo_Hinting means avoid CoreGraphics outline dilation.
// kNormal_Hinting means CoreGraphics outline dilation is allowed.
// If there is no lcd support, hinting (dilation) cannot be supported.
SkPaint::Hinting hinting = rec->getHinting();
if (SkPaint::kSlight_Hinting == hinting || !lcdSupport) {
hinting = SkPaint::kNo_Hinting;
} else if (SkPaint::kFull_Hinting == hinting) {
hinting = SkPaint::kNormal_Hinting;
}
rec->setHinting(hinting);
// FIXME: lcd smoothed un-hinted rasterization unsupported.
// Tracked by http://code.google.com/p/skia/issues/detail?id=915 .
// There is no current means to honor a request for unhinted lcd,
// so arbitrarilly ignore the hinting request and honor lcd.
// Hinting and smoothing should be orthogonal, but currently they are not.
// CoreGraphics has no API to influence hinting. However, its lcd smoothed
// output is drawn from auto-dilated outlines (the amount of which is
// determined by AppleFontSmoothing). Its regular anti-aliased output is
// drawn from un-dilated outlines.
// The behavior of Skia is as follows:
// [AA][no-hint]: generate AA using CoreGraphic's AA output.
// [AA][yes-hint]: use CoreGraphic's LCD output and reduce it to a single
// channel. This matches [LCD][yes-hint] in weight.
// [LCD][no-hint]: curently unable to honor, and must pick which to respect.
// Currenly side with LCD, effectively ignoring the hinting setting.
// [LCD][yes-hint]: generate LCD using CoreGraphic's LCD output.
if (rec->fMaskFormat == SkMask::kLCD16_Format) {
if (lcdSupport) {
//CoreGraphics creates 555 masks for smoothed text anyway.
rec->fMaskFormat = SkMask::kLCD16_Format;
rec->setHinting(SkPaint::kNormal_Hinting);
} else {
rec->fMaskFormat = SkMask::kA8_Format;
}
}
// CoreText provides no information as to whether a glyph will be color or not.
// Fonts may mix outlines and bitmaps, so information is needed on a glyph by glyph basis.
// If a font contains an 'sbix' table, consider it to be a color font, and disable lcd.
if (fHasColorGlyphs) {
rec->fMaskFormat = SkMask::kARGB32_Format;
}
// Unhinted A8 masks (those not derived from LCD masks) must respect SK_GAMMA_APPLY_TO_A8.
// All other masks can use regular gamma.
if (SkMask::kA8_Format == rec->fMaskFormat && SkPaint::kNo_Hinting == hinting) {
#ifndef SK_GAMMA_APPLY_TO_A8
// SRGBTODO: Is this correct? Do we want contrast boost?
rec->ignorePreBlend();
#endif
} else {
//CoreGraphics dialates smoothed text as needed.
rec->setContrast(0);
}
}
/** Takes ownership of the CFStringRef. */
static const char* get_str(CFStringRef ref, SkString* str) {
if (nullptr == ref) {
return nullptr;
}
CFStringToSkString(ref, str);
CFRelease(ref);
return str->c_str();
}
void SkTypeface_Mac::onGetFamilyName(SkString* familyName) const {
get_str(CTFontCopyFamilyName(fFontRef.get()), familyName);
}
void SkTypeface_Mac::onGetFontDescriptor(SkFontDescriptor* desc,
bool* isLocalStream) const {
SkString tmpStr;
desc->setFamilyName(get_str(CTFontCopyFamilyName(fFontRef.get()), &tmpStr));
desc->setFullName(get_str(CTFontCopyFullName(fFontRef.get()), &tmpStr));
desc->setPostscriptName(get_str(CTFontCopyPostScriptName(fFontRef.get()), &tmpStr));
desc->setStyle(this->fontStyle());
*isLocalStream = fIsLocalStream;
}
int SkTypeface_Mac::onCharsToGlyphs(const void* chars, Encoding encoding,
uint16_t glyphs[], int glyphCount) const
{
// Undocumented behavior of CTFontGetGlyphsForCharacters with non-bmp code points:
// When a surrogate pair is detected, the glyph index used is the index of the high surrogate.
// It is documented that if a mapping is unavailable, the glyph will be set to 0.
SkAutoSTMalloc<1024, UniChar> charStorage;
const UniChar* src; // UniChar is a UTF-16 16-bit code unit.
int srcCount;
switch (encoding) {
case kUTF8_Encoding: {
const char* utf8 = reinterpret_cast<const char*>(chars);
UniChar* utf16 = charStorage.reset(2 * glyphCount);
src = utf16;
for (int i = 0; i < glyphCount; ++i) {
SkUnichar uni = SkUTF8_NextUnichar(&utf8);
utf16 += SkUTF16_FromUnichar(uni, utf16);
}
srcCount = SkToInt(utf16 - src);
break;
}
case kUTF16_Encoding: {
src = reinterpret_cast<const UniChar*>(chars);
int extra = 0;
for (int i = 0; i < glyphCount; ++i) {
if (SkUTF16_IsHighSurrogate(src[i + extra])) {
++extra;
}
}
srcCount = glyphCount + extra;
break;
}
case kUTF32_Encoding: {
const SkUnichar* utf32 = reinterpret_cast<const SkUnichar*>(chars);
UniChar* utf16 = charStorage.reset(2 * glyphCount);
src = utf16;
for (int i = 0; i < glyphCount; ++i) {
utf16 += SkUTF16_FromUnichar(utf32[i], utf16);
}
srcCount = SkToInt(utf16 - src);
break;
}
}
// If glyphs is nullptr, CT still needs glyph storage for finding the first failure.
// Also, if there are any non-bmp code points, the provided 'glyphs' storage will be inadequate.
SkAutoSTMalloc<1024, uint16_t> glyphStorage;
uint16_t* macGlyphs = glyphs;
if (nullptr == macGlyphs || srcCount > glyphCount) {
macGlyphs = glyphStorage.reset(srcCount);
}
bool allEncoded = CTFontGetGlyphsForCharacters(fFontRef.get(), src, macGlyphs, srcCount);
// If there were any non-bmp, then copy and compact.
// If 'glyphs' is nullptr, then compact glyphStorage in-place.
// If all are bmp and 'glyphs' is non-nullptr, 'glyphs' already contains the compact glyphs.
// If some are non-bmp and 'glyphs' is non-nullptr, copy and compact into 'glyphs'.
uint16_t* compactedGlyphs = glyphs;
if (nullptr == compactedGlyphs) {
compactedGlyphs = macGlyphs;
}
if (srcCount > glyphCount) {
int extra = 0;
for (int i = 0; i < glyphCount; ++i) {
compactedGlyphs[i] = macGlyphs[i + extra];
if (SkUTF16_IsHighSurrogate(src[i + extra])) {
++extra;
}
}
}
if (allEncoded) {
return glyphCount;
}
// If we got false, then we need to manually look for first failure.
for (int i = 0; i < glyphCount; ++i) {
if (0 == compactedGlyphs[i]) {
return i;
}
}
// Odd to get here, as we expected CT to have returned true up front.
return glyphCount;
}
int SkTypeface_Mac::onCountGlyphs() const {
return SkToInt(CTFontGetGlyphCount(fFontRef.get()));
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static bool find_desc_str(CTFontDescriptorRef desc, CFStringRef name, SkString* value) {
UniqueCFRef<CFStringRef> ref((CFStringRef)CTFontDescriptorCopyAttribute(desc, name));
if (!ref) {
return false;
}
CFStringToSkString(ref.get(), value);
return true;
}
#include "SkFontMgr.h"
static inline int sqr(int value) {
SkASSERT(SkAbs32(value) < 0x7FFF); // check for overflow
return value * value;
}
// We normalize each axis (weight, width, italic) to be base-900
static int compute_metric(const SkFontStyle& a, const SkFontStyle& b) {
return sqr(a.weight() - b.weight()) +
sqr((a.width() - b.width()) * 100) +
sqr((a.slant() != b.slant()) * 900);
}
class SkFontStyleSet_Mac : public SkFontStyleSet {
public:
SkFontStyleSet_Mac(CTFontDescriptorRef desc)
: fArray(CTFontDescriptorCreateMatchingFontDescriptors(desc, nullptr))
, fCount(0)
{
if (!fArray) {
fArray.reset(CFArrayCreate(nullptr, nullptr, 0, nullptr));
}
fCount = SkToInt(CFArrayGetCount(fArray.get()));
}
int count() override {
return fCount;
}
void getStyle(int index, SkFontStyle* style, SkString* name) override {
SkASSERT((unsigned)index < (unsigned)fCount);
CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray.get(), index);
if (style) {
*style = fontstyle_from_descriptor(desc, false);
}
if (name) {
if (!find_desc_str(desc, kCTFontStyleNameAttribute, name)) {
name->reset();
}
}
}
SkTypeface* createTypeface(int index) override {
SkASSERT((unsigned)index < (unsigned)CFArrayGetCount(fArray.get()));
CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray.get(), index);
return create_from_desc(desc);
}
SkTypeface* matchStyle(const SkFontStyle& pattern) override {
if (0 == fCount) {
return nullptr;
}
return create_from_desc(findMatchingDesc(pattern));
}
private:
UniqueCFRef<CFArrayRef> fArray;
int fCount;
CTFontDescriptorRef findMatchingDesc(const SkFontStyle& pattern) const {
int bestMetric = SK_MaxS32;
CTFontDescriptorRef bestDesc = nullptr;
for (int i = 0; i < fCount; ++i) {
CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray.get(), i);
int metric = compute_metric(pattern, fontstyle_from_descriptor(desc, false));
if (0 == metric) {
return desc;
}
if (metric < bestMetric) {
bestMetric = metric;
bestDesc = desc;
}
}
SkASSERT(bestDesc);
return bestDesc;
}
};
class SkFontMgr_Mac : public SkFontMgr {
UniqueCFRef<CFArrayRef> fNames;
int fCount;
CFStringRef getFamilyNameAt(int index) const {
SkASSERT((unsigned)index < (unsigned)fCount);
return (CFStringRef)CFArrayGetValueAtIndex(fNames.get(), index);
}
static SkFontStyleSet* CreateSet(CFStringRef cfFamilyName) {
UniqueCFRef<CFMutableDictionaryRef> cfAttr(
CFDictionaryCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
CFDictionaryAddValue(cfAttr.get(), kCTFontFamilyNameAttribute, cfFamilyName);
UniqueCFRef<CTFontDescriptorRef> desc(
CTFontDescriptorCreateWithAttributes(cfAttr.get()));
return new SkFontStyleSet_Mac(desc.get());
}
/** CTFontManagerCopyAvailableFontFamilyNames() is not always available, so we
* provide a wrapper here that will return an empty array if need be.
*/
static UniqueCFRef<CFArrayRef> CopyAvailableFontFamilyNames() {
#ifdef SK_BUILD_FOR_IOS
return UniqueCFRef<CFArrayRef>(CFArrayCreate(nullptr, nullptr, 0, nullptr));
#else
return UniqueCFRef<CFArrayRef>(CTFontManagerCopyAvailableFontFamilyNames());
#endif
}
public:
SkFontMgr_Mac()
: fNames(CopyAvailableFontFamilyNames())
, fCount(fNames ? SkToInt(CFArrayGetCount(fNames.get())) : 0) {}
protected:
int onCountFamilies() const override {
return fCount;
}
void onGetFamilyName(int index, SkString* familyName) const override {
if ((unsigned)index < (unsigned)fCount) {
CFStringToSkString(this->getFamilyNameAt(index), familyName);
} else {
familyName->reset();
}
}
SkFontStyleSet* onCreateStyleSet(int index) const override {
if ((unsigned)index >= (unsigned)fCount) {
return nullptr;
}
return CreateSet(this->getFamilyNameAt(index));
}
SkFontStyleSet* onMatchFamily(const char familyName[]) const override {
UniqueCFRef<CFStringRef> cfName = make_CFString(familyName);
return CreateSet(cfName.get());
}
SkTypeface* onMatchFamilyStyle(const char familyName[],
const SkFontStyle& fontStyle) const override {
sk_sp<SkFontStyleSet> sset(this->matchFamily(familyName));
return sset->matchStyle(fontStyle);
}
SkTypeface* onMatchFamilyStyleCharacter(const char familyName[],
const SkFontStyle& style,
const char* bcp47[], int bcp47Count,
SkUnichar character) const override {
UniqueCFRef<CTFontDescriptorRef> desc = create_descriptor(familyName, style);
UniqueCFRef<CTFontRef> currentFont(CTFontCreateWithFontDescriptor(desc.get(), 0, nullptr));
// kCFStringEncodingUTF32 is BE unless there is a BOM.
// Since there is no machine endian option, explicitly state machine endian.
#ifdef SK_CPU_LENDIAN
constexpr CFStringEncoding encoding = kCFStringEncodingUTF32LE;
#else
constexpr CFStringEncoding encoding = kCFStringEncodingUTF32BE;
#endif
UniqueCFRef<CFStringRef> string(CFStringCreateWithBytes(
kCFAllocatorDefault, reinterpret_cast<const UInt8 *>(&character), sizeof(character),
encoding, false));
CFRange range = CFRangeMake(0, CFStringGetLength(string.get())); // in UniChar units.
UniqueCFRef<CTFontRef> fallbackFont(
CTFontCreateForString(currentFont.get(), string.get(), range));
return create_from_CTFontRef(std::move(fallbackFont), nullptr, false);
}
SkTypeface* onMatchFaceStyle(const SkTypeface* familyMember,
const SkFontStyle&) const override {
return nullptr;
}
SkTypeface* onCreateFromData(SkData* data, int ttcIndex) const override {
UniqueCFRef<CGDataProviderRef> pr(SkCreateDataProviderFromData(sk_ref_sp(data)));
if (!pr) {
return nullptr;
}
return create_from_dataProvider(std::move(pr), ttcIndex);
}
SkTypeface* onCreateFromStream(SkStreamAsset* bareStream, int ttcIndex) const override {
std::unique_ptr<SkStreamAsset> stream(bareStream);
UniqueCFRef<CGDataProviderRef> pr(SkCreateDataProviderFromStream(std::move(stream)));
if (!pr) {
return nullptr;
}
return create_from_dataProvider(std::move(pr), ttcIndex);
}
/** Creates a dictionary suitable for setting the axes on a CGFont. */
static UniqueCFRef<CFDictionaryRef> copy_axes(CGFontRef cg, const SkFontArguments& args) {
// The CGFont variation data is keyed by name, but lacks the tag.
// The CTFont variation data is keyed by tag, and also has the name.
// We would like to work with CTFont variations, but creating a CTFont font with
// CTFont variation dictionary runs into bugs. So use the CTFont variation data
// to match names to tags to create the appropriate CGFont.
UniqueCFRef<CTFontRef> ct(CTFontCreateWithGraphicsFont(cg, 0, nullptr, nullptr));
// This call always returns nullptr on 10.10 and under.
// When this happens, there is no API to provide the tag.
UniqueCFRef<CFArrayRef> ctAxes(CTFontCopyVariationAxes(ct.get()));
if (!ctAxes) {
return nullptr;
}
CFIndex axisCount = CFArrayGetCount(ctAxes.get());
const SkFontArguments::VariationPosition position = args.getVariationDesignPosition();
UniqueCFRef<CFMutableDictionaryRef> dict(
CFDictionaryCreateMutable(kCFAllocatorDefault, axisCount,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
for (int i = 0; i < axisCount; ++i) {
CFTypeRef axisInfo = CFArrayGetValueAtIndex(ctAxes.get(), i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFDictionaryRef axisInfoDict = static_cast<CFDictionaryRef>(axisInfo);
// The assumption is that values produced by kCTFontVariationAxisNameKey and
// kCGFontVariationAxisName will always be equal.
// If they are ever not, seach the project history for "get_tag_for_name".
CFTypeRef axisName = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisNameKey);
if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) {
return nullptr;
}
CFTypeRef tag = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisIdentifierKey);
if (!tag || CFGetTypeID(tag) != CFNumberGetTypeID()) {
return nullptr;
}
CFNumberRef tagNumber = static_cast<CFNumberRef>(tag);
int64_t tagLong;
if (!CFNumberGetValue(tagNumber, kCFNumberSInt64Type, &tagLong)) {
return nullptr;
}
// The variation axes can be set to any value, but cg will effectively pin them.
// Pin them here to normalize.
CFTypeRef min = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisMinimumValueKey);
CFTypeRef max = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisMaximumValueKey);
CFTypeRef def = CFDictionaryGetValue(axisInfoDict, kCTFontVariationAxisDefaultValueKey);
if (!min || CFGetTypeID(min) != CFNumberGetTypeID() ||
!max || CFGetTypeID(max) != CFNumberGetTypeID() ||
!def || CFGetTypeID(def) != CFNumberGetTypeID())
{
return nullptr;
}
CFNumberRef minNumber = static_cast<CFNumberRef>(min);
CFNumberRef maxNumber = static_cast<CFNumberRef>(max);
CFNumberRef defNumber = static_cast<CFNumberRef>(def);
double minDouble;
double maxDouble;
double defDouble;
if (!CFNumberGetValue(minNumber, kCFNumberDoubleType, &minDouble) ||
!CFNumberGetValue(maxNumber, kCFNumberDoubleType, &maxDouble) ||
!CFNumberGetValue(defNumber, kCFNumberDoubleType, &defDouble))
{
return nullptr;
}
double value = defDouble;
// The position may be over specified. If there are multiple values for a given axis,
// use the last one since that's what css-fonts-4 requires.
for (int j = position.coordinateCount; j --> 0;) {
if (position.coordinates[j].axis == tagLong) {
value = SkTPin(SkScalarToDouble(position.coordinates[j].value),
minDouble, maxDouble);
break;
}
}
UniqueCFRef<CFNumberRef> valueNumber(
CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value));
CFDictionaryAddValue(dict.get(), axisName, valueNumber.get());
}
return std::move(dict);
}
SkTypeface* onCreateFromStream(SkStreamAsset* bs, const SkFontArguments& args) const override {
std::unique_ptr<SkStreamAsset> s(bs);
if (args.getCollectionIndex() != 0) {
return nullptr;
}
UniqueCFRef<CGDataProviderRef> provider(SkCreateDataProviderFromStream(std::move(s)));
if (!provider) {
return nullptr;
}
UniqueCFRef<CGFontRef> cg(CGFontCreateWithDataProvider(provider.get()));
if (!cg) {
return nullptr;
}
UniqueCFRef<CFDictionaryRef> cgVariations = copy_axes(cg.get(), args);
// The CGFontRef returned by CGFontCreateCopyWithVariations when the passed CGFontRef was
// created from a data provider does not appear to have any ownership of the underlying
// data. The original CGFontRef must be kept alive until the copy will no longer be used.
UniqueCFRef<CGFontRef> cgVariant;
if (cgVariations) {
cgVariant.reset(CGFontCreateCopyWithVariations(cg.get(), cgVariations.get()));
} else {
cgVariant.reset(cg.release());
}
UniqueCFRef<CTFontRef> ct(
CTFontCreateWithGraphicsFont(cgVariant.get(), 0, nullptr, nullptr));
if (!ct) {
return nullptr;
}
return create_from_CTFontRef(std::move(ct), std::move(cg), true);
}
/** Creates a dictionary suitable for setting the axes on a CGFont. */
static UniqueCFRef<CFDictionaryRef> copy_axes(CGFontRef cg, SkFontData* fontData) {
UniqueCFRef<CFArrayRef> cgAxes(CGFontCopyVariationAxes(cg));
if (!cgAxes) {
return nullptr;
}
CFIndex axisCount = CFArrayGetCount(cgAxes.get());
if (0 == axisCount || axisCount != fontData->getAxisCount()) {
return nullptr;
}
UniqueCFRef<CFMutableDictionaryRef> dict(
CFDictionaryCreateMutable(kCFAllocatorDefault, axisCount,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
for (int i = 0; i < fontData->getAxisCount(); ++i) {
CFTypeRef axisInfo = CFArrayGetValueAtIndex(cgAxes.get(), i);
if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) {
return nullptr;
}
CFDictionaryRef axisInfoDict = static_cast<CFDictionaryRef>(axisInfo);
CFTypeRef axisName = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisName);
if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) {
return nullptr;
}
// The variation axes can be set to any value, but cg will effectively pin them.
// Pin them here to normalize.
CFTypeRef min = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMinValue);
CFTypeRef max = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMaxValue);
if (!min || CFGetTypeID(min) != CFNumberGetTypeID() ||
!max || CFGetTypeID(max) != CFNumberGetTypeID())
{
return nullptr;
}
CFNumberRef minNumber = static_cast<CFNumberRef>(min);
CFNumberRef maxNumber = static_cast<CFNumberRef>(max);
double minDouble;
double maxDouble;
if (!CFNumberGetValue(minNumber, kCFNumberDoubleType, &minDouble) ||
!CFNumberGetValue(maxNumber, kCFNumberDoubleType, &maxDouble))
{
return nullptr;
}
double value = SkTPin(SkFixedToDouble(fontData->getAxis()[i]), minDouble, maxDouble);
UniqueCFRef<CFNumberRef> valueNumber(
CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value));
CFDictionaryAddValue(dict.get(), axisName, valueNumber.get());
}
return std::move(dict);
}
SkTypeface* onCreateFromFontData(std::unique_ptr<SkFontData> fontData) const override {
if (fontData->getIndex() != 0) {
return nullptr;
}
UniqueCFRef<CGDataProviderRef> provider(
SkCreateDataProviderFromStream(fontData->detachStream()));
if (!provider) {
return nullptr;
}
UniqueCFRef<CGFontRef> cg(CGFontCreateWithDataProvider(provider.get()));
if (!cg) {
return nullptr;
}
UniqueCFRef<CFDictionaryRef> cgVariations = copy_axes(cg.get(), fontData.get());
// The CGFontRef returned by CGFontCreateCopyWithVariations when the passed CGFontRef was
// created from a data provider does not appear to have any ownership of the underlying
// data. The original CGFontRef must be kept alive until the copy will no longer be used.
UniqueCFRef<CGFontRef> cgVariant;
if (cgVariations) {
cgVariant.reset(CGFontCreateCopyWithVariations(cg.get(), cgVariations.get()));
} else {
cgVariant.reset(cg.release());
}
UniqueCFRef<CTFontRef> ct(
CTFontCreateWithGraphicsFont(cgVariant.get(), 0, nullptr, nullptr));
if (!ct) {
return nullptr;
}
return create_from_CTFontRef(std::move(ct), std::move(cg), true);
}
SkTypeface* onCreateFromFile(const char path[], int ttcIndex) const override {
UniqueCFRef<CGDataProviderRef> pr(CGDataProviderCreateWithFilename(path));
if (!pr) {
return nullptr;
}
return create_from_dataProvider(std::move(pr), ttcIndex);
}
SkTypeface* onLegacyCreateTypeface(const char familyName[], SkFontStyle style) const override {
if (familyName) {
familyName = map_css_names(familyName);
}
SkTypeface* face = create_from_name(familyName, style);
if (face) {
return face;
}
static SkTypeface* gDefaultFace;
static SkOnce lookupDefault;
static const char FONT_DEFAULT_NAME[] = "Lucida Sans";
lookupDefault([]{
gDefaultFace = create_from_name(FONT_DEFAULT_NAME, SkFontStyle());
});
return SkSafeRef(gDefaultFace);
}
};
///////////////////////////////////////////////////////////////////////////////
sk_sp<SkFontMgr> SkFontMgr::Factory() { return sk_make_sp<SkFontMgr_Mac>(); }
#endif//defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)