blob: cfc18e75ea96e212853cc567b427cd3aee5d0b6d [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGpuResourceCacheAccess_DEFINED
#define GrGpuResourceCacheAccess_DEFINED
#include "GrGpuResource.h"
#include "GrGpuResourcePriv.h"
namespace skiatest {
class Reporter;
}
/**
* This class allows GrResourceCache increased privileged access to GrGpuResource objects.
*/
class GrGpuResource::CacheAccess {
private:
/**
* Is the resource currently cached as scratch? This means it is cached, has a valid scratch
* key, and does not have a unique key.
*/
bool isScratch() const {
return !fResource->getUniqueKey().isValid() && fResource->fScratchKey.isValid() &&
SkBudgeted::kYes == fResource->resourcePriv().isBudgeted();
}
/**
* Called by the cache to delete the resource under normal circumstances.
*/
void release() {
fResource->release();
if (fResource->isPurgeable()) {
delete fResource;
}
}
/**
* Called by the cache to delete the resource when the backend 3D context is no longer valid.
*/
void abandon() {
fResource->abandon();
if (fResource->isPurgeable()) {
delete fResource;
}
}
/** Called by the cache to assign a new unique key. */
void setUniqueKey(const GrUniqueKey& key) { fResource->fUniqueKey = key; }
/** Called by the cache to make the unique key invalid. */
void removeUniqueKey() { fResource->fUniqueKey.reset(); }
uint32_t timestamp() const { return fResource->fTimestamp; }
void setTimestamp(uint32_t ts) { fResource->fTimestamp = ts; }
/** Called by the cache to record when this became purgeable. */
void setFlushCntWhenResourceBecamePurgeable(uint32_t cnt) {
SkASSERT(fResource->isPurgeable());
fResource->fExternalFlushCntWhenBecamePurgeable = cnt;
}
void setTimeWhenResourceBecomePurgeable() {
SkASSERT(fResource->isPurgeable());
fResource->fTimeWhenBecamePurgeable = GrStdSteadyClock::now();
}
/**
* Called by the cache to determine whether this resource has been puregable for more than
* a threshold number of external flushes.
*/
uint32_t flushCntWhenResourceBecamePurgeable() {
SkASSERT(fResource->isPurgeable());
return fResource->fExternalFlushCntWhenBecamePurgeable;
}
/**
* Called by the cache to determine whether this resource should be purged based on the length
* of time it has been available for purging.
*/
GrStdSteadyClock::time_point timeWhenResourceBecamePurgeable() {
SkASSERT(fResource->isPurgeable());
return fResource->fTimeWhenBecamePurgeable;
}
int* accessCacheIndex() const { return &fResource->fCacheArrayIndex; }
CacheAccess(GrGpuResource* resource) : fResource(resource) {}
CacheAccess(const CacheAccess& that) : fResource(that.fResource) {}
CacheAccess& operator=(const CacheAccess&); // unimpl
// No taking addresses of this type.
const CacheAccess* operator&() const;
CacheAccess* operator&();
GrGpuResource* fResource;
friend class GrGpuResource; // to construct/copy this type.
friend class GrResourceCache; // to use this type
friend void test_unbudgeted_to_scratch(skiatest::Reporter* reporter); // for unit testing
};
inline GrGpuResource::CacheAccess GrGpuResource::cacheAccess() { return CacheAccess(this); }
inline const GrGpuResource::CacheAccess GrGpuResource::cacheAccess() const {
return CacheAccess(const_cast<GrGpuResource*>(this));
}
#endif