| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalEffect.h" |
| |
| #include "GrFragmentProcessor.h" |
| #include "GrInvariantOutput.h" |
| #include "SkRect.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleEffect : public GrFragmentProcessor { |
| public: |
| static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType, const SkPoint& center, |
| SkScalar radius); |
| |
| virtual ~CircleEffect() {}; |
| |
| const char* name() const override { return "Circle"; } |
| |
| const SkPoint& getCenter() const { return fCenter; } |
| SkScalar getRadius() const { return fRadius; } |
| |
| GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } |
| |
| private: |
| CircleEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar radius); |
| |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override; |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override; |
| |
| SkPoint fCenter; |
| SkScalar fRadius; |
| GrPrimitiveEdgeType fEdgeType; |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| sk_sp<GrFragmentProcessor> CircleEffect::Make(GrPrimitiveEdgeType edgeType, const SkPoint& center, |
| SkScalar radius) { |
| SkASSERT(radius >= 0); |
| return sk_sp<GrFragmentProcessor>(new CircleEffect(edgeType, center, radius)); |
| } |
| |
| void CircleEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| inout->mulByUnknownSingleComponent(); |
| } |
| |
| CircleEffect::CircleEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar r) |
| : fCenter(c) |
| , fRadius(r) |
| , fEdgeType(edgeType) { |
| this->initClassID<CircleEffect>(); |
| this->setWillReadFragmentPosition(); |
| } |
| |
| bool CircleEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| const CircleEffect& ce = other.cast<CircleEffect>(); |
| return fEdgeType == ce.fEdgeType && fCenter == ce.fCenter && fRadius == ce.fRadius; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleEffect); |
| |
| sk_sp<GrFragmentProcessor> CircleEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center; |
| center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f); |
| center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f); |
| SkScalar radius = d->fRandom->nextRangeF(0.f, 1000.f); |
| GrPrimitiveEdgeType et; |
| do { |
| et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); |
| } while (kHairlineAA_GrProcessorEdgeType == et); |
| return CircleEffect::Make(et, center, radius); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLCircleEffect : public GrGLSLFragmentProcessor { |
| public: |
| GLCircleEffect() : fPrevRadius(-1.0f) { } |
| |
| virtual void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fCircleUniform; |
| SkPoint fPrevCenter; |
| SkScalar fPrevRadius; |
| |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| void GLCircleEffect::emitCode(EmitArgs& args) { |
| const CircleEffect& ce = args.fFp.cast<CircleEffect>(); |
| const char *circleName; |
| // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular |
| // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills. |
| fCircleUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "circle", |
| &circleName); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| const char* fragmentPos = fragBuilder->fragmentPosition(); |
| |
| SkASSERT(kHairlineAA_GrProcessorEdgeType != ce.getEdgeType()); |
| // TODO: Right now the distance to circle caclulation is performed in a space normalized to the |
| // radius and then denormalized. This is to prevent overflow on devices that have a "real" |
| // mediump. It'd be nice to only to this on mediump devices but we currently don't have the |
| // caps here. |
| if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) { |
| fragBuilder->codeAppendf("float d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;", |
| circleName, fragmentPos, circleName, circleName); |
| } else { |
| fragBuilder->codeAppendf("float d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;", |
| circleName, fragmentPos, circleName, circleName); |
| } |
| if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) { |
| fragBuilder->codeAppend("d = clamp(d, 0.0, 1.0);"); |
| } else { |
| fragBuilder->codeAppend("d = d > 0.5 ? 1.0 : 0.0;"); |
| } |
| |
| fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, |
| (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str()); |
| } |
| |
| void GLCircleEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircleEffect& ce = processor.cast<CircleEffect>(); |
| b->add32(ce.getEdgeType()); |
| } |
| |
| void GLCircleEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| const CircleEffect& ce = processor.cast<CircleEffect>(); |
| if (ce.getRadius() != fPrevRadius || ce.getCenter() != fPrevCenter) { |
| SkScalar radius = ce.getRadius(); |
| if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) { |
| radius -= 0.5f; |
| } else { |
| radius += 0.5f; |
| } |
| pdman.set4f(fCircleUniform, ce.getCenter().fX, ce.getCenter().fY, radius, |
| SkScalarInvert(radius)); |
| fPrevCenter = ce.getCenter(); |
| fPrevRadius = ce.getRadius(); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void CircleEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLCircleEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* CircleEffect::onCreateGLSLInstance() const { |
| return new GLCircleEffect; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseEffect : public GrFragmentProcessor { |
| public: |
| static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType, const SkPoint& center, |
| SkScalar rx, SkScalar ry); |
| |
| virtual ~EllipseEffect() {}; |
| |
| const char* name() const override { return "Ellipse"; } |
| |
| const SkPoint& getCenter() const { return fCenter; } |
| SkVector getRadii() const { return fRadii; } |
| |
| GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } |
| |
| private: |
| EllipseEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar rx, SkScalar ry); |
| |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; |
| |
| void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override; |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override; |
| |
| SkPoint fCenter; |
| SkVector fRadii; |
| GrPrimitiveEdgeType fEdgeType; |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| sk_sp<GrFragmentProcessor> EllipseEffect::Make(GrPrimitiveEdgeType edgeType, |
| const SkPoint& center, |
| SkScalar rx, |
| SkScalar ry) { |
| SkASSERT(rx >= 0 && ry >= 0); |
| return sk_sp<GrFragmentProcessor>(new EllipseEffect(edgeType, center, rx, ry)); |
| } |
| |
| void EllipseEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| inout->mulByUnknownSingleComponent(); |
| } |
| |
| EllipseEffect::EllipseEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar rx, SkScalar ry) |
| : fCenter(c) |
| , fRadii(SkVector::Make(rx, ry)) |
| , fEdgeType(edgeType) { |
| this->initClassID<EllipseEffect>(); |
| this->setWillReadFragmentPosition(); |
| } |
| |
| bool EllipseEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| const EllipseEffect& ee = other.cast<EllipseEffect>(); |
| return fEdgeType == ee.fEdgeType && fCenter == ee.fCenter && fRadii == ee.fRadii; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipseEffect); |
| |
| sk_sp<GrFragmentProcessor> EllipseEffect::TestCreate(GrProcessorTestData* d) { |
| SkPoint center; |
| center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f); |
| center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f); |
| SkScalar rx = d->fRandom->nextRangeF(0.f, 1000.f); |
| SkScalar ry = d->fRandom->nextRangeF(0.f, 1000.f); |
| GrPrimitiveEdgeType et; |
| do { |
| et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); |
| } while (kHairlineAA_GrProcessorEdgeType == et); |
| return EllipseEffect::Make(et, center, rx, ry); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class GLEllipseEffect : public GrGLSLFragmentProcessor { |
| public: |
| GLEllipseEffect() { |
| fPrevRadii.fX = -1.0f; |
| } |
| |
| void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fEllipseUniform; |
| GrGLSLProgramDataManager::UniformHandle fScaleUniform; |
| SkPoint fPrevCenter; |
| SkVector fPrevRadii; |
| |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| void GLEllipseEffect::emitCode(EmitArgs& args) { |
| const EllipseEffect& ee = args.fFp.cast<EllipseEffect>(); |
| const char *ellipseName; |
| // The ellipse uniform is (center.x, center.y, 1 / rx^2, 1 / ry^2) |
| // The last two terms can underflow on mediump, so we use highp. |
| fEllipseUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kHigh_GrSLPrecision, |
| "ellipse", |
| &ellipseName); |
| // If we're on a device with a "real" mediump then we'll do the distance computation in a space |
| // that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The |
| // inverse squared radii uniform values are already in this normalized space. The center is |
| // not. |
| const char* scaleName = nullptr; |
| if (args.fGLSLCaps->floatPrecisionVaries()) { |
| fScaleUniform = args.fUniformHandler->addUniform( |
| kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "scale", &scaleName); |
| } |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| const char* fragmentPos = fragBuilder->fragmentPosition(); |
| |
| // d is the offset to the ellipse center |
| fragBuilder->codeAppendf("vec2 d = %s.xy - %s.xy;", fragmentPos, ellipseName); |
| if (scaleName) { |
| fragBuilder->codeAppendf("d *= %s.y;", scaleName); |
| } |
| fragBuilder->codeAppendf("vec2 Z = d * %s.zw;", ellipseName); |
| // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| fragBuilder->codeAppend("float implicit = dot(Z, d) - 1.0;"); |
| // grad_dot is the squared length of the gradient of the implicit. |
| fragBuilder->codeAppendf("float grad_dot = 4.0 * dot(Z, Z);"); |
| // Avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppendf("float approx_dist = implicit * inversesqrt(grad_dot);"); |
| if (scaleName) { |
| fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName); |
| } |
| |
| switch (ee.getEdgeType()) { |
| case kFillAA_GrProcessorEdgeType: |
| fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);"); |
| break; |
| case kInverseFillAA_GrProcessorEdgeType: |
| fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);"); |
| break; |
| case kFillBW_GrProcessorEdgeType: |
| fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 0.0 : 1.0;"); |
| break; |
| case kInverseFillBW_GrProcessorEdgeType: |
| fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 1.0 : 0.0;"); |
| break; |
| case kHairlineAA_GrProcessorEdgeType: |
| SkFAIL("Hairline not expected here."); |
| } |
| |
| fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, |
| (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); |
| } |
| |
| void GLEllipseEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipseEffect& ee = effect.cast<EllipseEffect>(); |
| b->add32(ee.getEdgeType()); |
| } |
| |
| void GLEllipseEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& effect) { |
| const EllipseEffect& ee = effect.cast<EllipseEffect>(); |
| if (ee.getRadii() != fPrevRadii || ee.getCenter() != fPrevCenter) { |
| float invRXSqd; |
| float invRYSqd; |
| // If we're using a scale factor to work around precision issues, choose the larger radius |
| // as the scale factor. The inv radii need to be pre-adjusted by the scale factor. |
| if (fScaleUniform.isValid()) { |
| if (ee.getRadii().fX > ee.getRadii().fY) { |
| invRXSqd = 1.f; |
| invRYSqd = (ee.getRadii().fX * ee.getRadii().fX) / |
| (ee.getRadii().fY * ee.getRadii().fY); |
| pdman.set2f(fScaleUniform, ee.getRadii().fX, 1.f / ee.getRadii().fX); |
| } else { |
| invRXSqd = (ee.getRadii().fY * ee.getRadii().fY) / |
| (ee.getRadii().fX * ee.getRadii().fX); |
| invRYSqd = 1.f; |
| pdman.set2f(fScaleUniform, ee.getRadii().fY, 1.f / ee.getRadii().fY); |
| } |
| } else { |
| invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX); |
| invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY); |
| } |
| pdman.set4f(fEllipseUniform, ee.getCenter().fX, ee.getCenter().fY, invRXSqd, invRYSqd); |
| fPrevCenter = ee.getCenter(); |
| fPrevRadii = ee.getRadii(); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| void EllipseEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GLEllipseEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* EllipseEffect::onCreateGLSLInstance() const { |
| return new GLEllipseEffect; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<GrFragmentProcessor> GrOvalEffect::Make(GrPrimitiveEdgeType edgeType, const SkRect& oval) { |
| if (kHairlineAA_GrProcessorEdgeType == edgeType) { |
| return nullptr; |
| } |
| SkScalar w = oval.width(); |
| SkScalar h = oval.height(); |
| if (SkScalarNearlyEqual(w, h)) { |
| w /= 2; |
| return CircleEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + w), w); |
| } else { |
| w /= 2; |
| h /= 2; |
| return EllipseEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + h), w, h); |
| } |
| |
| return nullptr; |
| } |