| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGradientShaderPriv.h" |
| #include "SkLinearGradient.h" |
| #include "SkRadialGradient.h" |
| #include "SkTwoPointRadialGradient.h" |
| #include "SkTwoPointConicalGradient.h" |
| #include "SkSweepGradient.h" |
| |
| SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc) { |
| SkASSERT(desc.fCount > 1); |
| |
| fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return |
| |
| fMapper = desc.fMapper; |
| SkSafeRef(fMapper); |
| fGradFlags = SkToU8(desc.fFlags); |
| |
| SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount); |
| SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs)); |
| fTileMode = desc.fTileMode; |
| fTileProc = gTileProcs[desc.fTileMode]; |
| |
| fCache16 = fCache16Storage = NULL; |
| fCache32 = NULL; |
| fCache32PixelRef = NULL; |
| |
| /* Note: we let the caller skip the first and/or last position. |
| i.e. pos[0] = 0.3, pos[1] = 0.7 |
| In these cases, we insert dummy entries to ensure that the final data |
| will be bracketed by [0, 1]. |
| i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 |
| |
| Thus colorCount (the caller's value, and fColorCount (our value) may |
| differ by up to 2. In the above example: |
| colorCount = 2 |
| fColorCount = 4 |
| */ |
| fColorCount = desc.fCount; |
| // check if we need to add in dummy start and/or end position/colors |
| bool dummyFirst = false; |
| bool dummyLast = false; |
| if (desc.fPos) { |
| dummyFirst = desc.fPos[0] != 0; |
| dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; |
| fColorCount += dummyFirst + dummyLast; |
| } |
| |
| if (fColorCount > kColorStorageCount) { |
| size_t size = sizeof(SkColor) + sizeof(Rec); |
| fOrigColors = reinterpret_cast<SkColor*>( |
| sk_malloc_throw(size * fColorCount)); |
| } |
| else { |
| fOrigColors = fStorage; |
| } |
| |
| // Now copy over the colors, adding the dummies as needed |
| { |
| SkColor* origColors = fOrigColors; |
| if (dummyFirst) { |
| *origColors++ = desc.fColors[0]; |
| } |
| memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor)); |
| if (dummyLast) { |
| origColors += desc.fCount; |
| *origColors = desc.fColors[desc.fCount - 1]; |
| } |
| } |
| |
| fRecs = (Rec*)(fOrigColors + fColorCount); |
| if (fColorCount > 2) { |
| Rec* recs = fRecs; |
| recs->fPos = 0; |
| // recs->fScale = 0; // unused; |
| recs += 1; |
| if (desc.fPos) { |
| /* We need to convert the user's array of relative positions into |
| fixed-point positions and scale factors. We need these results |
| to be strictly monotonic (no two values equal or out of order). |
| Hence this complex loop that just jams a zero for the scale |
| value if it sees a segment out of order, and it assures that |
| we start at 0 and end at 1.0 |
| */ |
| SkFixed prev = 0; |
| int startIndex = dummyFirst ? 0 : 1; |
| int count = desc.fCount + dummyLast; |
| for (int i = startIndex; i < count; i++) { |
| // force the last value to be 1.0 |
| SkFixed curr; |
| if (i == desc.fCount) { // we're really at the dummyLast |
| curr = SK_Fixed1; |
| } else { |
| curr = SkScalarToFixed(desc.fPos[i]); |
| } |
| // pin curr withing range |
| if (curr < 0) { |
| curr = 0; |
| } else if (curr > SK_Fixed1) { |
| curr = SK_Fixed1; |
| } |
| recs->fPos = curr; |
| if (curr > prev) { |
| recs->fScale = (1 << 24) / (curr - prev); |
| } else { |
| recs->fScale = 0; // ignore this segment |
| } |
| // get ready for the next value |
| prev = curr; |
| recs += 1; |
| } |
| } else { // assume even distribution |
| SkFixed dp = SK_Fixed1 / (desc.fCount - 1); |
| SkFixed p = dp; |
| SkFixed scale = (desc.fCount - 1) << 8; // (1 << 24) / dp |
| for (int i = 1; i < desc.fCount; i++) { |
| recs->fPos = p; |
| recs->fScale = scale; |
| recs += 1; |
| p += dp; |
| } |
| } |
| } |
| this->initCommon(); |
| } |
| |
| static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) { |
| SkASSERT(0 == (flags >> 28)); |
| SkASSERT(0 == ((uint32_t)mode >> 4)); |
| return (flags << 4) | mode; |
| } |
| |
| static SkShader::TileMode unpack_mode(uint32_t packed) { |
| return (SkShader::TileMode)(packed & 0xF); |
| } |
| |
| static uint32_t unpack_flags(uint32_t packed) { |
| return packed >> 4; |
| } |
| |
| SkGradientShaderBase::SkGradientShaderBase(SkReadBuffer& buffer) : INHERITED(buffer) { |
| fCacheAlpha = 256; |
| |
| fMapper = buffer.readUnitMapper(); |
| |
| fCache16 = fCache16Storage = NULL; |
| fCache32 = NULL; |
| fCache32PixelRef = NULL; |
| |
| int colorCount = fColorCount = buffer.getArrayCount(); |
| if (colorCount > kColorStorageCount) { |
| size_t allocSize = (sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec)) * colorCount; |
| if (buffer.validateAvailable(allocSize)) { |
| fOrigColors = reinterpret_cast<SkColor*>(sk_malloc_throw(allocSize)); |
| } else { |
| fOrigColors = NULL; |
| colorCount = fColorCount = 0; |
| } |
| } else { |
| fOrigColors = fStorage; |
| } |
| buffer.readColorArray(fOrigColors, colorCount); |
| |
| { |
| uint32_t packed = buffer.readUInt(); |
| fGradFlags = SkToU8(unpack_flags(packed)); |
| fTileMode = unpack_mode(packed); |
| } |
| fTileProc = gTileProcs[fTileMode]; |
| fRecs = (Rec*)(fOrigColors + colorCount); |
| if (colorCount > 2) { |
| Rec* recs = fRecs; |
| recs[0].fPos = 0; |
| for (int i = 1; i < colorCount; i++) { |
| recs[i].fPos = buffer.readInt(); |
| recs[i].fScale = buffer.readUInt(); |
| } |
| } |
| buffer.readMatrix(&fPtsToUnit); |
| this->initCommon(); |
| } |
| |
| SkGradientShaderBase::~SkGradientShaderBase() { |
| if (fCache16Storage) { |
| sk_free(fCache16Storage); |
| } |
| SkSafeUnref(fCache32PixelRef); |
| if (fOrigColors != fStorage) { |
| sk_free(fOrigColors); |
| } |
| SkSafeUnref(fMapper); |
| } |
| |
| void SkGradientShaderBase::initCommon() { |
| fFlags = 0; |
| unsigned colorAlpha = 0xFF; |
| for (int i = 0; i < fColorCount; i++) { |
| colorAlpha &= SkColorGetA(fOrigColors[i]); |
| } |
| fColorsAreOpaque = colorAlpha == 0xFF; |
| } |
| |
| void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { |
| this->INHERITED::flatten(buffer); |
| buffer.writeFlattenable(fMapper); |
| buffer.writeColorArray(fOrigColors, fColorCount); |
| buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags)); |
| if (fColorCount > 2) { |
| Rec* recs = fRecs; |
| for (int i = 1; i < fColorCount; i++) { |
| buffer.writeInt(recs[i].fPos); |
| buffer.writeUInt(recs[i].fScale); |
| } |
| } |
| buffer.writeMatrix(fPtsToUnit); |
| } |
| |
| bool SkGradientShaderBase::isOpaque() const { |
| return fColorsAreOpaque; |
| } |
| |
| bool SkGradientShaderBase::setContext(const SkBitmap& device, |
| const SkPaint& paint, |
| const SkMatrix& matrix) { |
| if (!this->INHERITED::setContext(device, paint, matrix)) { |
| return false; |
| } |
| |
| const SkMatrix& inverse = this->getTotalInverse(); |
| |
| fDstToIndex.setConcat(fPtsToUnit, inverse); |
| fDstToIndexProc = fDstToIndex.getMapXYProc(); |
| fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex); |
| |
| // now convert our colors in to PMColors |
| unsigned paintAlpha = this->getPaintAlpha(); |
| |
| fFlags = this->INHERITED::getFlags(); |
| if (fColorsAreOpaque && paintAlpha == 0xFF) { |
| fFlags |= kOpaqueAlpha_Flag; |
| } |
| // we can do span16 as long as our individual colors are opaque, |
| // regardless of the paint's alpha |
| if (fColorsAreOpaque) { |
| fFlags |= kHasSpan16_Flag; |
| } |
| |
| this->setCacheAlpha(paintAlpha); |
| return true; |
| } |
| |
| void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const { |
| // if the new alpha differs from the previous time we were called, inval our cache |
| // this will trigger the cache to be rebuilt. |
| // we don't care about the first time, since the cache ptrs will already be NULL |
| if (fCacheAlpha != alpha) { |
| fCache16 = NULL; // inval the cache |
| fCache32 = NULL; // inval the cache |
| fCacheAlpha = alpha; // record the new alpha |
| // inform our subclasses |
| if (fCache32PixelRef) { |
| fCache32PixelRef->notifyPixelsChanged(); |
| } |
| } |
| } |
| |
| #define Fixed_To_Dot8(x) (((x) + 0x80) >> 8) |
| |
| /** We take the original colors, not our premultiplied PMColors, since we can |
| build a 16bit table as long as the original colors are opaque, even if the |
| paint specifies a non-opaque alpha. |
| */ |
| void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1, |
| int count) { |
| SkASSERT(count > 1); |
| SkASSERT(SkColorGetA(c0) == 0xFF); |
| SkASSERT(SkColorGetA(c1) == 0xFF); |
| |
| SkFixed r = SkColorGetR(c0); |
| SkFixed g = SkColorGetG(c0); |
| SkFixed b = SkColorGetB(c0); |
| |
| SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1); |
| SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1); |
| SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1); |
| |
| r = SkIntToFixed(r) + 0x8000; |
| g = SkIntToFixed(g) + 0x8000; |
| b = SkIntToFixed(b) + 0x8000; |
| |
| do { |
| unsigned rr = r >> 16; |
| unsigned gg = g >> 16; |
| unsigned bb = b >> 16; |
| cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb)); |
| cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb); |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } |
| |
| /* |
| * r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in |
| * release builds, we saw a compiler error where the 0xFF parameter in |
| * SkPackARGB32() was being totally ignored whenever it was called with |
| * a non-zero add (e.g. 0x8000). |
| * |
| * We found two work-arounds: |
| * 1. change r,g,b to unsigned (or just one of them) |
| * 2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead |
| * of using | |
| * |
| * We chose #1 just because it was more localized. |
| * See http://code.google.com/p/skia/issues/detail?id=1113 |
| * |
| * The type SkUFixed encapsulate this need for unsigned, but logically Fixed. |
| */ |
| typedef uint32_t SkUFixed; |
| |
| void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1, |
| int count, U8CPU paintAlpha, uint32_t gradFlags) { |
| SkASSERT(count > 1); |
| |
| // need to apply paintAlpha to our two endpoints |
| uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha); |
| uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha); |
| |
| |
| const bool interpInPremul = SkToBool(gradFlags & |
| SkGradientShader::kInterpolateColorsInPremul_Flag); |
| |
| uint32_t r0 = SkColorGetR(c0); |
| uint32_t g0 = SkColorGetG(c0); |
| uint32_t b0 = SkColorGetB(c0); |
| |
| uint32_t r1 = SkColorGetR(c1); |
| uint32_t g1 = SkColorGetG(c1); |
| uint32_t b1 = SkColorGetB(c1); |
| |
| if (interpInPremul) { |
| r0 = SkMulDiv255Round(r0, a0); |
| g0 = SkMulDiv255Round(g0, a0); |
| b0 = SkMulDiv255Round(b0, a0); |
| |
| r1 = SkMulDiv255Round(r1, a1); |
| g1 = SkMulDiv255Round(g1, a1); |
| b1 = SkMulDiv255Round(b1, a1); |
| } |
| |
| SkFixed da = SkIntToFixed(a1 - a0) / (count - 1); |
| SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1); |
| SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1); |
| SkFixed db = SkIntToFixed(b1 - b0) / (count - 1); |
| |
| /* We pre-add 1/8 to avoid having to add this to our [0] value each time |
| in the loop. Without this, the bias for each would be |
| 0x2000 0xA000 0xE000 0x6000 |
| With this trick, we can add 0 for the first (no-op) and just adjust the |
| others. |
| */ |
| SkUFixed a = SkIntToFixed(a0) + 0x2000; |
| SkUFixed r = SkIntToFixed(r0) + 0x2000; |
| SkUFixed g = SkIntToFixed(g0) + 0x2000; |
| SkUFixed b = SkIntToFixed(b0) + 0x2000; |
| |
| /* |
| * Our dither-cell (spatially) is |
| * 0 2 |
| * 3 1 |
| * Where |
| * [0] -> [-1/8 ... 1/8 ) values near 0 |
| * [1] -> [ 1/8 ... 3/8 ) values near 1/4 |
| * [2] -> [ 3/8 ... 5/8 ) values near 1/2 |
| * [3] -> [ 5/8 ... 7/8 ) values near 3/4 |
| */ |
| |
| if (0xFF == a0 && 0 == da) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16, |
| (g + 0x8000) >> 16, |
| (b + 0x8000) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16, |
| (g + 0xC000) >> 16, |
| (b + 0xC000) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16, |
| (g + 0x4000) >> 16, |
| (b + 0x4000) >> 16); |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else if (interpInPremul) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16, |
| (r + 0x8000) >> 16, |
| (g + 0x8000) >> 16, |
| (b + 0x8000) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16, |
| (r + 0xC000) >> 16, |
| (g + 0xC000) >> 16, |
| (b + 0xC000) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16, |
| (r + 0x4000) >> 16, |
| (g + 0x4000) >> 16, |
| (b + 0x4000) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else { // interpolate in unpreml space |
| do { |
| cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16, |
| (r + 0x8000) >> 16, |
| (g + 0x8000) >> 16, |
| (b + 0x8000) >> 16); |
| cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16, |
| (r + 0xC000) >> 16, |
| (g + 0xC000) >> 16, |
| (b + 0xC000) >> 16); |
| cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16, |
| (r + 0x4000) >> 16, |
| (g + 0x4000) >> 16, |
| (b + 0x4000) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } |
| } |
| |
| static inline int SkFixedToFFFF(SkFixed x) { |
| SkASSERT((unsigned)x <= SK_Fixed1); |
| return x - (x >> 16); |
| } |
| |
| static inline U16CPU bitsTo16(unsigned x, const unsigned bits) { |
| SkASSERT(x < (1U << bits)); |
| if (6 == bits) { |
| return (x << 10) | (x << 4) | (x >> 2); |
| } |
| if (8 == bits) { |
| return (x << 8) | x; |
| } |
| sk_throw(); |
| return 0; |
| } |
| |
| const uint16_t* SkGradientShaderBase::getCache16() const { |
| if (fCache16 == NULL) { |
| // double the count for dither entries |
| const int entryCount = kCache16Count * 2; |
| const size_t allocSize = sizeof(uint16_t) * entryCount; |
| |
| if (fCache16Storage == NULL) { // set the storage and our working ptr |
| fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize); |
| } |
| fCache16 = fCache16Storage; |
| if (fColorCount == 2) { |
| Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1], |
| kCache16Count); |
| } else { |
| Rec* rec = fRecs; |
| int prevIndex = 0; |
| for (int i = 1; i < fColorCount; i++) { |
| int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift; |
| SkASSERT(nextIndex < kCache16Count); |
| |
| if (nextIndex > prevIndex) |
| Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1); |
| prevIndex = nextIndex; |
| } |
| } |
| |
| if (fMapper) { |
| fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize); |
| uint16_t* linear = fCache16; // just computed linear data |
| uint16_t* mapped = fCache16Storage; // storage for mapped data |
| SkUnitMapper* map = fMapper; |
| for (int i = 0; i < kCache16Count; i++) { |
| int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift; |
| mapped[i] = linear[index]; |
| mapped[i + kCache16Count] = linear[index + kCache16Count]; |
| } |
| sk_free(fCache16); |
| fCache16 = fCache16Storage; |
| } |
| } |
| return fCache16; |
| } |
| |
| const SkPMColor* SkGradientShaderBase::getCache32() const { |
| if (fCache32 == NULL) { |
| SkImageInfo info; |
| info.fWidth = kCache32Count; |
| info.fHeight = 4; // for our 4 dither rows |
| info.fAlphaType = kPremul_SkAlphaType; |
| info.fColorType = kPMColor_SkColorType; |
| |
| if (NULL == fCache32PixelRef) { |
| fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, NULL); |
| } |
| fCache32 = (SkPMColor*)fCache32PixelRef->getAddr(); |
| if (fColorCount == 2) { |
| Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1], |
| kCache32Count, fCacheAlpha, fGradFlags); |
| } else { |
| Rec* rec = fRecs; |
| int prevIndex = 0; |
| for (int i = 1; i < fColorCount; i++) { |
| int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift; |
| SkASSERT(nextIndex < kCache32Count); |
| |
| if (nextIndex > prevIndex) |
| Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1], |
| fOrigColors[i], nextIndex - prevIndex + 1, |
| fCacheAlpha, fGradFlags); |
| prevIndex = nextIndex; |
| } |
| } |
| |
| if (fMapper) { |
| SkMallocPixelRef* newPR = SkMallocPixelRef::NewAllocate(info, 0, NULL); |
| SkPMColor* linear = fCache32; // just computed linear data |
| SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data |
| SkUnitMapper* map = fMapper; |
| for (int i = 0; i < kCache32Count; i++) { |
| int index = map->mapUnit16((i << 8) | i) >> 8; |
| mapped[i + kCache32Count*0] = linear[index + kCache32Count*0]; |
| mapped[i + kCache32Count*1] = linear[index + kCache32Count*1]; |
| mapped[i + kCache32Count*2] = linear[index + kCache32Count*2]; |
| mapped[i + kCache32Count*3] = linear[index + kCache32Count*3]; |
| } |
| fCache32PixelRef->unref(); |
| fCache32PixelRef = newPR; |
| fCache32 = (SkPMColor*)newPR->getAddr(); |
| } |
| } |
| return fCache32; |
| } |
| |
| /* |
| * Because our caller might rebuild the same (logically the same) gradient |
| * over and over, we'd like to return exactly the same "bitmap" if possible, |
| * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). |
| * To do that, we maintain a private cache of built-bitmaps, based on our |
| * colors and positions. Note: we don't try to flatten the fMapper, so if one |
| * is present, we skip the cache for now. |
| */ |
| void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const { |
| // our caller assumes no external alpha, so we ensure that our cache is |
| // built with 0xFF |
| this->setCacheAlpha(0xFF); |
| |
| // don't have a way to put the mapper into our cache-key yet |
| if (fMapper) { |
| // force our cahce32pixelref to be built |
| (void)this->getCache32(); |
| bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1)); |
| bitmap->setPixelRef(fCache32PixelRef); |
| return; |
| } |
| |
| // build our key: [numColors + colors[] + {positions[]} + flags ] |
| int count = 1 + fColorCount + 1; |
| if (fColorCount > 2) { |
| count += fColorCount - 1; // fRecs[].fPos |
| } |
| |
| SkAutoSTMalloc<16, int32_t> storage(count); |
| int32_t* buffer = storage.get(); |
| |
| *buffer++ = fColorCount; |
| memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor)); |
| buffer += fColorCount; |
| if (fColorCount > 2) { |
| for (int i = 1; i < fColorCount; i++) { |
| *buffer++ = fRecs[i].fPos; |
| } |
| } |
| *buffer++ = fGradFlags; |
| SkASSERT(buffer - storage.get() == count); |
| |
| /////////////////////////////////// |
| |
| SK_DECLARE_STATIC_MUTEX(gMutex); |
| static SkBitmapCache* gCache; |
| // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp |
| static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; |
| SkAutoMutexAcquire ama(gMutex); |
| |
| if (NULL == gCache) { |
| gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS)); |
| } |
| size_t size = count * sizeof(int32_t); |
| |
| if (!gCache->find(storage.get(), size, bitmap)) { |
| // force our cahce32pixelref to be built |
| (void)this->getCache32(); |
| bitmap->setConfig(SkImageInfo::MakeN32Premul(kCache32Count, 1)); |
| bitmap->setPixelRef(fCache32PixelRef); |
| |
| gCache->add(storage.get(), size, *bitmap); |
| } |
| } |
| |
| void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const { |
| if (info) { |
| if (info->fColorCount >= fColorCount) { |
| if (info->fColors) { |
| memcpy(info->fColors, fOrigColors, fColorCount * sizeof(SkColor)); |
| } |
| if (info->fColorOffsets) { |
| if (fColorCount == 2) { |
| info->fColorOffsets[0] = 0; |
| info->fColorOffsets[1] = SK_Scalar1; |
| } else if (fColorCount > 2) { |
| for (int i = 0; i < fColorCount; ++i) { |
| info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos); |
| } |
| } |
| } |
| } |
| info->fColorCount = fColorCount; |
| info->fTileMode = fTileMode; |
| info->fGradientFlags = fGradFlags; |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkGradientShaderBase::toString(SkString* str) const { |
| |
| str->appendf("%d colors: ", fColorCount); |
| |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendHex(fOrigColors[i]); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| |
| if (fColorCount > 2) { |
| str->append(" points: ("); |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendScalar(SkFixedToScalar(fRecs[i].fPos)); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| str->append(")"); |
| } |
| |
| static const char* gTileModeName[SkShader::kTileModeCount] = { |
| "clamp", "repeat", "mirror" |
| }; |
| |
| str->append(" "); |
| str->append(gTileModeName[fTileMode]); |
| |
| // TODO: add "fMapper->toString(str);" when SkUnitMapper::toString is added |
| |
| this->INHERITED::toString(str); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include "SkEmptyShader.h" |
| |
| // assumes colors is SkColor* and pos is SkScalar* |
| #define EXPAND_1_COLOR(count) \ |
| SkColor tmp[2]; \ |
| do { \ |
| if (1 == count) { \ |
| tmp[0] = tmp[1] = colors[0]; \ |
| colors = tmp; \ |
| pos = NULL; \ |
| count = 2; \ |
| } \ |
| } while (0) |
| |
| static void desc_init(SkGradientShaderBase::Descriptor* desc, |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| SkUnitMapper* mapper, uint32_t flags) { |
| desc->fColors = colors; |
| desc->fPos = pos; |
| desc->fCount = colorCount; |
| desc->fTileMode = mode; |
| desc->fMapper = mapper; |
| desc->fFlags = flags; |
| } |
| |
| SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2], |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| SkUnitMapper* mapper, |
| uint32_t flags) { |
| if (NULL == pts || NULL == colors || colorCount < 1) { |
| return NULL; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, mapper, flags); |
| return SkNEW_ARGS(SkLinearGradient, (pts, desc)); |
| } |
| |
| SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius, |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| SkUnitMapper* mapper, |
| uint32_t flags) { |
| if (radius <= 0 || NULL == colors || colorCount < 1) { |
| return NULL; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, mapper, flags); |
| return SkNEW_ARGS(SkRadialGradient, (center, radius, desc)); |
| } |
| |
| SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| SkUnitMapper* mapper, |
| uint32_t flags) { |
| if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) { |
| return NULL; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, mapper, flags); |
| return SkNEW_ARGS(SkTwoPointRadialGradient, |
| (start, startRadius, end, endRadius, desc)); |
| } |
| |
| SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| SkUnitMapper* mapper, |
| uint32_t flags) { |
| if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) { |
| return NULL; |
| } |
| if (start == end && startRadius == endRadius) { |
| return SkNEW(SkEmptyShader); |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, mapper, flags); |
| return SkNEW_ARGS(SkTwoPointConicalGradient, |
| (start, startRadius, end, endRadius, desc)); |
| } |
| |
| SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, SkUnitMapper* mapper, |
| uint32_t flags) { |
| if (NULL == colors || colorCount < 1) { |
| return NULL; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, mapper, flags); |
| return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc)); |
| } |
| |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "effects/GrTextureStripAtlas.h" |
| #include "GrTBackendEffectFactory.h" |
| #include "SkGr.h" |
| |
| GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory) |
| : INHERITED(factory) |
| , fCachedYCoord(SK_ScalarMax) { |
| } |
| |
| GrGLGradientEffect::~GrGLGradientEffect() { } |
| |
| void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) { |
| |
| if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)) { // 2 Color case |
| fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, "GradientStartColor"); |
| fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, "GradientEndColor"); |
| |
| } else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){ // 3 Color Case |
| fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, "GradientStartColor"); |
| fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, "GradientMidColor"); |
| fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, "GradientEndColor"); |
| |
| } else { // if not a fast case |
| fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, |
| kFloat_GrSLType, "GradientYCoordFS"); |
| } |
| } |
| |
| static inline void set_color_uni(const GrGLUniformManager& uman, |
| const GrGLUniformManager::UniformHandle uni, |
| const SkColor* color) { |
| uman.set4f(uni, |
| SkColorGetR(*color) / 255.f, |
| SkColorGetG(*color) / 255.f, |
| SkColorGetB(*color) / 255.f, |
| SkColorGetA(*color) / 255.f); |
| } |
| |
| static inline void set_mul_color_uni(const GrGLUniformManager& uman, |
| const GrGLUniformManager::UniformHandle uni, |
| const SkColor* color){ |
| float a = SkColorGetA(*color) / 255.f; |
| float aDiv255 = a / 255.f; |
| uman.set4f(uni, |
| SkColorGetR(*color) * aDiv255, |
| SkColorGetG(*color) * aDiv255, |
| SkColorGetB(*color) * aDiv255, |
| a); |
| } |
| |
| void GrGLGradientEffect::setData(const GrGLUniformManager& uman, |
| const GrDrawEffect& drawEffect) { |
| |
| const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>(); |
| |
| |
| if (GrGradientEffect::kTwo_ColorType == e.getColorType()){ |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_mul_color_uni(uman, fColorStartUni, e.getColors(0)); |
| set_mul_color_uni(uman, fColorEndUni, e.getColors(1)); |
| } else { |
| set_color_uni(uman, fColorStartUni, e.getColors(0)); |
| set_color_uni(uman, fColorEndUni, e.getColors(1)); |
| } |
| |
| } else if (GrGradientEffect::kThree_ColorType == e.getColorType()){ |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_mul_color_uni(uman, fColorStartUni, e.getColors(0)); |
| set_mul_color_uni(uman, fColorMidUni, e.getColors(1)); |
| set_mul_color_uni(uman, fColorEndUni, e.getColors(2)); |
| } else { |
| set_color_uni(uman, fColorStartUni, e.getColors(0)); |
| set_color_uni(uman, fColorMidUni, e.getColors(1)); |
| set_color_uni(uman, fColorEndUni, e.getColors(2)); |
| } |
| } else { |
| |
| SkScalar yCoord = e.getYCoord(); |
| if (yCoord != fCachedYCoord) { |
| uman.set1f(fFSYUni, yCoord); |
| fCachedYCoord = yCoord; |
| } |
| } |
| } |
| |
| |
| GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) { |
| const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>(); |
| |
| EffectKey key = 0; |
| |
| if (GrGradientEffect::kTwo_ColorType == e.getColorType()) { |
| key |= kTwoColorKey; |
| } else if (GrGradientEffect::kThree_ColorType == e.getColorType()){ |
| key |= kThreeColorKey; |
| } |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| key |= kPremulBeforeInterpKey; |
| } |
| |
| return key; |
| } |
| |
| void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder, |
| const char* gradientTValue, |
| EffectKey key, |
| const char* outputColor, |
| const char* inputColor, |
| const TextureSamplerArray& samplers) { |
| if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)){ |
| builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n", |
| builder->getUniformVariable(fColorStartUni).c_str(), |
| builder->getUniformVariable(fColorEndUni).c_str(), |
| gradientTValue); |
| // Note that we could skip this step if both colors are known to be opaque. Two |
| // considerations: |
| // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt |
| // case. Make sure the key reflects this optimization (and note that it can use the same |
| // shader as thekBeforeIterp case). This same optimization applies to the 3 color case below. |
| if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) { |
| builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n"); |
| } |
| |
| builder->fsCodeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); |
| } else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){ |
| builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n", |
| gradientTValue); |
| builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n", |
| builder->getUniformVariable(fColorStartUni).c_str()); |
| if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) { |
| // The Tegra3 compiler will sometimes never return if we have |
| // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression. |
| builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n"); |
| builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n"); |
| builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n", |
| builder->getUniformVariable(fColorMidUni).c_str()); |
| } else { |
| builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n", |
| builder->getUniformVariable(fColorMidUni).c_str()); |
| } |
| builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n", |
| builder->getUniformVariable(fColorEndUni).c_str()); |
| if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) { |
| builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n"); |
| } |
| |
| builder->fsCodeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); |
| } else { |
| builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n", |
| gradientTValue, |
| builder->getUniformVariable(fFSYUni).c_str()); |
| builder->fsCodeAppendf("\t%s = ", outputColor); |
| builder->fsAppendTextureLookupAndModulate(inputColor, |
| samplers[0], |
| "coord"); |
| builder->fsCodeAppend(";\n"); |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| GrGradientEffect::GrGradientEffect(GrContext* ctx, |
| const SkGradientShaderBase& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tileMode) { |
| |
| fIsOpaque = shader.isOpaque(); |
| |
| SkShader::GradientInfo info; |
| SkScalar pos[3] = {0}; |
| |
| info.fColorCount = 3; |
| info.fColors = &fColors[0]; |
| info.fColorOffsets = &pos[0]; |
| shader.asAGradient(&info); |
| |
| // The two and three color specializations do not currently support tiling. |
| bool foundSpecialCase = false; |
| if (SkShader::kClamp_TileMode == info.fTileMode) { |
| if (2 == info.fColorCount) { |
| fRow = -1; // flag for no atlas |
| fColorType = kTwo_ColorType; |
| foundSpecialCase = true; |
| } else if (3 == info.fColorCount && |
| (SkScalarAbs(pos[1] - SK_ScalarHalf) < SK_Scalar1 / 1000)) { // 3 color symmetric |
| fRow = -1; // flag for no atlas |
| fColorType = kThree_ColorType; |
| foundSpecialCase = true; |
| } |
| } |
| if (foundSpecialCase) { |
| if (SkGradientShader::kInterpolateColorsInPremul_Flag & info.fGradientFlags) { |
| fPremulType = kBeforeInterp_PremulType; |
| } else { |
| fPremulType = kAfterInterp_PremulType; |
| } |
| fCoordTransform.reset(kCoordSet, matrix); |
| } else { |
| // doesn't matter how this is set, just be consistent because it is part of the effect key. |
| fPremulType = kBeforeInterp_PremulType; |
| SkBitmap bitmap; |
| shader.getGradientTableBitmap(&bitmap); |
| fColorType = kTexture_ColorType; |
| |
| GrTextureStripAtlas::Desc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = 32; |
| desc.fRowHeight = bitmap.height(); |
| desc.fContext = ctx; |
| desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.colorType(), bitmap.alphaType()); |
| fAtlas = GrTextureStripAtlas::GetAtlas(desc); |
| SkASSERT(NULL != fAtlas); |
| |
| // We always filter the gradient table. Each table is one row of a texture, always y-clamp. |
| GrTextureParams params; |
| params.setFilterMode(GrTextureParams::kBilerp_FilterMode); |
| params.setTileModeX(tileMode); |
| |
| fRow = fAtlas->lockRow(bitmap); |
| if (-1 != fRow) { |
| fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf * |
| fAtlas->getVerticalScaleFactor(); |
| fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture()); |
| fTextureAccess.reset(fAtlas->getTexture(), params); |
| } else { |
| GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, ¶ms); |
| fCoordTransform.reset(kCoordSet, matrix, texture); |
| fTextureAccess.reset(texture, params); |
| fYCoord = SK_ScalarHalf; |
| |
| // Unlock immediately, this is not great, but we don't have a way of |
| // knowing when else to unlock it currently, so it may get purged from |
| // the cache, but it'll still be ref'd until it's no longer being used. |
| GrUnlockAndUnrefCachedBitmapTexture(texture); |
| } |
| this->addTextureAccess(&fTextureAccess); |
| } |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| GrGradientEffect::~GrGradientEffect() { |
| if (this->useAtlas()) { |
| fAtlas->unlockRow(fRow); |
| } |
| } |
| |
| bool GrGradientEffect::onIsEqual(const GrEffect& effect) const { |
| const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect); |
| |
| if (this->fColorType == s.getColorType()){ |
| |
| if (kTwo_ColorType == fColorType) { |
| if (*this->getColors(0) != *s.getColors(0) || |
| *this->getColors(1) != *s.getColors(1)) { |
| return false; |
| } |
| } else if (kThree_ColorType == fColorType) { |
| if (*this->getColors(0) != *s.getColors(0) || |
| *this->getColors(1) != *s.getColors(1) || |
| *this->getColors(2) != *s.getColors(2)) { |
| return false; |
| } |
| } else { |
| if (fYCoord != s.getYCoord()) { |
| return false; |
| } |
| } |
| |
| return fTextureAccess.getTexture() == s.fTextureAccess.getTexture() && |
| fTextureAccess.getParams().getTileModeX() == |
| s.fTextureAccess.getParams().getTileModeX() && |
| this->useAtlas() == s.useAtlas() && |
| fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix()); |
| } |
| |
| return false; |
| } |
| |
| void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const { |
| if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) { |
| *validFlags = kA_GrColorComponentFlag; |
| } else { |
| *validFlags = 0; |
| } |
| } |
| |
| int GrGradientEffect::RandomGradientParams(SkRandom* random, |
| SkColor colors[], |
| SkScalar** stops, |
| SkShader::TileMode* tm) { |
| int outColors = random->nextRangeU(1, kMaxRandomGradientColors); |
| |
| // if one color, omit stops, otherwise randomly decide whether or not to |
| if (outColors == 1 || (outColors >= 2 && random->nextBool())) { |
| *stops = NULL; |
| } |
| |
| SkScalar stop = 0.f; |
| for (int i = 0; i < outColors; ++i) { |
| colors[i] = random->nextU(); |
| if (NULL != *stops) { |
| (*stops)[i] = stop; |
| stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; |
| } |
| } |
| *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount)); |
| |
| return outColors; |
| } |
| |
| #endif |