| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrPath.h" |
| #include "GrStyle.h" |
| |
| namespace { |
| // Verb count limit for generating path key from content of a volatile path. |
| // The value should accomodate at least simple rects and rrects. |
| static const int kSimpleVolatilePathVerbLimit = 10; |
| |
| static inline int style_data_cnt(const GrStyle& style) { |
| int cnt = GrStyle::KeySize(style, GrStyle::Apply::kPathEffectAndStrokeRec); |
| // This should only fail for an arbitrary path effect, and we should not have gotten |
| // here with anything other than a dash path effect. |
| SkASSERT(cnt >= 0); |
| return cnt; |
| } |
| |
| static inline void write_style_key(uint32_t* dst, const GrStyle& style) { |
| // Pass 1 for the scale since the GPU will apply the style not GrStyle::applyToPath(). |
| GrStyle::WriteKey(dst, style, GrStyle::Apply::kPathEffectAndStrokeRec, SK_Scalar1); |
| } |
| |
| |
| inline static bool compute_key_for_line_path(const SkPath& path, const GrStyle& style, |
| GrUniqueKey* key) { |
| SkPoint pts[2]; |
| if (!path.isLine(pts)) { |
| return false; |
| } |
| static_assert((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t), |
| "pts_needs_padding"); |
| int styleDataCnt = style_data_cnt(style); |
| |
| const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t); |
| static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + styleDataCnt); |
| builder[0] = path.getFillType(); |
| memcpy(&builder[1], &pts, sizeof(pts)); |
| if (styleDataCnt > 0) { |
| write_style_key(&builder[kBaseData32Cnt], style); |
| } |
| return true; |
| } |
| |
| inline static bool compute_key_for_oval_path(const SkPath& path, const GrStyle& style, |
| GrUniqueKey* key) { |
| SkRect rect; |
| // Point order is significant when dashing, so we cannot devolve to a rect key. |
| if (style.pathEffect() || !path.isOval(&rect)) { |
| return false; |
| } |
| static_assert((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t), |
| "rect_needs_padding"); |
| |
| const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t); |
| int styleDataCnt = style_data_cnt(style); |
| static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + styleDataCnt); |
| builder[0] = path.getFillType(); |
| memcpy(&builder[1], &rect, sizeof(rect)); |
| if (styleDataCnt > 0) { |
| write_style_key(&builder[kBaseData32Cnt], style); |
| } |
| return true; |
| } |
| |
| // Encodes the full path data to the unique key for very small, volatile paths. This is typically |
| // hit when clipping stencils the clip stack. Intention is that this handles rects too, since |
| // SkPath::isRect seems to do non-trivial amount of work. |
| inline static bool compute_key_for_simple_path(const SkPath& path, const GrStyle& style, |
| GrUniqueKey* key) { |
| if (!path.isVolatile()) { |
| return false; |
| } |
| // The check below should take care of negative values casted positive. |
| const int verbCnt = path.countVerbs(); |
| if (verbCnt > kSimpleVolatilePathVerbLimit) { |
| return false; |
| } |
| |
| // If somebody goes wild with the constant, it might cause an overflow. |
| static_assert(kSimpleVolatilePathVerbLimit <= 100, |
| "big_simple_volatile_path_verb_limit_may_cause_overflow"); |
| |
| const int pointCnt = path.countPoints(); |
| if (pointCnt < 0) { |
| SkASSERT(false); |
| return false; |
| } |
| SkSTArray<16, SkScalar, true> conicWeights(16); |
| if ((path.getSegmentMasks() & SkPath::kConic_SegmentMask) != 0) { |
| SkPath::RawIter iter(path); |
| SkPath::Verb verb; |
| SkPoint points[4]; |
| while ((verb = iter.next(points)) != SkPath::kDone_Verb) { |
| if (verb == SkPath::kConic_Verb) { |
| conicWeights.push_back(iter.conicWeight()); |
| } |
| } |
| } |
| |
| const int conicWeightCnt = conicWeights.count(); |
| |
| // Construct counts that align as uint32_t counts. |
| #define ARRAY_DATA32_COUNT(array_type, count) \ |
| static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t))) |
| |
| const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt); |
| const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt); |
| const int conicWeightData32Cnt = ARRAY_DATA32_COUNT(SkScalar, conicWeightCnt); |
| |
| #undef ARRAY_DATA32_COUNT |
| |
| // The unique key data is a "message" with following fragments: |
| // 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt |
| // (fragment 0, fixed size) |
| // 1) verb, point data and conic weights (varying size) |
| // 2) stroke data (varying size) |
| |
| const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt + conicWeightData32Cnt; |
| const int styleDataCnt = style_data_cnt(style); |
| static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + styleDataCnt); |
| int i = 0; |
| builder[i++] = path.getFillType(); |
| |
| // Serialize the verbCnt to make the whole message unambiguous. |
| // We serialize two variable length fragments to the message: |
| // * verbs, point data and conic weights (fragment 1) |
| // * stroke data (fragment 2) |
| // "Proof:" |
| // Verb count establishes unambiguous verb data. |
| // Verbs encode also point data size and conic weight size. |
| // Thus the fragment 1 is unambiguous. |
| // Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message |
| // has been established. |
| |
| builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok. |
| |
| // Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be |
| // uninitialized. This does not produce ambiguous verb data, since we have serialized the exact |
| // verb count. |
| if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) { |
| builder[i + verbData32Cnt - 1] = 0; |
| } |
| path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt); |
| i += verbData32Cnt; |
| |
| static_assert(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t), |
| "skpoint_array_needs_padding"); |
| |
| // Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment. |
| path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt); |
| i += pointData32Cnt; |
| |
| if (conicWeightCnt > 0) { |
| if (conicWeightData32Cnt != static_cast<int>( |
| (conicWeightCnt * sizeof(SkScalar) / sizeof(uint32_t)))) { |
| builder[i + conicWeightData32Cnt - 1] = 0; |
| } |
| memcpy(&builder[i], conicWeights.begin(), conicWeightCnt * sizeof(SkScalar)); |
| SkDEBUGCODE(i += conicWeightData32Cnt); |
| } |
| SkASSERT(i == baseData32Cnt); |
| if (styleDataCnt > 0) { |
| write_style_key(&builder[baseData32Cnt], style); |
| } |
| return true; |
| } |
| |
| inline static void compute_key_for_general_path(const SkPath& path, const GrStyle& style, |
| GrUniqueKey* key) { |
| const int kBaseData32Cnt = 2; |
| int styleDataCnt = style_data_cnt(style); |
| static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + styleDataCnt); |
| builder[0] = path.getGenerationID(); |
| builder[1] = path.getFillType(); |
| if (styleDataCnt > 0) { |
| write_style_key(&builder[kBaseData32Cnt], style); |
| } |
| } |
| |
| } |
| |
| void GrPath::ComputeKey(const SkPath& path, const GrStyle& style, GrUniqueKey* key, |
| bool* outIsVolatile) { |
| if (compute_key_for_line_path(path, style, key)) { |
| *outIsVolatile = false; |
| return; |
| } |
| |
| if (compute_key_for_oval_path(path, style, key)) { |
| *outIsVolatile = false; |
| return; |
| } |
| |
| if (compute_key_for_simple_path(path, style, key)) { |
| *outIsVolatile = false; |
| return; |
| } |
| |
| compute_key_for_general_path(path, style, key); |
| *outIsVolatile = path.isVolatile(); |
| } |
| |
| #ifdef SK_DEBUG |
| bool GrPath::isEqualTo(const SkPath& path, const GrStyle& style) const { |
| // Since this is only called in debug we don't care about performance. |
| int cnt0 = GrStyle::KeySize(fStyle, GrStyle::Apply::kPathEffectAndStrokeRec); |
| int cnt1 = GrStyle::KeySize(style, GrStyle::Apply::kPathEffectAndStrokeRec); |
| if (cnt0 < 0 || cnt1 < 0 || cnt0 != cnt1) { |
| return false; |
| } |
| if (cnt0) { |
| SkAutoTArray<uint32_t> key0(cnt0); |
| SkAutoTArray<uint32_t> key1(cnt0); |
| write_style_key(key0.get(), fStyle); |
| write_style_key(key1.get(), style); |
| if (0 != memcmp(key0.get(), key1.get(), cnt0)) { |
| return false; |
| } |
| } |
| // We treat same-rect ovals as identical - but only when not dashing. |
| SkRect ovalBounds; |
| if (!fStyle.isDashed() && fSkPath.isOval(&ovalBounds)) { |
| SkRect otherOvalBounds; |
| return path.isOval(&otherOvalBounds) && ovalBounds == otherOvalBounds; |
| } |
| |
| return fSkPath == path; |
| } |
| #endif |