| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTextureCompressor_ASTC.h" |
| #include "SkTextureCompressor_Blitter.h" |
| |
| #include "SkBlitter.h" |
| #include "SkEndian.h" |
| #include "SkMath.h" |
| |
| // This table contains the weight values for each texel. This is used in determining |
| // how to convert a 12x12 grid of alpha values into a 6x5 grid of index values. Since |
| // we have a 6x5 grid, that gives 30 values that we have to compute. For each index, |
| // we store up to 20 different triplets of values. In order the triplets are: |
| // weight, texel-x, texel-y |
| // The weight value corresponds to the amount that this index contributes to the final |
| // index value of the given texel. Hence, we need to reconstruct the 6x5 index grid |
| // from their relative contribution to the 12x12 texel grid. |
| // |
| // The algorithm is something like this: |
| // foreach index i: |
| // total-weight = 0; |
| // total-alpha = 0; |
| // for w = 1 to 20: |
| // weight = table[i][w*3]; |
| // texel-x = table[i][w*3 + 1]; |
| // texel-y = table[i][w*3 + 2]; |
| // if weight >= 0: |
| // total-weight += weight; |
| // total-alpha += weight * alphas[texel-x][texel-y]; |
| // |
| // total-alpha /= total-weight; |
| // index = top three bits of total-alpha |
| // |
| // If the associated index does not contribute to 20 different texels (e.g. it's in |
| // a corner), then the extra texels are stored with -1's in the table. |
| |
| static const int8_t k6x5To12x12Table[30][60] = { |
| { 16, 0, 0, 9, 1, 0, 1, 2, 0, 10, 0, 1, 6, 1, 1, 1, 2, 1, 4, 0, 2, 2, |
| 1, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 7, 1, 0, 15, 2, 0, 10, 3, 0, 3, 4, 0, 4, 1, 1, 9, 2, 1, 6, 3, 1, 2, |
| 4, 1, 2, 1, 2, 4, 2, 2, 3, 3, 2, 1, 4, 2, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 6, 3, 0, 13, 4, 0, 12, 5, 0, 4, 6, 0, 4, 3, 1, 8, 4, 1, 8, 5, 1, 3, |
| 6, 1, 1, 3, 2, 3, 4, 2, 3, 5, 2, 1, 6, 2, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 4, 5, 0, 12, 6, 0, 13, 7, 0, 6, 8, 0, 2, 5, 1, 7, 6, 1, 8, 7, 1, 4, |
| 8, 1, 1, 5, 2, 3, 6, 2, 3, 7, 2, 2, 8, 2, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 3, 7, 0, 10, 8, 0, 15, 9, 0, 7, 10, 0, 2, 7, 1, 6, 8, 1, 9, 9, 1, 4, |
| 10, 1, 1, 7, 2, 2, 8, 2, 4, 9, 2, 2, 10, 2, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 9, 0, 9, 10, 0, 16, 11, 0, 1, 9, 1, 6, 10, 1, 10, 11, 1, 2, 10, 2, 4, |
| 11, 2, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 6, 0, 1, 3, 1, 1, 12, 0, 2, 7, 1, 2, 1, 2, 2, 15, 0, 3, 8, 1, 3, 1, |
| 2, 3, 9, 0, 4, 5, 1, 4, 1, 2, 4, 3, 0, 5, 2, 1, 5, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 3, 1, 1, 6, 2, 1, 4, 3, 1, 1, 4, 1, 5, 1, 2, 11, 2, 2, 7, 3, 2, 2, |
| 4, 2, 7, 1, 3, 14, 2, 3, 9, 3, 3, 3, 4, 3, 4, 1, 4, 8, 2, 4, 6, 3, |
| 4, 2, 4, 4, 1, 1, 5, 3, 2, 5, 2, 3, 5, 1, 4, 5}, // n = 20 |
| { 2, 3, 1, 5, 4, 1, 4, 5, 1, 1, 6, 1, 5, 3, 2, 10, 4, 2, 9, 5, 2, 3, |
| 6, 2, 6, 3, 3, 12, 4, 3, 11, 5, 3, 4, 6, 3, 3, 3, 4, 7, 4, 4, 7, 5, |
| 4, 2, 6, 4, 1, 3, 5, 2, 4, 5, 2, 5, 5, 1, 6, 5}, // n = 20 |
| { 2, 5, 1, 5, 6, 1, 5, 7, 1, 2, 8, 1, 3, 5, 2, 9, 6, 2, 10, 7, 2, 4, |
| 8, 2, 4, 5, 3, 11, 6, 3, 12, 7, 3, 6, 8, 3, 2, 5, 4, 7, 6, 4, 7, 7, |
| 4, 3, 8, 4, 1, 5, 5, 2, 6, 5, 2, 7, 5, 1, 8, 5}, // n = 20 |
| { 1, 7, 1, 4, 8, 1, 6, 9, 1, 3, 10, 1, 2, 7, 2, 8, 8, 2, 11, 9, 2, 5, |
| 10, 2, 3, 7, 3, 9, 8, 3, 14, 9, 3, 7, 10, 3, 2, 7, 4, 6, 8, 4, 8, 9, |
| 4, 4, 10, 4, 1, 7, 5, 2, 8, 5, 3, 9, 5, 1, 10, 5}, // n = 20 |
| { 3, 10, 1, 6, 11, 1, 1, 9, 2, 7, 10, 2, 12, 11, 2, 1, 9, 3, 8, 10, 3, 15, |
| 11, 3, 1, 9, 4, 5, 10, 4, 9, 11, 4, 2, 10, 5, 3, 11, 5, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 0, 3, 1, 1, 3, 7, 0, 4, 4, 1, 4, 13, 0, 5, 7, 1, 5, 1, 2, 5, 13, |
| 0, 6, 7, 1, 6, 1, 2, 6, 7, 0, 7, 4, 1, 7, 1, 0, 8, 1, 1, 8, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 2, 3, 1, 3, 3, 3, 1, 4, 7, 2, 4, 4, 3, 4, 1, 4, 4, 6, 1, 5, 12, |
| 2, 5, 8, 3, 5, 2, 4, 5, 6, 1, 6, 12, 2, 6, 8, 3, 6, 2, 4, 6, 3, 1, |
| 7, 7, 2, 7, 4, 3, 7, 1, 4, 7, 1, 2, 8, 1, 3, 8}, // n = 20 |
| { 1, 4, 3, 1, 5, 3, 3, 3, 4, 6, 4, 4, 5, 5, 4, 2, 6, 4, 5, 3, 5, 11, |
| 4, 5, 10, 5, 5, 3, 6, 5, 5, 3, 6, 11, 4, 6, 10, 5, 6, 3, 6, 6, 3, 3, |
| 7, 6, 4, 7, 5, 5, 7, 2, 6, 7, 1, 4, 8, 1, 5, 8}, // n = 20 |
| { 1, 6, 3, 1, 7, 3, 2, 5, 4, 5, 6, 4, 6, 7, 4, 3, 8, 4, 3, 5, 5, 10, |
| 6, 5, 11, 7, 5, 5, 8, 5, 3, 5, 6, 10, 6, 6, 11, 7, 6, 5, 8, 6, 2, 5, |
| 7, 5, 6, 7, 6, 7, 7, 3, 8, 7, 1, 6, 8, 1, 7, 8}, // n = 20 |
| { 1, 8, 3, 1, 9, 3, 1, 7, 4, 4, 8, 4, 7, 9, 4, 3, 10, 4, 2, 7, 5, 8, |
| 8, 5, 12, 9, 5, 6, 10, 5, 2, 7, 6, 8, 8, 6, 12, 9, 6, 6, 10, 6, 1, 7, |
| 7, 4, 8, 7, 7, 9, 7, 3, 10, 7, 1, 8, 8, 1, 9, 8}, // n = 20 |
| { 1, 10, 3, 1, 11, 3, 4, 10, 4, 7, 11, 4, 1, 9, 5, 7, 10, 5, 13, 11, 5, 1, |
| 9, 6, 7, 10, 6, 13, 11, 6, 4, 10, 7, 7, 11, 7, 1, 10, 8, 1, 11, 8, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 3, 0, 6, 2, 1, 6, 9, 0, 7, 5, 1, 7, 1, 2, 7, 15, 0, 8, 8, 1, 8, 1, |
| 2, 8, 12, 0, 9, 7, 1, 9, 1, 2, 9, 6, 0, 10, 3, 1, 10, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 1, 6, 3, 2, 6, 2, 3, 6, 1, 4, 6, 4, 1, 7, 8, 2, 7, 6, 3, 7, 2, |
| 4, 7, 7, 1, 8, 14, 2, 8, 9, 3, 8, 3, 4, 8, 5, 1, 9, 11, 2, 9, 8, 3, |
| 9, 2, 4, 9, 3, 1, 10, 6, 2, 10, 4, 3, 10, 1, 4, 10}, // n = 20 |
| { 1, 3, 6, 2, 4, 6, 2, 5, 6, 1, 6, 6, 3, 3, 7, 7, 4, 7, 7, 5, 7, 2, |
| 6, 7, 6, 3, 8, 12, 4, 8, 11, 5, 8, 4, 6, 8, 4, 3, 9, 10, 4, 9, 9, 5, |
| 9, 3, 6, 9, 2, 3, 10, 5, 4, 10, 5, 5, 10, 2, 6, 10}, // n = 20 |
| { 1, 5, 6, 2, 6, 6, 2, 7, 6, 1, 8, 6, 2, 5, 7, 7, 6, 7, 7, 7, 7, 3, |
| 8, 7, 4, 5, 8, 11, 6, 8, 12, 7, 8, 6, 8, 8, 3, 5, 9, 9, 6, 9, 10, 7, |
| 9, 5, 8, 9, 1, 5, 10, 4, 6, 10, 5, 7, 10, 2, 8, 10}, // n = 20 |
| { 1, 7, 6, 2, 8, 6, 3, 9, 6, 1, 10, 6, 2, 7, 7, 6, 8, 7, 8, 9, 7, 4, |
| 10, 7, 3, 7, 8, 9, 8, 8, 14, 9, 8, 7, 10, 8, 2, 7, 9, 7, 8, 9, 11, 9, |
| 9, 5, 10, 9, 1, 7, 10, 4, 8, 10, 6, 9, 10, 3, 10, 10}, // n = 20 |
| { 2, 10, 6, 3, 11, 6, 1, 9, 7, 5, 10, 7, 9, 11, 7, 1, 9, 8, 8, 10, 8, 15, |
| 11, 8, 1, 9, 9, 7, 10, 9, 12, 11, 9, 3, 10, 10, 6, 11, 10, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 4, 0, 9, 2, 1, 9, 10, 0, 10, 6, 1, 10, 1, 2, 10, 16, 0, 11, 9, 1, 11, 1, |
| 2, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 2, 1, 9, 4, 2, 9, 2, 3, 9, 1, 4, 9, 4, 1, 10, 9, 2, 10, 6, 3, 10, 2, |
| 4, 10, 7, 1, 11, 15, 2, 11, 10, 3, 11, 3, 4, 11, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 2, 3, 9, 3, 4, 9, 3, 5, 9, 1, 6, 9, 4, 3, 10, 8, 4, 10, 7, 5, 10, 2, |
| 6, 10, 6, 3, 11, 13, 4, 11, 12, 5, 11, 4, 6, 11, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 5, 9, 3, 6, 9, 3, 7, 9, 1, 8, 9, 3, 5, 10, 8, 6, 10, 8, 7, 10, 4, |
| 8, 10, 4, 5, 11, 12, 6, 11, 13, 7, 11, 6, 8, 11, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 1, 7, 9, 3, 8, 9, 4, 9, 9, 2, 10, 9, 2, 7, 10, 6, 8, 10, 9, 9, 10, 4, |
| 10, 10, 3, 7, 11, 10, 8, 11, 15, 9, 11, 7, 10, 11, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0}, // n = 20 |
| { 2, 10, 9, 4, 11, 9, 1, 9, 10, 6, 10, 10, 10, 11, 10, 1, 9, 11, 9, 10, 11, 16, |
| 11, 11, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, |
| 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0} // n = 20 |
| }; |
| |
| // Returns the alpha value of a texel at position (x, y) from src. |
| // (x, y) are assumed to be in the range [0, 12). |
| inline uint8_t GetAlpha(const uint8_t *src, int rowBytes, int x, int y) { |
| SkASSERT(x >= 0 && x < 12); |
| SkASSERT(y >= 0 && y < 12); |
| SkASSERT(rowBytes >= 12); |
| return *(src + y*rowBytes + x); |
| } |
| |
| inline uint8_t GetAlphaTranspose(const uint8_t *src, int rowBytes, int x, int y) { |
| return GetAlpha(src, rowBytes, y, x); |
| } |
| |
| // Output the 16 bytes stored in top and bottom and advance the pointer. The bytes |
| // are stored as the integers are represented in memory, so they should be swapped |
| // if necessary. |
| static inline void send_packing(uint8_t** dst, const uint64_t top, const uint64_t bottom) { |
| uint64_t* dst64 = reinterpret_cast<uint64_t*>(*dst); |
| dst64[0] = top; |
| dst64[1] = bottom; |
| *dst += 16; |
| } |
| |
| // Compresses an ASTC block, by looking up the proper contributions from |
| // k6x5To12x12Table and computing an index from the associated values. |
| typedef uint8_t (*GetAlphaProc)(const uint8_t* src, int rowBytes, int x, int y); |
| |
| template<GetAlphaProc getAlphaProc> |
| static void compress_a8_astc_block(uint8_t** dst, const uint8_t* src, int rowBytes) { |
| // Check for single color |
| bool constant = true; |
| const uint32_t firstInt = *(reinterpret_cast<const uint32_t*>(src)); |
| for (int i = 0; i < 12; ++i) { |
| const uint32_t *rowInt = reinterpret_cast<const uint32_t *>(src + i*rowBytes); |
| constant = constant && (rowInt[0] == firstInt); |
| constant = constant && (rowInt[1] == firstInt); |
| constant = constant && (rowInt[2] == firstInt); |
| } |
| |
| if (constant) { |
| if (0 == firstInt) { |
| // All of the indices are set to zero, and the colors are |
| // v0 = 0, v1 = 255, so everything will be transparent. |
| send_packing(dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0); |
| return; |
| } else if (0xFFFFFFFF == firstInt) { |
| // All of the indices are set to zero, and the colors are |
| // v0 = 255, v1 = 0, so everything will be opaque. |
| send_packing(dst, SkTEndian_SwapLE64(0x000000000001FE0173ULL), 0); |
| return; |
| } |
| } |
| |
| uint8_t indices[30]; // 6x5 index grid |
| for (int idx = 0; idx < 30; ++idx) { |
| int weightTot = 0; |
| int alphaTot = 0; |
| for (int w = 0; w < 20; ++w) { |
| const int8_t weight = k6x5To12x12Table[idx][w*3]; |
| if (weight > 0) { |
| const int x = k6x5To12x12Table[idx][w*3 + 1]; |
| const int y = k6x5To12x12Table[idx][w*3 + 2]; |
| weightTot += weight; |
| alphaTot += weight * getAlphaProc(src, rowBytes, x, y); |
| } else { |
| // In our table, not every entry has 20 weights, and all |
| // of them are nonzero. Once we hit a negative weight, we |
| // know that all of the other weights are not valid either. |
| break; |
| } |
| } |
| |
| indices[idx] = (alphaTot / weightTot) >> 5; |
| } |
| |
| // Pack indices... The ASTC block layout is fairly complicated. An extensive |
| // description can be found here: |
| // https://www.opengl.org/registry/specs/KHR/texture_compression_astc_hdr.txt |
| // |
| // Here is a summary of the options that we've chosen: |
| // 1. Block mode: 0b00101110011 |
| // - 6x5 texel grid |
| // - Single plane |
| // - Low-precision index values |
| // - Index range 0-7 (three bits per index) |
| // 2. Partitions: 0b00 |
| // - One partition |
| // 3. Color Endpoint Mode: 0b0000 |
| // - Direct luminance -- e0=(v0,v0,v0,0xFF); e1=(v1,v1,v1,0xFF); |
| // 4. 8-bit endpoints: |
| // v0 = 0, v1 = 255 |
| // |
| // The rest of the block contains the 30 index values from before, which |
| // are currently stored in the indices variable. |
| |
| uint64_t top = 0x0000000001FE000173ULL; |
| uint64_t bottom = 0; |
| |
| for (int idx = 0; idx <= 20; ++idx) { |
| const uint8_t index = indices[idx]; |
| bottom |= static_cast<uint64_t>(index) << (61-(idx*3)); |
| } |
| |
| // index 21 straddles top and bottom |
| { |
| const uint8_t index = indices[21]; |
| bottom |= index & 1; |
| top |= static_cast<uint64_t>((index >> 2) | (index & 2)) << 62; |
| } |
| |
| for (int idx = 22; idx < 30; ++idx) { |
| const uint8_t index = indices[idx]; |
| top |= static_cast<uint64_t>(index) << (59-(idx-22)*3); |
| } |
| |
| // Reverse each 3-bit index since indices are read in reverse order... |
| uint64_t t = (bottom ^ (bottom >> 2)) & 0x2492492492492492ULL; |
| bottom = bottom ^ t ^ (t << 2); |
| |
| t = (top ^ (top >> 2)) & 0x0924924000000000ULL; |
| top = top ^ t ^ (t << 2); |
| |
| send_packing(dst, SkEndian_SwapLE64(top), SkEndian_SwapLE64(bottom)); |
| } |
| |
| inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) { |
| compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // ASTC Decoder |
| // |
| // Full details available in the spec: |
| // http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // Enable this to assert whenever a decoded block has invalid ASTC values. Otherwise, |
| // each invalid block will result in a disgusting magenta color. |
| #define ASSERT_ASTC_DECODE_ERROR 0 |
| |
| // Reverse 64-bit integer taken from TAOCP 4a, although it's better |
| // documented at this site: |
| // http://matthewarcus.wordpress.com/2012/11/18/reversing-a-64-bit-word/ |
| |
| template <typename T, T m, int k> |
| static inline T swap_bits(T p) { |
| T q = ((p>>k)^p) & m; |
| return p^q^(q<<k); |
| } |
| |
| static inline uint64_t reverse64(uint64_t n) { |
| static const uint64_t m0 = 0x5555555555555555ULL; |
| static const uint64_t m1 = 0x0300c0303030c303ULL; |
| static const uint64_t m2 = 0x00c0300c03f0003fULL; |
| static const uint64_t m3 = 0x00000ffc00003fffULL; |
| n = ((n>>1)&m0) | (n&m0)<<1; |
| n = swap_bits<uint64_t, m1, 4>(n); |
| n = swap_bits<uint64_t, m2, 8>(n); |
| n = swap_bits<uint64_t, m3, 20>(n); |
| n = (n >> 34) | (n << 30); |
| return n; |
| } |
| |
| // An ASTC block is 128 bits. We represent it as two 64-bit integers in order |
| // to efficiently operate on the block using bitwise operations. |
| struct ASTCBlock { |
| uint64_t fLow; |
| uint64_t fHigh; |
| |
| // Reverses the bits of an ASTC block, making the LSB of the |
| // 128 bit block the MSB. |
| inline void reverse() { |
| const uint64_t newLow = reverse64(this->fHigh); |
| this->fHigh = reverse64(this->fLow); |
| this->fLow = newLow; |
| } |
| }; |
| |
| // Writes the given color to every pixel in the block. This is used by void-extent |
| // blocks (a special constant-color encoding of a block) and by the error function. |
| static inline void write_constant_color(uint8_t* dst, int blockDimX, int blockDimY, |
| int dstRowBytes, SkColor color) { |
| for (int y = 0; y < blockDimY; ++y) { |
| SkColor *dstColors = reinterpret_cast<SkColor*>(dst); |
| for (int x = 0; x < blockDimX; ++x) { |
| dstColors[x] = color; |
| } |
| dst += dstRowBytes; |
| } |
| } |
| |
| // Sets the entire block to the ASTC "error" color, a disgusting magenta |
| // that's not supposed to appear in natural images. |
| static inline void write_error_color(uint8_t* dst, int blockDimX, int blockDimY, |
| int dstRowBytes) { |
| static const SkColor kASTCErrorColor = SkColorSetRGB(0xFF, 0, 0xFF); |
| |
| #if ASSERT_ASTC_DECODE_ERROR |
| SkDEBUGFAIL("ASTC decoding error!\n"); |
| #endif |
| |
| write_constant_color(dst, blockDimX, blockDimY, dstRowBytes, kASTCErrorColor); |
| } |
| |
| // Reads up to 64 bits of the ASTC block starting from bit |
| // 'from' and going up to but not including bit 'to'. 'from' starts |
| // counting from the LSB, counting up to the MSB. Returns -1 on |
| // error. |
| static uint64_t read_astc_bits(const ASTCBlock &block, int from, int to) { |
| SkASSERT(0 <= from && from <= 128); |
| SkASSERT(0 <= to && to <= 128); |
| |
| const int nBits = to - from; |
| if (0 == nBits) { |
| return 0; |
| } |
| |
| if (nBits < 0 || 64 <= nBits) { |
| SkDEBUGFAIL("ASTC -- shouldn't read more than 64 bits"); |
| return -1; |
| } |
| |
| // Remember, the 'to' bit isn't read. |
| uint64_t result = 0; |
| if (to <= 64) { |
| // All desired bits are in the low 64-bits. |
| result = (block.fLow >> from) & ((1ULL << nBits) - 1); |
| } else if (from >= 64) { |
| // All desired bits are in the high 64-bits. |
| result = (block.fHigh >> (from - 64)) & ((1ULL << nBits) - 1); |
| } else { |
| // from < 64 && to > 64 |
| SkASSERT(nBits > (64 - from)); |
| const int nLow = 64 - from; |
| const int nHigh = nBits - nLow; |
| result = |
| ((block.fLow >> from) & ((1ULL << nLow) - 1)) | |
| ((block.fHigh & ((1ULL << nHigh) - 1)) << nLow); |
| } |
| |
| return result; |
| } |
| |
| // Returns the number of bits needed to represent a number |
| // in the given power-of-two range (excluding the power of two itself). |
| static inline int bits_for_range(int x) { |
| SkASSERT(SkIsPow2(x)); |
| SkASSERT(0 != x); |
| // Since we know it's a power of two, there should only be one bit set, |
| // meaning the number of trailing zeros is 31 minus the number of leading |
| // zeros. |
| return 31 - SkCLZ(x); |
| } |
| |
| // Clamps an integer to the range [0, 255] |
| static inline int clamp_byte(int x) { |
| return SkClampMax(x, 255); |
| } |
| |
| // Helper function defined in the ASTC spec, section C.2.14 |
| // It transfers a few bits of precision from one value to another. |
| static inline void bit_transfer_signed(int *a, int *b) { |
| *b >>= 1; |
| *b |= *a & 0x80; |
| *a >>= 1; |
| *a &= 0x3F; |
| if ( (*a & 0x20) != 0 ) { |
| *a -= 0x40; |
| } |
| } |
| |
| // Helper function defined in the ASTC spec, section C.2.14 |
| // It uses the value in the blue channel to tint the red and green |
| static inline SkColor blue_contract(int a, int r, int g, int b) { |
| return SkColorSetARGB(a, (r + b) >> 1, (g + b) >> 1, b); |
| } |
| |
| // Helper function that decodes two colors from eight values. If isRGB is true, |
| // then the pointer 'v' contains six values and the last two are considered to be |
| // 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This |
| // corresponds to the decode procedure for the following endpoint modes: |
| // kLDR_RGB_Direct_ColorEndpointMode |
| // kLDR_RGBA_Direct_ColorEndpointMode |
| static inline void decode_rgba_direct(const int *v, SkColor *endpoints, bool isRGB) { |
| |
| int v6 = 0xFF; |
| int v7 = 0xFF; |
| if (!isRGB) { |
| v6 = v[6]; |
| v7 = v[7]; |
| } |
| |
| const int s0 = v[0] + v[2] + v[4]; |
| const int s1 = v[1] + v[3] + v[5]; |
| |
| if (s1 >= s0) { |
| endpoints[0] = SkColorSetARGB(v6, v[0], v[2], v[4]); |
| endpoints[1] = SkColorSetARGB(v7, v[1], v[3], v[5]); |
| } else { |
| endpoints[0] = blue_contract(v7, v[1], v[3], v[5]); |
| endpoints[1] = blue_contract(v6, v[0], v[2], v[4]); |
| } |
| } |
| |
| // Helper function that decodes two colors from six values. If isRGB is true, |
| // then the pointer 'v' contains four values and the last two are considered to be |
| // 0xFF. If isRGB is false, then all six values come from the pointer 'v'. This |
| // corresponds to the decode procedure for the following endpoint modes: |
| // kLDR_RGB_BaseScale_ColorEndpointMode |
| // kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode |
| static inline void decode_rgba_basescale(const int *v, SkColor *endpoints, bool isRGB) { |
| |
| int v4 = 0xFF; |
| int v5 = 0xFF; |
| if (!isRGB) { |
| v4 = v[4]; |
| v5 = v[5]; |
| } |
| |
| endpoints[0] = SkColorSetARGB(v4, |
| (v[0]*v[3]) >> 8, |
| (v[1]*v[3]) >> 8, |
| (v[2]*v[3]) >> 8); |
| endpoints[1] = SkColorSetARGB(v5, v[0], v[1], v[2]); |
| } |
| |
| // Helper function that decodes two colors from eight values. If isRGB is true, |
| // then the pointer 'v' contains six values and the last two are considered to be |
| // 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This |
| // corresponds to the decode procedure for the following endpoint modes: |
| // kLDR_RGB_BaseOffset_ColorEndpointMode |
| // kLDR_RGBA_BaseOffset_ColorEndpointMode |
| // |
| // If isRGB is true, then treat this as if v6 and v7 are meant to encode full alpha values. |
| static inline void decode_rgba_baseoffset(const int *v, SkColor *endpoints, bool isRGB) { |
| int v0 = v[0]; |
| int v1 = v[1]; |
| int v2 = v[2]; |
| int v3 = v[3]; |
| int v4 = v[4]; |
| int v5 = v[5]; |
| int v6 = isRGB ? 0xFF : v[6]; |
| // The 0 is here because this is an offset, not a direct value |
| int v7 = isRGB ? 0 : v[7]; |
| |
| bit_transfer_signed(&v1, &v0); |
| bit_transfer_signed(&v3, &v2); |
| bit_transfer_signed(&v5, &v4); |
| if (!isRGB) { |
| bit_transfer_signed(&v7, &v6); |
| } |
| |
| int c[2][4]; |
| if ((v1 + v3 + v5) >= 0) { |
| c[0][0] = v6; |
| c[0][1] = v0; |
| c[0][2] = v2; |
| c[0][3] = v4; |
| |
| c[1][0] = v6 + v7; |
| c[1][1] = v0 + v1; |
| c[1][2] = v2 + v3; |
| c[1][3] = v4 + v5; |
| } else { |
| c[0][0] = v6 + v7; |
| c[0][1] = (v0 + v1 + v4 + v5) >> 1; |
| c[0][2] = (v2 + v3 + v4 + v5) >> 1; |
| c[0][3] = v4 + v5; |
| |
| c[1][0] = v6; |
| c[1][1] = (v0 + v4) >> 1; |
| c[1][2] = (v2 + v4) >> 1; |
| c[1][3] = v4; |
| } |
| |
| endpoints[0] = SkColorSetARGB(clamp_byte(c[0][0]), |
| clamp_byte(c[0][1]), |
| clamp_byte(c[0][2]), |
| clamp_byte(c[0][3])); |
| |
| endpoints[1] = SkColorSetARGB(clamp_byte(c[1][0]), |
| clamp_byte(c[1][1]), |
| clamp_byte(c[1][2]), |
| clamp_byte(c[1][3])); |
| } |
| |
| |
| // A helper class used to decode bit values from standard integer values. |
| // We can't use this class with ASTCBlock because then it would need to |
| // handle multi-value ranges, and it's non-trivial to lookup a range of bits |
| // that splits across two different ints. |
| template <typename T> |
| class SkTBits { |
| public: |
| SkTBits(const T val) : fVal(val) { } |
| |
| // Returns the bit at the given position |
| T operator [](const int idx) const { |
| return (fVal >> idx) & 1; |
| } |
| |
| // Returns the bits in the given range, inclusive |
| T operator ()(const int end, const int start) const { |
| SkASSERT(end >= start); |
| return (fVal >> start) & ((1ULL << ((end - start) + 1)) - 1); |
| } |
| |
| private: |
| const T fVal; |
| }; |
| |
| // This algorithm matches the trit block decoding in the spec (Table C.2.14) |
| static void decode_trit_block(int* dst, int nBits, const uint64_t &block) { |
| |
| SkTBits<uint64_t> blockBits(block); |
| |
| // According to the spec, a trit block, which contains five values, |
| // has the following layout: |
| // |
| // 27 26 25 24 23 22 21 20 19 18 17 16 |
| // ----------------------------------------------- |
| // |T7 | m4 |T6 T5 | m3 |T4 | |
| // ----------------------------------------------- |
| // |
| // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| // -------------------------------------------------------------- |
| // | m2 |T3 T2 | m1 |T1 T0 | m0 | |
| // -------------------------------------------------------------- |
| // |
| // Where the m's are variable width depending on the number of bits used |
| // to encode the values (anywhere from 0 to 6). Since 3^5 = 243, the extra |
| // byte labeled T (whose bits are interleaved where 0 is the LSB and 7 is |
| // the MSB), contains five trit values. To decode the trit values, the spec |
| // says that we need to follow the following algorithm: |
| // |
| // if T[4:2] = 111 |
| // C = { T[7:5], T[1:0] }; t4 = t3 = 2 |
| // else |
| // C = T[4:0] |
| // |
| // if T[6:5] = 11 |
| // t4 = 2; t3 = T[7] |
| // else |
| // t4 = T[7]; t3 = T[6:5] |
| // |
| // if C[1:0] = 11 |
| // t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] } |
| // else if C[3:2] = 11 |
| // t2 = 2; t1 = 2; t0 = C[1:0] |
| // else |
| // t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] } |
| // |
| // The following C++ code is meant to mirror this layout and algorithm as |
| // closely as possible. |
| |
| int m[5]; |
| if (0 == nBits) { |
| memset(m, 0, sizeof(m)); |
| } else { |
| SkASSERT(nBits < 8); |
| m[0] = static_cast<int>(blockBits(nBits - 1, 0)); |
| m[1] = static_cast<int>(blockBits(2*nBits - 1 + 2, nBits + 2)); |
| m[2] = static_cast<int>(blockBits(3*nBits - 1 + 4, 2*nBits + 4)); |
| m[3] = static_cast<int>(blockBits(4*nBits - 1 + 5, 3*nBits + 5)); |
| m[4] = static_cast<int>(blockBits(5*nBits - 1 + 7, 4*nBits + 7)); |
| } |
| |
| int T = |
| static_cast<int>(blockBits(nBits + 1, nBits)) | |
| (static_cast<int>(blockBits(2*nBits + 2 + 1, 2*nBits + 2)) << 2) | |
| (static_cast<int>(blockBits[3*nBits + 4] << 4)) | |
| (static_cast<int>(blockBits(4*nBits + 5 + 1, 4*nBits + 5)) << 5) | |
| (static_cast<int>(blockBits[5*nBits + 7] << 7)); |
| |
| int t[5]; |
| |
| int C; |
| SkTBits<int> Tbits(T); |
| if (0x7 == Tbits(4, 2)) { |
| C = (Tbits(7, 5) << 2) | Tbits(1, 0); |
| t[3] = t[4] = 2; |
| } else { |
| C = Tbits(4, 0); |
| if (Tbits(6, 5) == 0x3) { |
| t[4] = 2; t[3] = Tbits[7]; |
| } else { |
| t[4] = Tbits[7]; t[3] = Tbits(6, 5); |
| } |
| } |
| |
| SkTBits<int> Cbits(C); |
| if (Cbits(1, 0) == 0x3) { |
| t[2] = 2; |
| t[1] = Cbits[4]; |
| t[0] = (Cbits[3] << 1) | (Cbits[2] & (0x1 & ~(Cbits[3]))); |
| } else if (Cbits(3, 2) == 0x3) { |
| t[2] = 2; |
| t[1] = 2; |
| t[0] = Cbits(1, 0); |
| } else { |
| t[2] = Cbits[4]; |
| t[1] = Cbits(3, 2); |
| t[0] = (Cbits[1] << 1) | (Cbits[0] & (0x1 & ~(Cbits[1]))); |
| } |
| |
| #ifdef SK_DEBUG |
| // Make sure all of the decoded values have a trit less than three |
| // and a bit value within the range of the allocated bits. |
| for (int i = 0; i < 5; ++i) { |
| SkASSERT(t[i] < 3); |
| SkASSERT(m[i] < (1 << nBits)); |
| } |
| #endif |
| |
| for (int i = 0; i < 5; ++i) { |
| *dst = (t[i] << nBits) + m[i]; |
| ++dst; |
| } |
| } |
| |
| // This algorithm matches the quint block decoding in the spec (Table C.2.15) |
| static void decode_quint_block(int* dst, int nBits, const uint64_t &block) { |
| SkTBits<uint64_t> blockBits(block); |
| |
| // According to the spec, a quint block, which contains three values, |
| // has the following layout: |
| // |
| // |
| // 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| // -------------------------------------------------------------------------- |
| // |Q6 Q5 | m2 |Q4 Q3 | m1 |Q2 Q1 Q0 | m0 | |
| // -------------------------------------------------------------------------- |
| // |
| // Where the m's are variable width depending on the number of bits used |
| // to encode the values (anywhere from 0 to 4). Since 5^3 = 125, the extra |
| // 7-bit value labeled Q (whose bits are interleaved where 0 is the LSB and 6 is |
| // the MSB), contains three quint values. To decode the quint values, the spec |
| // says that we need to follow the following algorithm: |
| // |
| // if Q[2:1] = 11 and Q[6:5] = 00 |
| // q2 = { Q[0], Q[4]&~Q[0], Q[3]&~Q[0] }; q1 = q0 = 4 |
| // else |
| // if Q[2:1] = 11 |
| // q2 = 4; C = { Q[4:3], ~Q[6:5], Q[0] } |
| // else |
| // q2 = T[6:5]; C = Q[4:0] |
| // |
| // if C[2:0] = 101 |
| // q1 = 4; q0 = C[4:3] |
| // else |
| // q1 = C[4:3]; q0 = C[2:0] |
| // |
| // The following C++ code is meant to mirror this layout and algorithm as |
| // closely as possible. |
| |
| int m[3]; |
| if (0 == nBits) { |
| memset(m, 0, sizeof(m)); |
| } else { |
| SkASSERT(nBits < 8); |
| m[0] = static_cast<int>(blockBits(nBits - 1, 0)); |
| m[1] = static_cast<int>(blockBits(2*nBits - 1 + 3, nBits + 3)); |
| m[2] = static_cast<int>(blockBits(3*nBits - 1 + 5, 2*nBits + 5)); |
| } |
| |
| int Q = |
| static_cast<int>(blockBits(nBits + 2, nBits)) | |
| (static_cast<int>(blockBits(2*nBits + 3 + 1, 2*nBits + 3)) << 3) | |
| (static_cast<int>(blockBits(3*nBits + 5 + 1, 3*nBits + 5)) << 5); |
| |
| int q[3]; |
| SkTBits<int> Qbits(Q); // quantum? |
| |
| if (Qbits(2, 1) == 0x3 && Qbits(6, 5) == 0) { |
| const int notBitZero = (0x1 & ~(Qbits[0])); |
| q[2] = (Qbits[0] << 2) | ((Qbits[4] & notBitZero) << 1) | (Qbits[3] & notBitZero); |
| q[1] = 4; |
| q[0] = 4; |
| } else { |
| int C; |
| if (Qbits(2, 1) == 0x3) { |
| q[2] = 4; |
| C = (Qbits(4, 3) << 3) | ((0x3 & ~(Qbits(6, 5))) << 1) | Qbits[0]; |
| } else { |
| q[2] = Qbits(6, 5); |
| C = Qbits(4, 0); |
| } |
| |
| SkTBits<int> Cbits(C); |
| if (Cbits(2, 0) == 0x5) { |
| q[1] = 4; |
| q[0] = Cbits(4, 3); |
| } else { |
| q[1] = Cbits(4, 3); |
| q[0] = Cbits(2, 0); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| for (int i = 0; i < 3; ++i) { |
| SkASSERT(q[i] < 5); |
| SkASSERT(m[i] < (1 << nBits)); |
| } |
| #endif |
| |
| for (int i = 0; i < 3; ++i) { |
| *dst = (q[i] << nBits) + m[i]; |
| ++dst; |
| } |
| } |
| |
| // Function that decodes a sequence of integers stored as an ISE (Integer |
| // Sequence Encoding) bit stream. The full details of this function are outlined |
| // in section C.2.12 of the ASTC spec. A brief overview is as follows: |
| // |
| // - Each integer in the sequence is bounded by a specific range r. |
| // - The range of each value determines the way the bit stream is interpreted, |
| // - If the range is a power of two, then the sequence is a sequence of bits |
| // - If the range is of the form 3*2^n, then the sequence is stored as a |
| // sequence of blocks, each block contains 5 trits and 5 bit sequences, which |
| // decodes into 5 values. |
| // - Similarly, if the range is of the form 5*2^n, then the sequence is stored as a |
| // sequence of blocks, each block contains 3 quints and 3 bit sequences, which |
| // decodes into 3 values. |
| static bool decode_integer_sequence( |
| int* dst, // The array holding the destination bits |
| int dstSize, // The maximum size of the array |
| int nVals, // The number of values that we'd like to decode |
| const ASTCBlock &block, // The block that we're decoding from |
| int startBit, // The bit from which we're going to do the reading |
| int endBit, // The bit at which we stop reading (not inclusive) |
| bool bReadForward, // If true, then read LSB -> MSB, else read MSB -> LSB |
| int nBits, // The number of bits representing this encoding |
| int nTrits, // The number of trits representing this encoding |
| int nQuints // The number of quints representing this encoding |
| ) { |
| // If we want more values than we have, then fail. |
| if (nVals > dstSize) { |
| return false; |
| } |
| |
| ASTCBlock src = block; |
| |
| if (!bReadForward) { |
| src.reverse(); |
| startBit = 128 - startBit; |
| endBit = 128 - endBit; |
| } |
| |
| while (nVals > 0) { |
| |
| if (nTrits > 0) { |
| SkASSERT(0 == nQuints); |
| |
| int endBlockBit = startBit + 8 + 5*nBits; |
| if (endBlockBit > endBit) { |
| endBlockBit = endBit; |
| } |
| |
| // Trit blocks are three values large. |
| int trits[5]; |
| decode_trit_block(trits, nBits, read_astc_bits(src, startBit, endBlockBit)); |
| memcpy(dst, trits, SkMin32(nVals, 5)*sizeof(int)); |
| |
| dst += 5; |
| nVals -= 5; |
| startBit = endBlockBit; |
| |
| } else if (nQuints > 0) { |
| SkASSERT(0 == nTrits); |
| |
| int endBlockBit = startBit + 7 + 3*nBits; |
| if (endBlockBit > endBit) { |
| endBlockBit = endBit; |
| } |
| |
| // Quint blocks are three values large |
| int quints[3]; |
| decode_quint_block(quints, nBits, read_astc_bits(src, startBit, endBlockBit)); |
| memcpy(dst, quints, SkMin32(nVals, 3)*sizeof(int)); |
| |
| dst += 3; |
| nVals -= 3; |
| startBit = endBlockBit; |
| |
| } else { |
| // Just read the bits, but don't read more than we have... |
| int endValBit = startBit + nBits; |
| if (endValBit > endBit) { |
| endValBit = endBit; |
| } |
| |
| SkASSERT(endValBit - startBit < 31); |
| *dst = static_cast<int>(read_astc_bits(src, startBit, endValBit)); |
| ++dst; |
| --nVals; |
| startBit = endValBit; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Helper function that unquantizes some (seemingly random) generated |
| // numbers... meant to match the ASTC hardware. This function is used |
| // to unquantize both colors (Table C.2.16) and weights (Table C.2.26) |
| static inline int unquantize_value(unsigned mask, int A, int B, int C, int D) { |
| int T = D * C + B; |
| T = T ^ A; |
| T = (A & mask) | (T >> 2); |
| SkASSERT(T < 256); |
| return T; |
| } |
| |
| // Helper function to replicate the bits in x that represents an oldPrec |
| // precision integer into a prec precision integer. For example: |
| // 255 == replicate_bits(7, 3, 8); |
| static inline int replicate_bits(int x, int oldPrec, int prec) { |
| while (oldPrec < prec) { |
| const int toShift = SkMin32(prec-oldPrec, oldPrec); |
| x = (x << toShift) | (x >> (oldPrec - toShift)); |
| oldPrec += toShift; |
| } |
| |
| // Make sure that no bits are set outside the desired precision. |
| SkASSERT((-(1 << prec) & x) == 0); |
| return x; |
| } |
| |
| // Returns the unquantized value of a color that's represented only as |
| // a set of bits. |
| static inline int unquantize_bits_color(int val, int nBits) { |
| return replicate_bits(val, nBits, 8); |
| } |
| |
| // Returns the unquantized value of a color that's represented as a |
| // trit followed by nBits bits. This algorithm follows the sequence |
| // defined in section C.2.13 of the ASTC spec. |
| static inline int unquantize_trit_color(int val, int nBits) { |
| SkASSERT(nBits > 0); |
| SkASSERT(nBits < 7); |
| |
| const int D = (val >> nBits) & 0x3; |
| SkASSERT(D < 3); |
| |
| const int A = -(val & 0x1) & 0x1FF; |
| |
| static const int Cvals[6] = { 204, 93, 44, 22, 11, 5 }; |
| const int C = Cvals[nBits - 1]; |
| |
| int B = 0; |
| const SkTBits<int> valBits(val); |
| switch (nBits) { |
| case 1: |
| B = 0; |
| break; |
| |
| case 2: { |
| const int b = valBits[1]; |
| B = (b << 1) | (b << 2) | (b << 4) | (b << 8); |
| } |
| break; |
| |
| case 3: { |
| const int cb = valBits(2, 1); |
| B = cb | (cb << 2) | (cb << 7); |
| } |
| break; |
| |
| case 4: { |
| const int dcb = valBits(3, 1); |
| B = dcb | (dcb << 6); |
| } |
| break; |
| |
| case 5: { |
| const int edcb = valBits(4, 1); |
| B = (edcb << 5) | (edcb >> 2); |
| } |
| break; |
| |
| case 6: { |
| const int fedcb = valBits(5, 1); |
| B = (fedcb << 4) | (fedcb >> 4); |
| } |
| break; |
| } |
| |
| return unquantize_value(0x80, A, B, C, D); |
| } |
| |
| // Returns the unquantized value of a color that's represented as a |
| // quint followed by nBits bits. This algorithm follows the sequence |
| // defined in section C.2.13 of the ASTC spec. |
| static inline int unquantize_quint_color(int val, int nBits) { |
| const int D = (val >> nBits) & 0x7; |
| SkASSERT(D < 5); |
| |
| const int A = -(val & 0x1) & 0x1FF; |
| |
| static const int Cvals[5] = { 113, 54, 26, 13, 6 }; |
| SkASSERT(nBits > 0); |
| SkASSERT(nBits < 6); |
| |
| const int C = Cvals[nBits - 1]; |
| |
| int B = 0; |
| const SkTBits<int> valBits(val); |
| switch (nBits) { |
| case 1: |
| B = 0; |
| break; |
| |
| case 2: { |
| const int b = valBits[1]; |
| B = (b << 2) | (b << 3) | (b << 8); |
| } |
| break; |
| |
| case 3: { |
| const int cb = valBits(2, 1); |
| B = (cb >> 1) | (cb << 1) | (cb << 7); |
| } |
| break; |
| |
| case 4: { |
| const int dcb = valBits(3, 1); |
| B = (dcb >> 1) | (dcb << 6); |
| } |
| break; |
| |
| case 5: { |
| const int edcb = valBits(4, 1); |
| B = (edcb << 5) | (edcb >> 3); |
| } |
| break; |
| } |
| |
| return unquantize_value(0x80, A, B, C, D); |
| } |
| |
| // This algorithm takes a list of integers, stored in vals, and unquantizes them |
| // in place. This follows the algorithm laid out in section C.2.13 of the ASTC spec. |
| static void unquantize_colors(int *vals, int nVals, int nBits, int nTrits, int nQuints) { |
| for (int i = 0; i < nVals; ++i) { |
| if (nTrits > 0) { |
| SkASSERT(nQuints == 0); |
| vals[i] = unquantize_trit_color(vals[i], nBits); |
| } else if (nQuints > 0) { |
| SkASSERT(nTrits == 0); |
| vals[i] = unquantize_quint_color(vals[i], nBits); |
| } else { |
| SkASSERT(nQuints == 0 && nTrits == 0); |
| vals[i] = unquantize_bits_color(vals[i], nBits); |
| } |
| } |
| } |
| |
| // Returns an interpolated value between c0 and c1 based on the weight. This |
| // follows the algorithm laid out in section C.2.19 of the ASTC spec. |
| static int interpolate_channel(int c0, int c1, int weight) { |
| SkASSERT(0 <= c0 && c0 < 256); |
| SkASSERT(0 <= c1 && c1 < 256); |
| |
| c0 = (c0 << 8) | c0; |
| c1 = (c1 << 8) | c1; |
| |
| const int result = ((c0*(64 - weight) + c1*weight + 32) / 64) >> 8; |
| |
| if (result > 255) { |
| return 255; |
| } |
| |
| SkASSERT(result >= 0); |
| return result; |
| } |
| |
| // Returns an interpolated color between the two endpoints based on the weight. |
| static SkColor interpolate_endpoints(const SkColor endpoints[2], int weight) { |
| return SkColorSetARGB( |
| interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight), |
| interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight), |
| interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight), |
| interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight)); |
| } |
| |
| // Returns an interpolated color between the two endpoints based on the weight. |
| // It uses separate weights for the channel depending on the value of the 'plane' |
| // variable. By default, all channels will use weight 0, and the value of plane |
| // means that weight1 will be used for: |
| // 0: red |
| // 1: green |
| // 2: blue |
| // 3: alpha |
| static SkColor interpolate_dual_endpoints( |
| const SkColor endpoints[2], int weight0, int weight1, int plane) { |
| int a = interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight0); |
| int r = interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight0); |
| int g = interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight0); |
| int b = interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight0); |
| |
| switch (plane) { |
| |
| case 0: |
| r = interpolate_channel( |
| SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight1); |
| break; |
| |
| case 1: |
| g = interpolate_channel( |
| SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight1); |
| break; |
| |
| case 2: |
| b = interpolate_channel( |
| SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight1); |
| break; |
| |
| case 3: |
| a = interpolate_channel( |
| SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight1); |
| break; |
| |
| default: |
| SkDEBUGFAIL("Plane should be 0-3"); |
| break; |
| } |
| |
| return SkColorSetARGB(a, r, g, b); |
| } |
| |
| // A struct of decoded values that we use to carry around information |
| // about the block. dimX and dimY are the dimension in texels of the block, |
| // for which there is only a limited subset of valid values: |
| // |
| // 4x4, 5x4, 5x5, 6x5, 6x6, 8x5, 8x6, 8x8, 10x5, 10x6, 10x8, 10x10, 12x10, 12x12 |
| |
| struct ASTCDecompressionData { |
| ASTCDecompressionData(int dimX, int dimY) : fDimX(dimX), fDimY(dimY) { } |
| const int fDimX; // the X dimension of the decompressed block |
| const int fDimY; // the Y dimension of the decompressed block |
| ASTCBlock fBlock; // the block data |
| int fBlockMode; // the block header that contains the block mode. |
| |
| bool fDualPlaneEnabled; // is this block compressing dual weight planes? |
| int fDualPlane; // the independent plane in dual plane mode. |
| |
| bool fVoidExtent; // is this block a single color? |
| bool fError; // does this block have an error encoding? |
| |
| int fWeightDimX; // the x dimension of the weight grid |
| int fWeightDimY; // the y dimension of the weight grid |
| |
| int fWeightBits; // the number of bits used for each weight value |
| int fWeightTrits; // the number of trits used for each weight value |
| int fWeightQuints; // the number of quints used for each weight value |
| |
| int fPartCount; // the number of partitions in this block |
| int fPartIndex; // the partition index: only relevant if fPartCount > 0 |
| |
| // CEM values can be anything in the range 0-15, and each corresponds to a different |
| // mode that represents the color data. We only support LDR modes. |
| enum ColorEndpointMode { |
| kLDR_Luminance_Direct_ColorEndpointMode = 0, |
| kLDR_Luminance_BaseOffset_ColorEndpointMode = 1, |
| kHDR_Luminance_LargeRange_ColorEndpointMode = 2, |
| kHDR_Luminance_SmallRange_ColorEndpointMode = 3, |
| kLDR_LuminanceAlpha_Direct_ColorEndpointMode = 4, |
| kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode = 5, |
| kLDR_RGB_BaseScale_ColorEndpointMode = 6, |
| kHDR_RGB_BaseScale_ColorEndpointMode = 7, |
| kLDR_RGB_Direct_ColorEndpointMode = 8, |
| kLDR_RGB_BaseOffset_ColorEndpointMode = 9, |
| kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode = 10, |
| kHDR_RGB_ColorEndpointMode = 11, |
| kLDR_RGBA_Direct_ColorEndpointMode = 12, |
| kLDR_RGBA_BaseOffset_ColorEndpointMode = 13, |
| kHDR_RGB_LDRAlpha_ColorEndpointMode = 14, |
| kHDR_RGB_HDRAlpha_ColorEndpointMode = 15 |
| }; |
| static const int kMaxColorEndpointModes = 16; |
| |
| // the color endpoint modes for this block. |
| static const int kMaxPartitions = 4; |
| ColorEndpointMode fCEM[kMaxPartitions]; |
| |
| int fColorStartBit; // The bit position of the first bit of the color data |
| int fColorEndBit; // The bit position of the last *possible* bit of the color data |
| |
| // Returns the number of partitions for this block. |
| int numPartitions() const { |
| return fPartCount; |
| } |
| |
| // Returns the total number of weight values that are stored in this block |
| int numWeights() const { |
| return fWeightDimX * fWeightDimY * (fDualPlaneEnabled ? 2 : 1); |
| } |
| |
| #ifdef SK_DEBUG |
| // Returns the maximum value that any weight can take. We really only use |
| // this function for debugging. |
| int maxWeightValue() const { |
| int maxVal = (1 << fWeightBits); |
| if (fWeightTrits > 0) { |
| SkASSERT(0 == fWeightQuints); |
| maxVal *= 3; |
| } else if (fWeightQuints > 0) { |
| SkASSERT(0 == fWeightTrits); |
| maxVal *= 5; |
| } |
| return maxVal - 1; |
| } |
| #endif |
| |
| // The number of bits needed to represent the texel weight data. This |
| // comes from the 'data size determination' section of the ASTC spec (C.2.22) |
| int numWeightBits() const { |
| const int nWeights = this->numWeights(); |
| return |
| ((nWeights*8*fWeightTrits + 4) / 5) + |
| ((nWeights*7*fWeightQuints + 2) / 3) + |
| (nWeights*fWeightBits); |
| } |
| |
| // Returns the number of color values stored in this block. The number of |
| // values stored is directly a function of the color endpoint modes. |
| int numColorValues() const { |
| int numValues = 0; |
| for (int i = 0; i < this->numPartitions(); ++i) { |
| int cemInt = static_cast<int>(fCEM[i]); |
| numValues += ((cemInt >> 2) + 1) * 2; |
| } |
| |
| return numValues; |
| } |
| |
| // Figures out the number of bits available for color values, and fills |
| // in the maximum encoding that will fit the number of color values that |
| // we need. Returns false on error. (See section C.2.22 of the spec) |
| bool getColorValueEncoding(int *nBits, int *nTrits, int *nQuints) const { |
| if (NULL == nBits || NULL == nTrits || NULL == nQuints) { |
| return false; |
| } |
| |
| const int nColorVals = this->numColorValues(); |
| if (nColorVals <= 0) { |
| return false; |
| } |
| |
| const int colorBits = fColorEndBit - fColorStartBit; |
| SkASSERT(colorBits > 0); |
| |
| // This is the minimum amount of accuracy required by the spec. |
| if (colorBits < ((13 * nColorVals + 4) / 5)) { |
| return false; |
| } |
| |
| // Values can be represented as at most 8-bit values. |
| // !SPEED! place this in a lookup table based on colorBits and nColorVals |
| for (int i = 255; i > 0; --i) { |
| int range = i + 1; |
| int bits = 0, trits = 0, quints = 0; |
| bool valid = false; |
| if (SkIsPow2(range)) { |
| bits = bits_for_range(range); |
| valid = true; |
| } else if ((range % 3) == 0 && SkIsPow2(range/3)) { |
| trits = 1; |
| bits = bits_for_range(range/3); |
| valid = true; |
| } else if ((range % 5) == 0 && SkIsPow2(range/5)) { |
| quints = 1; |
| bits = bits_for_range(range/5); |
| valid = true; |
| } |
| |
| if (valid) { |
| const int actualColorBits = |
| ((nColorVals*8*trits + 4) / 5) + |
| ((nColorVals*7*quints + 2) / 3) + |
| (nColorVals*bits); |
| if (actualColorBits <= colorBits) { |
| *nTrits = trits; |
| *nQuints = quints; |
| *nBits = bits; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Converts the sequence of color values into endpoints. The algorithm here |
| // corresponds to the values determined by section C.2.14 of the ASTC spec |
| void colorEndpoints(SkColor endpoints[4][2], const int* colorValues) const { |
| for (int i = 0; i < this->numPartitions(); ++i) { |
| switch (fCEM[i]) { |
| case kLDR_Luminance_Direct_ColorEndpointMode: { |
| const int* v = colorValues; |
| endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[0], v[0]); |
| endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[1], v[1]); |
| |
| colorValues += 2; |
| } |
| break; |
| |
| case kLDR_Luminance_BaseOffset_ColorEndpointMode: { |
| const int* v = colorValues; |
| const int L0 = (v[0] >> 2) | (v[1] & 0xC0); |
| const int L1 = clamp_byte(L0 + (v[1] & 0x3F)); |
| |
| endpoints[i][0] = SkColorSetARGB(0xFF, L0, L0, L0); |
| endpoints[i][1] = SkColorSetARGB(0xFF, L1, L1, L1); |
| |
| colorValues += 2; |
| } |
| break; |
| |
| case kLDR_LuminanceAlpha_Direct_ColorEndpointMode: { |
| const int* v = colorValues; |
| |
| endpoints[i][0] = SkColorSetARGB(v[2], v[0], v[0], v[0]); |
| endpoints[i][1] = SkColorSetARGB(v[3], v[1], v[1], v[1]); |
| |
| colorValues += 4; |
| } |
| break; |
| |
| case kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode: { |
| int v0 = colorValues[0]; |
| int v1 = colorValues[1]; |
| int v2 = colorValues[2]; |
| int v3 = colorValues[3]; |
| |
| bit_transfer_signed(&v1, &v0); |
| bit_transfer_signed(&v3, &v2); |
| |
| endpoints[i][0] = SkColorSetARGB(v2, v0, v0, v0); |
| endpoints[i][1] = SkColorSetARGB( |
| clamp_byte(v3+v2), |
| clamp_byte(v1+v0), |
| clamp_byte(v1+v0), |
| clamp_byte(v1+v0)); |
| |
| colorValues += 4; |
| } |
| break; |
| |
| case kLDR_RGB_BaseScale_ColorEndpointMode: { |
| decode_rgba_basescale(colorValues, endpoints[i], true); |
| colorValues += 4; |
| } |
| break; |
| |
| case kLDR_RGB_Direct_ColorEndpointMode: { |
| decode_rgba_direct(colorValues, endpoints[i], true); |
| colorValues += 6; |
| } |
| break; |
| |
| case kLDR_RGB_BaseOffset_ColorEndpointMode: { |
| decode_rgba_baseoffset(colorValues, endpoints[i], true); |
| colorValues += 6; |
| } |
| break; |
| |
| case kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode: { |
| decode_rgba_basescale(colorValues, endpoints[i], false); |
| colorValues += 6; |
| } |
| break; |
| |
| case kLDR_RGBA_Direct_ColorEndpointMode: { |
| decode_rgba_direct(colorValues, endpoints[i], false); |
| colorValues += 8; |
| } |
| break; |
| |
| case kLDR_RGBA_BaseOffset_ColorEndpointMode: { |
| decode_rgba_baseoffset(colorValues, endpoints[i], false); |
| colorValues += 8; |
| } |
| break; |
| |
| default: |
| SkDEBUGFAIL("HDR mode unsupported! This should be caught sooner."); |
| break; |
| } |
| } |
| } |
| |
| // Follows the procedure from section C.2.17 of the ASTC specification |
| int unquantizeWeight(int x) const { |
| SkASSERT(x <= this->maxWeightValue()); |
| |
| const int D = (x >> fWeightBits) & 0x7; |
| const int A = -(x & 0x1) & 0x7F; |
| |
| SkTBits<int> xbits(x); |
| |
| int T = 0; |
| if (fWeightTrits > 0) { |
| SkASSERT(0 == fWeightQuints); |
| switch (fWeightBits) { |
| case 0: { |
| // x is a single trit |
| SkASSERT(x < 3); |
| |
| static const int kUnquantizationTable[3] = { 0, 32, 63 }; |
| T = kUnquantizationTable[x]; |
| } |
| break; |
| |
| case 1: { |
| const int B = 0; |
| const int C = 50; |
| T = unquantize_value(0x20, A, B, C, D); |
| } |
| break; |
| |
| case 2: { |
| const int b = xbits[1]; |
| const int B = b | (b << 2) | (b << 6); |
| const int C = 23; |
| T = unquantize_value(0x20, A, B, C, D); |
| } |
| break; |
| |
| case 3: { |
| const int cb = xbits(2, 1); |
| const int B = cb | (cb << 5); |
| const int C = 11; |
| T = unquantize_value(0x20, A, B, C, D); |
| } |
| break; |
| |
| default: |
| SkDEBUGFAIL("Too many bits for trit encoding"); |
| break; |
| } |
| |
| } else if (fWeightQuints > 0) { |
| SkASSERT(0 == fWeightTrits); |
| switch (fWeightBits) { |
| case 0: { |
| // x is a single quint |
| SkASSERT(x < 5); |
| |
| static const int kUnquantizationTable[5] = { 0, 16, 32, 47, 63 }; |
| T = kUnquantizationTable[x]; |
| } |
| break; |
| |
| case 1: { |
| const int B = 0; |
| const int C = 28; |
| T = unquantize_value(0x20, A, B, C, D); |
| } |
| break; |
| |
| case 2: { |
| const int b = xbits[1]; |
| const int B = (b << 1) | (b << 6); |
| const int C = 13; |
| T = unquantize_value(0x20, A, B, C, D); |
| } |
| break; |
| |
| default: |
| SkDEBUGFAIL("Too many bits for quint encoding"); |
| break; |
| } |
| } else { |
| SkASSERT(0 == fWeightTrits); |
| SkASSERT(0 == fWeightQuints); |
| |
| T = replicate_bits(x, fWeightBits, 6); |
| } |
| |
| // This should bring the value within [0, 63].. |
| SkASSERT(T <= 63); |
| |
| if (T > 32) { |
| T += 1; |
| } |
| |
| SkASSERT(T <= 64); |
| |
| return T; |
| } |
| |
| // Returns the weight at the associated index. If the index is out of bounds, it |
| // returns zero. It also chooses the weight appropriately based on the given dual |
| // plane. |
| int getWeight(const int* unquantizedWeights, int idx, bool dualPlane) const { |
| const int maxIdx = (fDualPlaneEnabled ? 2 : 1) * fWeightDimX * fWeightDimY - 1; |
| if (fDualPlaneEnabled) { |
| const int effectiveIdx = 2*idx + (dualPlane ? 1 : 0); |
| if (effectiveIdx > maxIdx) { |
| return 0; |
| } |
| return unquantizedWeights[effectiveIdx]; |
| } |
| |
| SkASSERT(!dualPlane); |
| |
| if (idx > maxIdx) { |
| return 0; |
| } else { |
| return unquantizedWeights[idx]; |
| } |
| } |
| |
| // This computes the effective weight at location (s, t) of the block. This |
| // weight is computed by sampling the texel weight grid (it's usually not 1-1), and |
| // then applying a bilerp. The algorithm outlined here follows the algorithm |
| // defined in section C.2.18 of the ASTC spec. |
| int infillWeight(const int* unquantizedValues, int s, int t, bool dualPlane) const { |
| const int Ds = (1024 + fDimX/2) / (fDimX - 1); |
| const int Dt = (1024 + fDimY/2) / (fDimY - 1); |
| |
| const int cs = Ds * s; |
| const int ct = Dt * t; |
| |
| const int gs = (cs*(fWeightDimX - 1) + 32) >> 6; |
| const int gt = (ct*(fWeightDimY - 1) + 32) >> 6; |
| |
| const int js = gs >> 4; |
| const int jt = gt >> 4; |
| |
| const int fs = gs & 0xF; |
| const int ft = gt & 0xF; |
| |
| const int idx = js + jt*fWeightDimX; |
| const int p00 = this->getWeight(unquantizedValues, idx, dualPlane); |
| const int p01 = this->getWeight(unquantizedValues, idx + 1, dualPlane); |
| const int p10 = this->getWeight(unquantizedValues, idx + fWeightDimX, dualPlane); |
| const int p11 = this->getWeight(unquantizedValues, idx + fWeightDimX + 1, dualPlane); |
| |
| const int w11 = (fs*ft + 8) >> 4; |
| const int w10 = ft - w11; |
| const int w01 = fs - w11; |
| const int w00 = 16 - fs - ft + w11; |
| |
| const int weight = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; |
| SkASSERT(weight <= 64); |
| return weight; |
| } |
| |
| // Unquantizes the decoded texel weights as described in section C.2.17 of |
| // the ASTC specification. Additionally, it populates texelWeights with |
| // the expanded weight grid, which is computed according to section C.2.18 |
| void texelWeights(int texelWeights[2][12][12], const int* texelValues) const { |
| // Unquantized texel weights... |
| int unquantizedValues[144*2]; // 12x12 blocks with dual plane decoding... |
| SkASSERT(this->numWeights() <= 144*2); |
| |
| // Unquantize the weights and cache them |
| for (int j = 0; j < this->numWeights(); ++j) { |
| unquantizedValues[j] = this->unquantizeWeight(texelValues[j]); |
| } |
| |
| // Do weight infill... |
| for (int y = 0; y < fDimY; ++y) { |
| for (int x = 0; x < fDimX; ++x) { |
| texelWeights[0][x][y] = this->infillWeight(unquantizedValues, x, y, false); |
| if (fDualPlaneEnabled) { |
| texelWeights[1][x][y] = this->infillWeight(unquantizedValues, x, y, true); |
| } |
| } |
| } |
| } |
| |
| // Returns the partition for the texel located at position (x, y). |
| // Adapted from C.2.21 of the ASTC specification |
| int getPartition(int x, int y) const { |
| const int partitionCount = this->numPartitions(); |
| int seed = fPartIndex; |
| if ((fDimX * fDimY) < 31) { |
| x <<= 1; |
| y <<= 1; |
| } |
| |
| seed += (partitionCount - 1) * 1024; |
| |
| uint32_t p = seed; |
| p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; |
| p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; |
| p ^= p << 6; p ^= p >> 17; |
| |
| uint32_t rnum = p; |
| uint8_t seed1 = rnum & 0xF; |
| uint8_t seed2 = (rnum >> 4) & 0xF; |
| uint8_t seed3 = (rnum >> 8) & 0xF; |
| uint8_t seed4 = (rnum >> 12) & 0xF; |
| uint8_t seed5 = (rnum >> 16) & 0xF; |
| uint8_t seed6 = (rnum >> 20) & 0xF; |
| uint8_t seed7 = (rnum >> 24) & 0xF; |
| uint8_t seed8 = (rnum >> 28) & 0xF; |
| uint8_t seed9 = (rnum >> 18) & 0xF; |
| uint8_t seed10 = (rnum >> 22) & 0xF; |
| uint8_t seed11 = (rnum >> 26) & 0xF; |
| uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; |
| |
| seed1 *= seed1; seed2 *= seed2; |
| seed3 *= seed3; seed4 *= seed4; |
| seed5 *= seed5; seed6 *= seed6; |
| seed7 *= seed7; seed8 *= seed8; |
| seed9 *= seed9; seed10 *= seed10; |
| seed11 *= seed11; seed12 *= seed12; |
| |
| int sh1, sh2, sh3; |
| if (0 != (seed & 1)) { |
| sh1 = (0 != (seed & 2))? 4 : 5; |
| sh2 = (partitionCount == 3)? 6 : 5; |
| } else { |
| sh1 = (partitionCount==3)? 6 : 5; |
| sh2 = (0 != (seed & 2))? 4 : 5; |
| } |
| sh3 = (0 != (seed & 0x10))? sh1 : sh2; |
| |
| seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; |
| seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; |
| seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; |
| |
| const int z = 0; |
| int a = seed1*x + seed2*y + seed11*z + (rnum >> 14); |
| int b = seed3*x + seed4*y + seed12*z + (rnum >> 10); |
| int c = seed5*x + seed6*y + seed9 *z + (rnum >> 6); |
| int d = seed7*x + seed8*y + seed10*z + (rnum >> 2); |
| |
| a &= 0x3F; |
| b &= 0x3F; |
| c &= 0x3F; |
| d &= 0x3F; |
| |
| if (partitionCount < 4) { |
| d = 0; |
| } |
| |
| if (partitionCount < 3) { |
| c = 0; |
| } |
| |
| if (a >= b && a >= c && a >= d) { |
| return 0; |
| } else if (b >= c && b >= d) { |
| return 1; |
| } else if (c >= d) { |
| return 2; |
| } else { |
| return 3; |
| } |
| } |
| |
| // Performs the proper interpolation of the texel based on the |
| // endpoints and weights. |
| SkColor getTexel(const SkColor endpoints[4][2], |
| const int weights[2][12][12], |
| int x, int y) const { |
| int part = 0; |
| if (this->numPartitions() > 1) { |
| part = this->getPartition(x, y); |
| } |
| |
| SkColor result; |
| if (fDualPlaneEnabled) { |
| result = interpolate_dual_endpoints( |
| endpoints[part], weights[0][x][y], weights[1][x][y], fDualPlane); |
| } else { |
| result = interpolate_endpoints(endpoints[part], weights[0][x][y]); |
| } |
| |
| #if 1 |
| // !FIXME! if we're writing directly to a bitmap, then we don't need |
| // to swap the red and blue channels, but since we're usually being used |
| // by the SkImageDecoder_astc module, the results are expected to be in RGBA. |
| result = SkColorSetARGB( |
| SkColorGetA(result), SkColorGetB(result), SkColorGetG(result), SkColorGetR(result)); |
| #endif |
| |
| return result; |
| } |
| |
| void decode() { |
| // First decode the block mode. |
| this->decodeBlockMode(); |
| |
| // Now we can decode the partition information. |
| fPartIndex = static_cast<int>(read_astc_bits(fBlock, 11, 23)); |
| fPartCount = (fPartIndex & 0x3) + 1; |
| fPartIndex >>= 2; |
| |
| // This is illegal |
| if (fDualPlaneEnabled && this->numPartitions() == 4) { |
| fError = true; |
| return; |
| } |
| |
| // Based on the partition info, we can decode the color information. |
| this->decodeColorData(); |
| } |
| |
| // Decodes the dual plane based on the given bit location. The final |
| // location, if the dual plane is enabled, is also the end of our color data. |
| // This function is only meant to be used from this->decodeColorData() |
| void decodeDualPlane(int bitLoc) { |
| if (fDualPlaneEnabled) { |
| fDualPlane = static_cast<int>(read_astc_bits(fBlock, bitLoc - 2, bitLoc)); |
| fColorEndBit = bitLoc - 2; |
| } else { |
| fColorEndBit = bitLoc; |
| } |
| } |
| |
| // Decodes the color information based on the ASTC spec. |
| void decodeColorData() { |
| |
| // By default, the last color bit is at the end of the texel weights |
| const int lastWeight = 128 - this->numWeightBits(); |
| |
| // If we have a dual plane then it will be at this location, too. |
| int dualPlaneBitLoc = lastWeight; |
| |
| // If there's only one partition, then our job is (relatively) easy. |
| if (this->numPartitions() == 1) { |
| fCEM[0] = static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 13, 17)); |
| fColorStartBit = 17; |
| |
| // Handle dual plane mode... |
| this->decodeDualPlane(dualPlaneBitLoc); |
| |
| return; |
| } |
| |
| // If we have more than one partition, then we need to make |
| // room for the partition index. |
| fColorStartBit = 29; |
| |
| // Read the base CEM. If it's zero, then we have no additional |
| // CEM data and the endpoints for each partition share the same CEM. |
| const int baseCEM = static_cast<int>(read_astc_bits(fBlock, 23, 25)); |
| if (0 == baseCEM) { |
| |
| const ColorEndpointMode sameCEM = |
| static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 25, 29)); |
| |
| for (int i = 0; i < kMaxPartitions; ++i) { |
| fCEM[i] = sameCEM; |
| } |
| |
| // Handle dual plane mode... |
| this->decodeDualPlane(dualPlaneBitLoc); |
| |
| return; |
| } |
| |
| // Move the dual plane selector bits down based on how many |
| // partitions the block contains. |
| switch (this->numPartitions()) { |
| case 2: |
| dualPlaneBitLoc -= 2; |
| break; |
| |
| case 3: |
| dualPlaneBitLoc -= 5; |
| break; |
| |
| case 4: |
| dualPlaneBitLoc -= 8; |
| break; |
| |
| default: |
| SkDEBUGFAIL("Internal ASTC decoding error."); |
| break; |
| } |
| |
| // The rest of the CEM config will be between the dual plane bit selector |
| // and the texel weight grid. |
| const int lowCEM = static_cast<int>(read_astc_bits(fBlock, 23, 29)); |
| SkASSERT(lastWeight >= dualPlaneBitLoc); |
| SkASSERT(lastWeight - dualPlaneBitLoc < 31); |
| int fullCEM = static_cast<int>(read_astc_bits(fBlock, dualPlaneBitLoc, lastWeight)); |
| |
| // Attach the config at the end of the weight grid to the CEM values |
| // in the beginning of the block. |
| fullCEM = (fullCEM << 6) | lowCEM; |
| |
| // Ignore the two least significant bits, since those are our baseCEM above. |
| fullCEM = fullCEM >> 2; |
| |
| int C[kMaxPartitions]; // Next, decode C and M from the spec (Table C.2.12) |
| for (int i = 0; i < this->numPartitions(); ++i) { |
| C[i] = fullCEM & 1; |
| fullCEM = fullCEM >> 1; |
| } |
| |
| int M[kMaxPartitions]; |
| for (int i = 0; i < this->numPartitions(); ++i) { |
| M[i] = fullCEM & 0x3; |
| fullCEM = fullCEM >> 2; |
| } |
| |
| // Construct our CEMs.. |
| SkASSERT(baseCEM > 0); |
| for (int i = 0; i < this->numPartitions(); ++i) { |
| int cem = (baseCEM - 1) * 4; |
| cem += (0 == C[i])? 0 : 4; |
| cem += M[i]; |
| |
| SkASSERT(cem < 16); |
| fCEM[i] = static_cast<ColorEndpointMode>(cem); |
| } |
| |
| // Finally, if we have dual plane mode, then read the plane selector. |
| this->decodeDualPlane(dualPlaneBitLoc); |
| } |
| |
| // Decodes the block mode. This function determines whether or not we use |
| // dual plane encoding, the size of the texel weight grid, and the number of |
| // bits, trits and quints that are used to encode it. For more information, |
| // see section C.2.10 of the ASTC spec. |
| // |
| // For 2D blocks, the Block Mode field is laid out as follows: |
| // |
| // ------------------------------------------------------------------------- |
| // 10 9 8 7 6 5 4 3 2 1 0 Width Height Notes |
| // ------------------------------------------------------------------------- |
| // D H B A R0 0 0 R2 R1 B+4 A+2 |
| // D H B A R0 0 1 R2 R1 B+8 A+2 |
| // D H B A R0 1 0 R2 R1 A+2 B+8 |
| // D H 0 B A R0 1 1 R2 R1 A+2 B+6 |
| // D H 1 B A R0 1 1 R2 R1 B+2 A+2 |
| // D H 0 0 A R0 R2 R1 0 0 12 A+2 |
| // D H 0 1 A R0 R2 R1 0 0 A+2 12 |
| // D H 1 1 0 0 R0 R2 R1 0 0 6 10 |
| // D H 1 1 0 1 R0 R2 R1 0 0 10 6 |
| // B 1 0 A R0 R2 R1 0 0 A+6 B+6 D=0, H=0 |
| // x x 1 1 1 1 1 1 1 0 0 - - Void-extent |
| // x x 1 1 1 x x x x 0 0 - - Reserved* |
| // x x x x x x x 0 0 0 0 - - Reserved |
| // ------------------------------------------------------------------------- |
| // |
| // D - dual plane enabled |
| // H, R - used to determine the number of bits/trits/quints in texel weight encoding |
| // R is a three bit value whose LSB is R0 and MSB is R1 |
| // Width, Height - dimensions of the texel weight grid (determined by A and B) |
| |
| void decodeBlockMode() { |
| const int blockMode = static_cast<int>(read_astc_bits(fBlock, 0, 11)); |
| |
| // Check for special void extent encoding |
| fVoidExtent = (blockMode & 0x1FF) == 0x1FC; |
| |
| // Check for reserved block modes |
| fError = ((blockMode & 0x1C3) == 0x1C0) || ((blockMode & 0xF) == 0); |
| |
| // Neither reserved nor void-extent, decode as usual |
| // This code corresponds to table C.2.8 of the ASTC spec |
| bool highPrecision = false; |
| int R = 0; |
| if ((blockMode & 0x3) == 0) { |
| R = ((0xC & blockMode) >> 1) | ((0x10 & blockMode) >> 4); |
| const int bitsSevenAndEight = (blockMode & 0x180) >> 7; |
| SkASSERT(0 <= bitsSevenAndEight && bitsSevenAndEight < 4); |
| |
| const int A = (blockMode >> 5) & 0x3; |
| const int B = (blockMode >> 9) & 0x3; |
| |
| fDualPlaneEnabled = (blockMode >> 10) & 0x1; |
| highPrecision = (blockMode >> 9) & 0x1; |
| |
| switch (bitsSevenAndEight) { |
| default: |
| case 0: |
| fWeightDimX = 12; |
| fWeightDimY = A + 2; |
| break; |
| |
| case 1: |
| fWeightDimX = A + 2; |
| fWeightDimY = 12; |
| break; |
| |
| case 2: |
| fWeightDimX = A + 6; |
| fWeightDimY = B + 6; |
| fDualPlaneEnabled = false; |
| highPrecision = false; |
| break; |
| |
| case 3: |
| if (0 == A) { |
| fWeightDimX = 6; |
| fWeightDimY = 10; |
| } else { |
| fWeightDimX = 10; |
| fWeightDimY = 6; |
| } |
| break; |
| } |
| } else { // (blockMode & 0x3) != 0 |
| R = ((blockMode & 0x3) << 1) | ((blockMode & 0x10) >> 4); |
| |
| const int bitsTwoAndThree = (blockMode >> 2) & 0x3; |
| SkASSERT(0 <= bitsTwoAndThree && bitsTwoAndThree < 4); |
| |
| const int A = (blockMode >> 5) & 0x3; |
| const int B = (blockMode >> 7) & 0x3; |
| |
| fDualPlaneEnabled = (blockMode >> 10) & 0x1; |
| highPrecision = (blockMode >> 9) & 0x1; |
| |
| switch (bitsTwoAndThree) { |
| case 0: |
| fWeightDimX = B + 4; |
| fWeightDimY = A + 2; |
| break; |
| case 1: |
| fWeightDimX = B + 8; |
| fWeightDimY = A + 2; |
| break; |
| case 2: |
| fWeightDimX = A + 2; |
| fWeightDimY = B + 8; |
| break; |
| case 3: |
| if ((B & 0x2) == 0) { |
| fWeightDimX = A + 2; |
| fWeightDimY = (B & 1) + 6; |
| } else { |
| fWeightDimX = (B & 1) + 2; |
| fWeightDimY = A + 2; |
| } |
| break; |
| } |
| } |
| |
| // We should have set the values of R and highPrecision |
| // from decoding the block mode, these are used to determine |
| // the proper dimensions of our weight grid. |
| if ((R & 0x6) == 0) { |
| fError = true; |
| } else { |
| static const int kBitAllocationTable[2][6][3] = { |
| { |
| { 1, 0, 0 }, |
| { 0, 1, 0 }, |
| { 2, 0, 0 }, |
| { 0, 0, 1 }, |
| { 1, 1, 0 }, |
| { 3, 0, 0 } |
| }, |
| { |
| { 1, 0, 1 }, |
| { 2, 1, 0 }, |
| { 4, 0, 0 }, |
| { 2, 0, 1 }, |
| { 3, 1, 0 }, |
| { 5, 0, 0 } |
| } |
| }; |
| |
| fWeightBits = kBitAllocationTable[highPrecision][R - 2][0]; |
| fWeightTrits = kBitAllocationTable[highPrecision][R - 2][1]; |
| fWeightQuints = kBitAllocationTable[highPrecision][R - 2][2]; |
| } |
| } |
| }; |
| |
| // Reads an ASTC block from the given pointer. |
| static inline void read_astc_block(ASTCDecompressionData *dst, const uint8_t* src) { |
| const uint64_t* qword = reinterpret_cast<const uint64_t*>(src); |
| dst->fBlock.fLow = SkEndian_SwapLE64(qword[0]); |
| dst->fBlock.fHigh = SkEndian_SwapLE64(qword[1]); |
| dst->decode(); |
| } |
| |
| // Take a known void-extent block, and write out the values as a constant color. |
| static void decompress_void_extent(uint8_t* dst, int dstRowBytes, |
| const ASTCDecompressionData &data) { |
| // The top 64 bits contain 4 16-bit RGBA values. |
| int a = (static_cast<int>(read_astc_bits(data.fBlock, 112, 128)) + 255) >> 8; |
| int b = (static_cast<int>(read_astc_bits(data.fBlock, 96, 112)) + 255) >> 8; |
| int g = (static_cast<int>(read_astc_bits(data.fBlock, 80, 96)) + 255) >> 8; |
| int r = (static_cast<int>(read_astc_bits(data.fBlock, 64, 80)) + 255) >> 8; |
| |
| write_constant_color(dst, data.fDimX, data.fDimY, dstRowBytes, SkColorSetARGB(a, r, g, b)); |
| } |
| |
| // Decompresses a single ASTC block. It's assumed that data.fDimX and data.fDimY are |
| // set and that the block has already been decoded (i.e. data.decode() has been called) |
| static void decompress_astc_block(uint8_t* dst, int dstRowBytes, |
| const ASTCDecompressionData &data) { |
| if (data.fError) { |
| write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
| return; |
| } |
| |
| if (data.fVoidExtent) { |
| decompress_void_extent(dst, dstRowBytes, data); |
| return; |
| } |
| |
| // According to the spec, any more than 64 values is illegal. (C.2.24) |
| static const int kMaxTexelValues = 64; |
| |
| // Decode the texel weights. |
| int texelValues[kMaxTexelValues]; |
| bool success = decode_integer_sequence( |
| texelValues, kMaxTexelValues, data.numWeights(), |
| // texel data goes to the end of the 128 bit block. |
| data.fBlock, 128, 128 - data.numWeightBits(), false, |
| data.fWeightBits, data.fWeightTrits, data.fWeightQuints); |
| |
| if (!success) { |
| write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
| return; |
| } |
| |
| // Decode the color endpoints |
| int colorBits, colorTrits, colorQuints; |
| if (!data.getColorValueEncoding(&colorBits, &colorTrits, &colorQuints)) { |
| write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
| return; |
| } |
| |
| // According to the spec, any more than 18 color values is illegal. (C.2.24) |
| static const int kMaxColorValues = 18; |
| |
| int colorValues[kMaxColorValues]; |
| success = decode_integer_sequence( |
| colorValues, kMaxColorValues, data.numColorValues(), |
| data.fBlock, data.fColorStartBit, data.fColorEndBit, true, |
| colorBits, colorTrits, colorQuints); |
| |
| if (!success) { |
| write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
| return; |
| } |
| |
| // Unquantize the color values after they've been decoded. |
| unquantize_colors(colorValues, data.numColorValues(), colorBits, colorTrits, colorQuints); |
| |
| // Decode the colors into the appropriate endpoints. |
| SkColor endpoints[4][2]; |
| data.colorEndpoints(endpoints, colorValues); |
| |
| // Do texel infill and decode the texel values. |
| int texelWeights[2][12][12]; |
| data.texelWeights(texelWeights, texelValues); |
| |
| // Write the texels by interpolating them based on the information |
| // stored in the block. |
| dst += data.fDimY * dstRowBytes; |
| for (int y = 0; y < data.fDimY; ++y) { |
| dst -= dstRowBytes; |
| SkColor* colorPtr = reinterpret_cast<SkColor*>(dst); |
| for (int x = 0; x < data.fDimX; ++x) { |
| colorPtr[x] = data.getTexel(endpoints, texelWeights, x, y); |
| } |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // ASTC Comrpession Struct |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // This is the type passed as the CompressorType argument of the compressed |
| // blitter for the ASTC format. The static functions required to be in this |
| // struct are documented in SkTextureCompressor_Blitter.h |
| struct CompressorASTC { |
| static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) { |
| compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); |
| } |
| |
| static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, |
| int srcRowBytes) { |
| compress_a8_astc_block<GetAlpha>(&dst, src, srcRowBytes); |
| } |
| |
| #if PEDANTIC_BLIT_RECT |
| static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, |
| const uint8_t* mask) { |
| // TODO: krajcevski |
| // This is kind of difficult for ASTC because the weight values are calculated |
| // as an average of the actual weights. The best we can do is decompress the |
| // weights and recalculate them based on the new texel values. This should |
| // be "not too bad" since we know that anytime we hit this function, we're |
| // compressing 12x12 block dimension alpha-only, and we know the layout |
| // of the block |
| SkFAIL("Implement me!"); |
| } |
| #endif |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace SkTextureCompressor { |
| |
| bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, |
| int width, int height, int rowBytes) { |
| if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) { |
| return false; |
| } |
| |
| uint8_t** dstPtr = &dst; |
| for (int y = 0; y < height; y += 12) { |
| for (int x = 0; x < width; x += 12) { |
| compress_a8_astc_block<GetAlpha>(dstPtr, src + y*rowBytes + x, rowBytes); |
| } |
| } |
| |
| return true; |
| } |
| |
| SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer, |
| SkTBlitterAllocator* allocator) { |
| if ((width % 12) != 0 || (height % 12) != 0) { |
| return NULL; |
| } |
| |
| // Memset the output buffer to an encoding that decodes to zero. We must do this |
| // in order to avoid having uninitialized values in the buffer if the blitter |
| // decides not to write certain scanlines (and skip entire rows of blocks). |
| // In the case of ASTC, if everything index is zero, then the interpolated value |
| // will decode to zero provided we have the right header. We use the encoding |
| // from recognizing all zero blocks from above. |
| const int nBlocks = (width * height / 144); |
| uint8_t *dst = reinterpret_cast<uint8_t *>(outputBuffer); |
| for (int i = 0; i < nBlocks; ++i) { |
| send_packing(&dst, SkTEndian_SwapLE64(0x0000000001FE000173ULL), 0); |
| } |
| |
| return allocator->createT< |
| SkTCompressedAlphaBlitter<12, 16, CompressorASTC>, int, int, void* > |
| (width, height, outputBuffer); |
| } |
| |
| void DecompressASTC(uint8_t* dst, int dstRowBytes, const uint8_t* src, |
| int width, int height, int blockDimX, int blockDimY) { |
| // ASTC is encoded in what they call "raster order", so that the first |
| // block is the bottom-left block in the image, and the first pixel |
| // is the bottom-left pixel of the image |
| dst += height * dstRowBytes; |
| |
| ASTCDecompressionData data(blockDimX, blockDimY); |
| for (int y = 0; y < height; y += blockDimY) { |
| dst -= blockDimY * dstRowBytes; |
| SkColor *colorPtr = reinterpret_cast<SkColor*>(dst); |
| for (int x = 0; x < width; x += blockDimX) { |
| read_astc_block(&data, src); |
| decompress_astc_block(reinterpret_cast<uint8_t*>(colorPtr + x), dstRowBytes, data); |
| |
| // ASTC encoded blocks are 16 bytes (128 bits) large. |
| src += 16; |
| } |
| } |
| } |
| |
| } // SkTextureCompressor |