blob: a288537d508665061739dcd2d251ada9cc064a81 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOvalEffect.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "SkRect.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
//////////////////////////////////////////////////////////////////////////////
class CircleEffect : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType, const SkPoint& center,
SkScalar radius);
virtual ~CircleEffect() {};
const char* name() const override { return "Circle"; }
const SkPoint& getCenter() const { return fCenter; }
SkScalar getRadius() const { return fRadius; }
GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
private:
CircleEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar radius);
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
SkPoint fCenter;
SkScalar fRadius;
GrPrimitiveEdgeType fEdgeType;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
sk_sp<GrFragmentProcessor> CircleEffect::Make(GrPrimitiveEdgeType edgeType, const SkPoint& center,
SkScalar radius) {
SkASSERT(radius >= 0);
return sk_sp<GrFragmentProcessor>(new CircleEffect(edgeType, center, radius));
}
void CircleEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
CircleEffect::CircleEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar r)
: fCenter(c)
, fRadius(r)
, fEdgeType(edgeType) {
this->initClassID<CircleEffect>();
this->setWillReadFragmentPosition();
}
bool CircleEffect::onIsEqual(const GrFragmentProcessor& other) const {
const CircleEffect& ce = other.cast<CircleEffect>();
return fEdgeType == ce.fEdgeType && fCenter == ce.fCenter && fRadius == ce.fRadius;
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleEffect);
sk_sp<GrFragmentProcessor> CircleEffect::TestCreate(GrProcessorTestData* d) {
SkPoint center;
center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f);
center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f);
SkScalar radius = d->fRandom->nextRangeF(0.f, 1000.f);
GrPrimitiveEdgeType et;
do {
et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt);
} while (kHairlineAA_GrProcessorEdgeType == et);
return CircleEffect::Make(et, center, radius);
}
//////////////////////////////////////////////////////////////////////////////
class GLCircleEffect : public GrGLSLFragmentProcessor {
public:
GLCircleEffect() : fPrevRadius(-1.0f) { }
virtual void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fCircleUniform;
SkPoint fPrevCenter;
SkScalar fPrevRadius;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GLCircleEffect::emitCode(EmitArgs& args) {
const CircleEffect& ce = args.fFp.cast<CircleEffect>();
const char *circleName;
// The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
// fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
fCircleUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"circle",
&circleName);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
SkASSERT(kHairlineAA_GrProcessorEdgeType != ce.getEdgeType());
// TODO: Right now the distance to circle caclulation is performed in a space normalized to the
// radius and then denormalized. This is to prevent overflow on devices that have a "real"
// mediump. It'd be nice to only to this on mediump devices but we currently don't have the
// caps here.
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
fragBuilder->codeAppendf("float d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;",
circleName, fragmentPos, circleName, circleName);
} else {
fragBuilder->codeAppendf("float d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;",
circleName, fragmentPos, circleName, circleName);
}
if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) {
fragBuilder->codeAppend("d = clamp(d, 0.0, 1.0);");
} else {
fragBuilder->codeAppend("d = d > 0.5 ? 1.0 : 0.0;");
}
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str());
}
void GLCircleEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const CircleEffect& ce = processor.cast<CircleEffect>();
b->add32(ce.getEdgeType());
}
void GLCircleEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& processor) {
const CircleEffect& ce = processor.cast<CircleEffect>();
if (ce.getRadius() != fPrevRadius || ce.getCenter() != fPrevCenter) {
SkScalar radius = ce.getRadius();
if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) {
radius -= 0.5f;
} else {
radius += 0.5f;
}
pdman.set4f(fCircleUniform, ce.getCenter().fX, ce.getCenter().fY, radius,
SkScalarInvert(radius));
fPrevCenter = ce.getCenter();
fPrevRadius = ce.getRadius();
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void CircleEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLCircleEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* CircleEffect::onCreateGLSLInstance() const {
return new GLCircleEffect;
}
//////////////////////////////////////////////////////////////////////////////
class EllipseEffect : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType, const SkPoint& center,
SkScalar rx, SkScalar ry);
virtual ~EllipseEffect() {};
const char* name() const override { return "Ellipse"; }
const SkPoint& getCenter() const { return fCenter; }
SkVector getRadii() const { return fRadii; }
GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; }
private:
EllipseEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar rx, SkScalar ry);
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
SkPoint fCenter;
SkVector fRadii;
GrPrimitiveEdgeType fEdgeType;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
sk_sp<GrFragmentProcessor> EllipseEffect::Make(GrPrimitiveEdgeType edgeType,
const SkPoint& center,
SkScalar rx,
SkScalar ry) {
SkASSERT(rx >= 0 && ry >= 0);
return sk_sp<GrFragmentProcessor>(new EllipseEffect(edgeType, center, rx, ry));
}
void EllipseEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
inout->mulByUnknownSingleComponent();
}
EllipseEffect::EllipseEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar rx, SkScalar ry)
: fCenter(c)
, fRadii(SkVector::Make(rx, ry))
, fEdgeType(edgeType) {
this->initClassID<EllipseEffect>();
this->setWillReadFragmentPosition();
}
bool EllipseEffect::onIsEqual(const GrFragmentProcessor& other) const {
const EllipseEffect& ee = other.cast<EllipseEffect>();
return fEdgeType == ee.fEdgeType && fCenter == ee.fCenter && fRadii == ee.fRadii;
}
//////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipseEffect);
sk_sp<GrFragmentProcessor> EllipseEffect::TestCreate(GrProcessorTestData* d) {
SkPoint center;
center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f);
center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f);
SkScalar rx = d->fRandom->nextRangeF(0.f, 1000.f);
SkScalar ry = d->fRandom->nextRangeF(0.f, 1000.f);
GrPrimitiveEdgeType et;
do {
et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt);
} while (kHairlineAA_GrProcessorEdgeType == et);
return EllipseEffect::Make(et, center, rx, ry);
}
//////////////////////////////////////////////////////////////////////////////
class GLEllipseEffect : public GrGLSLFragmentProcessor {
public:
GLEllipseEffect() {
fPrevRadii.fX = -1.0f;
}
void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fEllipseUniform;
GrGLSLProgramDataManager::UniformHandle fScaleUniform;
SkPoint fPrevCenter;
SkVector fPrevRadii;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GLEllipseEffect::emitCode(EmitArgs& args) {
const EllipseEffect& ee = args.fFp.cast<EllipseEffect>();
const char *ellipseName;
// The ellipse uniform is (center.x, center.y, 1 / rx^2, 1 / ry^2)
// The last two terms can underflow on mediump, so we use highp.
fEllipseUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kHigh_GrSLPrecision,
"ellipse",
&ellipseName);
// If we're on a device with a "real" mediump then we'll do the distance computation in a space
// that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The
// inverse squared radii uniform values are already in this normalized space. The center is
// not.
const char* scaleName = nullptr;
if (args.fGLSLCaps->floatPrecisionVaries()) {
fScaleUniform = args.fUniformHandler->addUniform(
kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision,
"scale", &scaleName);
}
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* fragmentPos = fragBuilder->fragmentPosition();
// d is the offset to the ellipse center
fragBuilder->codeAppendf("vec2 d = %s.xy - %s.xy;", fragmentPos, ellipseName);
if (scaleName) {
fragBuilder->codeAppendf("d *= %s.y;", scaleName);
}
fragBuilder->codeAppendf("vec2 Z = d * %s.zw;", ellipseName);
// implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
fragBuilder->codeAppend("float implicit = dot(Z, d) - 1.0;");
// grad_dot is the squared length of the gradient of the implicit.
fragBuilder->codeAppendf("float grad_dot = 4.0 * dot(Z, Z);");
// Avoid calling inversesqrt on zero.
fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fragBuilder->codeAppendf("float approx_dist = implicit * inversesqrt(grad_dot);");
if (scaleName) {
fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName);
}
switch (ee.getEdgeType()) {
case kFillAA_GrProcessorEdgeType:
fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);");
break;
case kInverseFillAA_GrProcessorEdgeType:
fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);");
break;
case kFillBW_GrProcessorEdgeType:
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 0.0 : 1.0;");
break;
case kInverseFillBW_GrProcessorEdgeType:
fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 1.0 : 0.0;");
break;
case kHairlineAA_GrProcessorEdgeType:
SkFAIL("Hairline not expected here.");
}
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor,
(GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str());
}
void GLEllipseEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const EllipseEffect& ee = effect.cast<EllipseEffect>();
b->add32(ee.getEdgeType());
}
void GLEllipseEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& effect) {
const EllipseEffect& ee = effect.cast<EllipseEffect>();
if (ee.getRadii() != fPrevRadii || ee.getCenter() != fPrevCenter) {
float invRXSqd;
float invRYSqd;
// If we're using a scale factor to work around precision issues, choose the larger radius
// as the scale factor. The inv radii need to be pre-adjusted by the scale factor.
if (fScaleUniform.isValid()) {
if (ee.getRadii().fX > ee.getRadii().fY) {
invRXSqd = 1.f;
invRYSqd = (ee.getRadii().fX * ee.getRadii().fX) /
(ee.getRadii().fY * ee.getRadii().fY);
pdman.set2f(fScaleUniform, ee.getRadii().fX, 1.f / ee.getRadii().fX);
} else {
invRXSqd = (ee.getRadii().fY * ee.getRadii().fY) /
(ee.getRadii().fX * ee.getRadii().fX);
invRYSqd = 1.f;
pdman.set2f(fScaleUniform, ee.getRadii().fY, 1.f / ee.getRadii().fY);
}
} else {
invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX);
invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY);
}
pdman.set4f(fEllipseUniform, ee.getCenter().fX, ee.getCenter().fY, invRXSqd, invRYSqd);
fPrevCenter = ee.getCenter();
fPrevRadii = ee.getRadii();
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void EllipseEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GLEllipseEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* EllipseEffect::onCreateGLSLInstance() const {
return new GLEllipseEffect;
}
//////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> GrOvalEffect::Make(GrPrimitiveEdgeType edgeType, const SkRect& oval) {
if (kHairlineAA_GrProcessorEdgeType == edgeType) {
return nullptr;
}
SkScalar w = oval.width();
SkScalar h = oval.height();
if (SkScalarNearlyEqual(w, h)) {
w /= 2;
return CircleEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + w), w);
} else {
w /= 2;
h /= 2;
return EllipseEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + h), w, h);
}
return nullptr;
}