| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkCodec.h" |
| #include "SkCodecPriv.h" |
| #include "SkColorPriv.h" |
| #include "SkData.h" |
| #include "SkJpegCodec.h" |
| #include "SkMutex.h" |
| #include "SkRawCodec.h" |
| #include "SkRefCnt.h" |
| #include "SkStream.h" |
| #include "SkStreamPriv.h" |
| #include "SkSwizzler.h" |
| #include "SkTArray.h" |
| #include "SkTaskGroup.h" |
| #include "SkTemplates.h" |
| #include "SkTypes.h" |
| |
| #include "dng_area_task.h" |
| #include "dng_color_space.h" |
| #include "dng_errors.h" |
| #include "dng_exceptions.h" |
| #include "dng_host.h" |
| #include "dng_info.h" |
| #include "dng_memory.h" |
| #include "dng_render.h" |
| #include "dng_stream.h" |
| |
| #include "src/piex.h" |
| |
| #include <cmath> // for std::round,floor,ceil |
| #include <limits> |
| |
| namespace { |
| |
| // Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal |
| // directions. |
| dng_point num_tiles_in_area(const dng_point &areaSize, |
| const dng_point_real64 &tileSize) { |
| // FIXME: Add a ceil_div() helper in SkCodecPriv.h |
| return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v), |
| static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h)); |
| } |
| |
| int num_tasks_required(const dng_point& tilesInTask, |
| const dng_point& tilesInArea) { |
| return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) * |
| ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h); |
| } |
| |
| // Calculate the number of tiles to process per task, taking into account the maximum number of |
| // tasks. It prefers to increase horizontally for better locality of reference. |
| dng_point num_tiles_per_task(const int maxTasks, |
| const dng_point &tilesInArea) { |
| dng_point tilesInTask = {1, 1}; |
| while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) { |
| if (tilesInTask.h < tilesInArea.h) { |
| ++tilesInTask.h; |
| } else if (tilesInTask.v < tilesInArea.v) { |
| ++tilesInTask.v; |
| } else { |
| ThrowProgramError("num_tiles_per_task calculation is wrong."); |
| } |
| } |
| return tilesInTask; |
| } |
| |
| std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area, |
| const dng_point& tileSize) { |
| std::vector<dng_rect> taskAreas; |
| const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize); |
| const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea); |
| const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v, |
| tilesPerTask.h * tileSize.h}; |
| for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) { |
| for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) { |
| dng_rect taskArea; |
| taskArea.t = area.t + v * tileSize.v; |
| taskArea.l = area.l + h * tileSize.h; |
| taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b); |
| taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r); |
| |
| taskAreas.push_back(taskArea); |
| } |
| } |
| return taskAreas; |
| } |
| |
| class SkDngHost : public dng_host { |
| public: |
| explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {} |
| |
| void PerformAreaTask(dng_area_task& task, const dng_rect& area) override { |
| // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the |
| // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32 |
| // sub-tasks depending on the architecture. |
| const int maxTasks = static_cast<int>(task.MaxThreads()); |
| |
| SkTaskGroup taskGroup; |
| |
| // tileSize is typically 256x256 |
| const dng_point tileSize(task.FindTileSize(area)); |
| const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize); |
| const int numTasks = static_cast<int>(taskAreas.size()); |
| |
| SkMutex mutex; |
| SkTArray<dng_exception> exceptions; |
| task.Start(numTasks, tileSize, &Allocator(), Sniffer()); |
| for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) { |
| taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] { |
| try { |
| task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer()); |
| } catch (dng_exception& exception) { |
| SkAutoMutexAcquire lock(mutex); |
| exceptions.push_back(exception); |
| } catch (...) { |
| SkAutoMutexAcquire lock(mutex); |
| exceptions.push_back(dng_exception(dng_error_unknown)); |
| } |
| }); |
| } |
| |
| taskGroup.wait(); |
| task.Finish(numTasks); |
| |
| // Currently we only re-throw the first catched exception. |
| if (!exceptions.empty()) { |
| Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr); |
| } |
| } |
| |
| uint32 PerformAreaTaskThreads() override { |
| // FIXME: Need to get the real amount of available threads used in the SkTaskGroup. |
| return kMaxMPThreads; |
| } |
| |
| private: |
| typedef dng_host INHERITED; |
| }; |
| |
| // T must be unsigned type. |
| template <class T> |
| bool safe_add_to_size_t(T arg1, T arg2, size_t* result) { |
| SkASSERT(arg1 >= 0); |
| SkASSERT(arg2 >= 0); |
| if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) { |
| T sum = arg1 + arg2; |
| if (sum <= std::numeric_limits<size_t>::max()) { |
| *result = static_cast<size_t>(sum); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| class SkDngMemoryAllocator : public dng_memory_allocator { |
| public: |
| ~SkDngMemoryAllocator() override {} |
| |
| dng_memory_block* Allocate(uint32 size) override { |
| // To avoid arbitary allocation requests which might lead to out-of-memory, limit the |
| // amount of memory that can be allocated at once. The memory limit is based on experiments |
| // and supposed to be sufficient for all valid DNG images. |
| if (size > 300 * 1024 * 1024) { // 300 MB |
| ThrowMemoryFull(); |
| } |
| return dng_memory_allocator::Allocate(size); |
| } |
| }; |
| |
| bool is_asset_stream(const SkStream& stream) { |
| return stream.hasLength() && stream.hasPosition(); |
| } |
| |
| } // namespace |
| |
| class SkRawStream { |
| public: |
| virtual ~SkRawStream() {} |
| |
| /* |
| * Gets the length of the stream. Depending on the type of stream, this may require reading to |
| * the end of the stream. |
| */ |
| virtual uint64 getLength() = 0; |
| |
| virtual bool read(void* data, size_t offset, size_t length) = 0; |
| |
| /* |
| * Creates an SkMemoryStream from the offset with size. |
| * Note: for performance reason, this function is destructive to the SkRawStream. One should |
| * abandon current object after the function call. |
| */ |
| virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0; |
| }; |
| |
| class SkRawBufferedStream : public SkRawStream { |
| public: |
| // Will take the ownership of the stream. |
| explicit SkRawBufferedStream(SkStream* stream) |
| : fStream(stream) |
| , fWholeStreamRead(false) |
| { |
| // Only use SkRawBufferedStream when the stream is not an asset stream. |
| SkASSERT(!is_asset_stream(*stream)); |
| } |
| |
| ~SkRawBufferedStream() override {} |
| |
| uint64 getLength() override { |
| if (!this->bufferMoreData(kReadToEnd)) { // read whole stream |
| ThrowReadFile(); |
| } |
| return fStreamBuffer.bytesWritten(); |
| } |
| |
| bool read(void* data, size_t offset, size_t length) override { |
| if (length == 0) { |
| return true; |
| } |
| |
| size_t sum; |
| if (!safe_add_to_size_t(offset, length, &sum)) { |
| return false; |
| } |
| |
| return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length); |
| } |
| |
| SkMemoryStream* transferBuffer(size_t offset, size_t size) override { |
| SkAutoTUnref<SkData> data(SkData::NewUninitialized(size)); |
| if (offset > fStreamBuffer.bytesWritten()) { |
| // If the offset is not buffered, read from fStream directly and skip the buffering. |
| const size_t skipLength = offset - fStreamBuffer.bytesWritten(); |
| if (fStream->skip(skipLength) != skipLength) { |
| return nullptr; |
| } |
| const size_t bytesRead = fStream->read(data->writable_data(), size); |
| if (bytesRead < size) { |
| data.reset(SkData::NewSubset(data.get(), 0, bytesRead)); |
| } |
| } else { |
| const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size); |
| if (alreadyBuffered > 0 && |
| !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) { |
| return nullptr; |
| } |
| |
| const size_t remaining = size - alreadyBuffered; |
| if (remaining) { |
| auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered; |
| const size_t bytesRead = fStream->read(dst, remaining); |
| size_t newSize; |
| if (bytesRead < remaining) { |
| if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) { |
| return nullptr; |
| } |
| data.reset(SkData::NewSubset(data.get(), 0, newSize)); |
| } |
| } |
| } |
| return new SkMemoryStream(data); |
| } |
| |
| private: |
| // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream. |
| bool bufferMoreData(size_t newSize) { |
| if (newSize == kReadToEnd) { |
| if (fWholeStreamRead) { // already read-to-end. |
| return true; |
| } |
| |
| // TODO: optimize for the special case when the input is SkMemoryStream. |
| return SkStreamCopy(&fStreamBuffer, fStream.get()); |
| } |
| |
| if (newSize <= fStreamBuffer.bytesWritten()) { // already buffered to newSize |
| return true; |
| } |
| if (fWholeStreamRead) { // newSize is larger than the whole stream. |
| return false; |
| } |
| |
| // Try to read at least 8192 bytes to avoid to many small reads. |
| const size_t kMinSizeToRead = 8192; |
| const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten(); |
| const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested); |
| SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead); |
| const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead); |
| if (bytesRead < sizeRequested) { |
| return false; |
| } |
| return fStreamBuffer.write(tempBuffer.get(), bytesRead); |
| } |
| |
| SkAutoTDelete<SkStream> fStream; |
| bool fWholeStreamRead; |
| |
| SkDynamicMemoryWStream fStreamBuffer; |
| |
| const size_t kReadToEnd = 0; |
| }; |
| |
| class SkRawAssetStream : public SkRawStream { |
| public: |
| // Will take the ownership of the stream. |
| explicit SkRawAssetStream(SkStream* stream) |
| : fStream(stream) |
| { |
| // Only use SkRawAssetStream when the stream is an asset stream. |
| SkASSERT(is_asset_stream(*stream)); |
| } |
| |
| ~SkRawAssetStream() override {} |
| |
| uint64 getLength() override { |
| return fStream->getLength(); |
| } |
| |
| |
| bool read(void* data, size_t offset, size_t length) override { |
| if (length == 0) { |
| return true; |
| } |
| |
| size_t sum; |
| if (!safe_add_to_size_t(offset, length, &sum)) { |
| return false; |
| } |
| |
| return fStream->seek(offset) && (fStream->read(data, length) == length); |
| } |
| |
| SkMemoryStream* transferBuffer(size_t offset, size_t size) override { |
| if (fStream->getLength() < offset) { |
| return nullptr; |
| } |
| |
| size_t sum; |
| if (!safe_add_to_size_t(offset, size, &sum)) { |
| return nullptr; |
| } |
| |
| // This will allow read less than the requested "size", because the JPEG codec wants to |
| // handle also a partial JPEG file. |
| const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset; |
| if (bytesToRead == 0) { |
| return nullptr; |
| } |
| |
| if (fStream->getMemoryBase()) { // directly copy if getMemoryBase() is available. |
| SkAutoTUnref<SkData> data(SkData::NewWithCopy( |
| static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead)); |
| fStream.free(); |
| return new SkMemoryStream(data); |
| } else { |
| SkAutoTUnref<SkData> data(SkData::NewUninitialized(bytesToRead)); |
| if (!fStream->seek(offset)) { |
| return nullptr; |
| } |
| const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead); |
| if (bytesRead < bytesToRead) { |
| data.reset(SkData::NewSubset(data.get(), 0, bytesRead)); |
| } |
| return new SkMemoryStream(data); |
| } |
| } |
| private: |
| SkAutoTDelete<SkStream> fStream; |
| }; |
| |
| class SkPiexStream : public ::piex::StreamInterface { |
| public: |
| // Will NOT take the ownership of the stream. |
| explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {} |
| |
| ~SkPiexStream() override {} |
| |
| ::piex::Error GetData(const size_t offset, const size_t length, |
| uint8* data) override { |
| return fStream->read(static_cast<void*>(data), offset, length) ? |
| ::piex::Error::kOk : ::piex::Error::kFail; |
| } |
| |
| private: |
| SkRawStream* fStream; |
| }; |
| |
| class SkDngStream : public dng_stream { |
| public: |
| // Will NOT take the ownership of the stream. |
| SkDngStream(SkRawStream* stream) : fStream(stream) {} |
| |
| ~SkDngStream() override {} |
| |
| uint64 DoGetLength() override { return fStream->getLength(); } |
| |
| void DoRead(void* data, uint32 count, uint64 offset) override { |
| size_t sum; |
| if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) || |
| !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) { |
| ThrowReadFile(); |
| } |
| } |
| |
| private: |
| SkRawStream* fStream; |
| }; |
| |
| class SkDngImage { |
| public: |
| /* |
| * Initializes the object with the information from Piex in a first attempt. This way it can |
| * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern |
| * which is essential for the demosaicing of the sensor image. |
| * Note: this will take the ownership of the stream. |
| */ |
| static SkDngImage* NewFromStream(SkRawStream* stream) { |
| SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream)); |
| if (!dngImage->initFromPiex()) { |
| if (!dngImage->readDng()) { |
| return nullptr; |
| } |
| } |
| |
| return dngImage.release(); |
| } |
| |
| /* |
| * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors |
| * down to 80 pixels on the short edge. The rendered image will be close to the specified size, |
| * but there is no guarantee that any of the edges will match the requested size. E.g. |
| * 100% size: 4000 x 3000 |
| * requested size: 1600 x 1200 |
| * returned size could be: 2000 x 1500 |
| */ |
| dng_image* render(int width, int height) { |
| if (!fHost || !fInfo || !fNegative || !fDngStream) { |
| if (!this->readDng()) { |
| return nullptr; |
| } |
| } |
| |
| // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension. |
| const int preferredSize = SkTMax(width, height); |
| try { |
| // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available. |
| SkAutoTDelete<dng_host> host(fHost.release()); |
| SkAutoTDelete<dng_info> info(fInfo.release()); |
| SkAutoTDelete<dng_negative> negative(fNegative.release()); |
| SkAutoTDelete<dng_stream> dngStream(fDngStream.release()); |
| |
| host->SetPreferredSize(preferredSize); |
| host->ValidateSizes(); |
| |
| negative->ReadStage1Image(*host, *dngStream, *info); |
| |
| if (info->fMaskIndex != -1) { |
| negative->ReadTransparencyMask(*host, *dngStream, *info); |
| } |
| |
| negative->ValidateRawImageDigest(*host); |
| if (negative->IsDamaged()) { |
| return nullptr; |
| } |
| |
| const int32 kMosaicPlane = -1; |
| negative->BuildStage2Image(*host); |
| negative->BuildStage3Image(*host, kMosaicPlane); |
| |
| dng_render render(*host, *negative); |
| render.SetFinalSpace(dng_space_sRGB::Get()); |
| render.SetFinalPixelType(ttByte); |
| |
| dng_point stage3_size = negative->Stage3Image()->Size(); |
| render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v)); |
| |
| return render.Render(); |
| } catch (...) { |
| return nullptr; |
| } |
| } |
| |
| const SkImageInfo& getImageInfo() const { |
| return fImageInfo; |
| } |
| |
| bool isScalable() const { |
| return fIsScalable; |
| } |
| |
| bool isXtransImage() const { |
| return fIsXtransImage; |
| } |
| |
| private: |
| void init(const int width, const int height, const dng_point& cfaPatternSize) { |
| fImageInfo = SkImageInfo::Make(width, height, kN32_SkColorType, kOpaque_SkAlphaType); |
| |
| // The DNG SDK scales only during demosaicing, so scaling is only possible when |
| // a mosaic info is available. |
| fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0; |
| fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false; |
| } |
| |
| bool initFromPiex() { |
| // Does not take the ownership of rawStream. |
| SkPiexStream piexStream(fStream.get()); |
| ::piex::PreviewImageData imageData; |
| if (::piex::IsRaw(&piexStream) |
| && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk) |
| { |
| dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]); |
| this->init(static_cast<int>(imageData.full_width), |
| static_cast<int>(imageData.full_height), cfaPatternSize); |
| return true; |
| } |
| return false; |
| } |
| |
| bool readDng() { |
| try { |
| // Due to the limit of DNG SDK, we need to reset host and info. |
| fHost.reset(new SkDngHost(&fAllocator)); |
| fInfo.reset(new dng_info); |
| fDngStream.reset(new SkDngStream(fStream)); |
| |
| fHost->ValidateSizes(); |
| fInfo->Parse(*fHost, *fDngStream); |
| fInfo->PostParse(*fHost); |
| if (!fInfo->IsValidDNG()) { |
| return false; |
| } |
| |
| fNegative.reset(fHost->Make_dng_negative()); |
| fNegative->Parse(*fHost, *fDngStream, *fInfo); |
| fNegative->PostParse(*fHost, *fDngStream, *fInfo); |
| fNegative->SynchronizeMetadata(); |
| |
| dng_point cfaPatternSize(0, 0); |
| if (fNegative->GetMosaicInfo() != nullptr) { |
| cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize; |
| } |
| this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()), |
| static_cast<int>(fNegative->DefaultCropSizeV().As_real64()), |
| cfaPatternSize); |
| return true; |
| } catch (...) { |
| return false; |
| } |
| } |
| |
| SkDngImage(SkRawStream* stream) |
| : fStream(stream) {} |
| |
| SkDngMemoryAllocator fAllocator; |
| SkAutoTDelete<SkRawStream> fStream; |
| SkAutoTDelete<dng_host> fHost; |
| SkAutoTDelete<dng_info> fInfo; |
| SkAutoTDelete<dng_negative> fNegative; |
| SkAutoTDelete<dng_stream> fDngStream; |
| |
| SkImageInfo fImageInfo; |
| bool fIsScalable; |
| bool fIsXtransImage; |
| }; |
| |
| /* |
| * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a |
| * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases, |
| * fallback to create SkRawCodec for DNG images. |
| */ |
| SkCodec* SkRawCodec::NewFromStream(SkStream* stream) { |
| SkAutoTDelete<SkRawStream> rawStream; |
| if (is_asset_stream(*stream)) { |
| rawStream.reset(new SkRawAssetStream(stream)); |
| } else { |
| rawStream.reset(new SkRawBufferedStream(stream)); |
| } |
| |
| // Does not take the ownership of rawStream. |
| SkPiexStream piexStream(rawStream.get()); |
| ::piex::PreviewImageData imageData; |
| if (::piex::IsRaw(&piexStream)) { |
| ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData); |
| |
| if (error == ::piex::Error::kOk && imageData.preview.length > 0) { |
| // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this |
| // function call. |
| // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream. |
| SkMemoryStream* memoryStream = |
| rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length); |
| return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr; |
| } else if (error == ::piex::Error::kFail) { |
| return nullptr; |
| } |
| } |
| |
| // Takes the ownership of the rawStream. |
| SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release())); |
| if (!dngImage) { |
| return nullptr; |
| } |
| |
| return new SkRawCodec(dngImage.release()); |
| } |
| |
| SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst, |
| size_t dstRowBytes, const Options& options, |
| SkPMColor ctable[], int* ctableCount, |
| int* rowsDecoded) { |
| if (!conversion_possible(requestedInfo, this->getInfo())) { |
| SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
| return kInvalidConversion; |
| } |
| |
| SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler( |
| SkSwizzler::kRGB, nullptr, requestedInfo, options)); |
| SkASSERT(swizzler); |
| |
| const int width = requestedInfo.width(); |
| const int height = requestedInfo.height(); |
| SkAutoTDelete<dng_image> image(fDngImage->render(width, height)); |
| if (!image) { |
| return kInvalidInput; |
| } |
| |
| // Because the DNG SDK can not guarantee to render to requested size, we allow a small |
| // difference. Only the overlapping region will be converted. |
| const float maxDiffRatio = 1.03f; |
| const dng_point& imageSize = image->Size(); |
| if (imageSize.h / width > maxDiffRatio || imageSize.h < width || |
| imageSize.v / height > maxDiffRatio || imageSize.v < height) { |
| return SkCodec::kInvalidScale; |
| } |
| |
| void* dstRow = dst; |
| SkAutoTMalloc<uint8_t> srcRow(width * 3); |
| |
| dng_pixel_buffer buffer; |
| buffer.fData = &srcRow[0]; |
| buffer.fPlane = 0; |
| buffer.fPlanes = 3; |
| buffer.fColStep = buffer.fPlanes; |
| buffer.fPlaneStep = 1; |
| buffer.fPixelType = ttByte; |
| buffer.fPixelSize = sizeof(uint8_t); |
| buffer.fRowStep = width * 3; |
| |
| for (int i = 0; i < height; ++i) { |
| buffer.fArea = dng_rect(i, 0, i + 1, width); |
| |
| try { |
| image->Get(buffer, dng_image::edge_zero); |
| } catch (...) { |
| *rowsDecoded = i; |
| return kIncompleteInput; |
| } |
| |
| swizzler->swizzle(dstRow, &srcRow[0]); |
| dstRow = SkTAddOffset<void>(dstRow, dstRowBytes); |
| } |
| return kSuccess; |
| } |
| |
| SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const { |
| SkASSERT(desiredScale <= 1.f); |
| const SkISize dim = this->getInfo().dimensions(); |
| if (!fDngImage->isScalable()) { |
| return dim; |
| } |
| |
| // Limits the minimum size to be 80 on the short edge. |
| const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight)); |
| if (desiredScale < 80.f / shortEdge) { |
| desiredScale = 80.f / shortEdge; |
| } |
| |
| // For Xtrans images, the integer-factor scaling does not support the half-size scaling case |
| // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead. |
| if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) { |
| desiredScale = 1.f / 3.f; |
| } |
| |
| // Round to integer-factors. |
| const float finalScale = std::floor(1.f/ desiredScale); |
| return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)), |
| static_cast<int32_t>(std::floor(dim.fHeight / finalScale))); |
| } |
| |
| bool SkRawCodec::onDimensionsSupported(const SkISize& dim) { |
| const SkISize fullDim = this->getInfo().dimensions(); |
| const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight)); |
| const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight)); |
| |
| SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge)); |
| SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge)); |
| return sizeFloor == dim || sizeCeil == dim; |
| } |
| |
| SkRawCodec::~SkRawCodec() {} |
| |
| SkRawCodec::SkRawCodec(SkDngImage* dngImage) |
| : INHERITED(dngImage->getImageInfo(), nullptr) |
| , fDngImage(dngImage) {} |