blob: 822c480ef3fc44ee09aa104ccd50e57fd42b367c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAtlasTextContext.h"
#include "GrBatchFontCache.h"
#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
#include "GrBlurUtils.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawContext.h"
#include "GrDrawTarget.h"
#include "GrFontScaler.h"
#include "GrResourceProvider.h"
#include "GrStrokeInfo.h"
#include "GrTextBlobCache.h"
#include "GrTexturePriv.h"
#include "GrVertexBuffer.h"
#include "SkAutoKern.h"
#include "SkColorPriv.h"
#include "SkColorFilter.h"
#include "SkDistanceFieldGen.h"
#include "SkDraw.h"
#include "SkDrawFilter.h"
#include "SkDrawProcs.h"
#include "SkGlyphCache.h"
#include "SkGpuDevice.h"
#include "SkGr.h"
#include "SkPath.h"
#include "SkRTConf.h"
#include "SkStrokeRec.h"
#include "SkTextBlob.h"
#include "SkTextMapStateProc.h"
#include "batches/GrVertexBatch.h"
#include "effects/GrBitmapTextGeoProc.h"
#include "effects/GrDistanceFieldGeoProc.h"
namespace {
static const size_t kLCDTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16);
// position + local coord
static const size_t kColorTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16);
static const size_t kGrayTextVASize = sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16);
static const int kMinDFFontSize = 18;
static const int kSmallDFFontSize = 32;
static const int kSmallDFFontLimit = 32;
static const int kMediumDFFontSize = 72;
static const int kMediumDFFontLimit = 72;
static const int kLargeDFFontSize = 162;
#ifdef SK_BUILD_FOR_ANDROID
static const int kLargeDFFontLimit = 384;
#else
static const int kLargeDFFontLimit = 2 * kLargeDFFontSize;
#endif
SkDEBUGCODE(static const int kExpectedDistanceAdjustTableSize = 8;)
static const int kDistanceAdjustLumShift = 5;
static const int kVerticesPerGlyph = 4;
static const int kIndicesPerGlyph = 6;
static size_t get_vertex_stride(GrMaskFormat maskFormat) {
switch (maskFormat) {
case kA8_GrMaskFormat:
return kGrayTextVASize;
case kARGB_GrMaskFormat:
return kColorTextVASize;
default:
return kLCDTextVASize;
}
}
static size_t get_vertex_stride_df(GrMaskFormat maskFormat, bool useLCDText) {
SkASSERT(maskFormat == kA8_GrMaskFormat);
if (useLCDText) {
return kLCDTextVASize;
} else {
return kGrayTextVASize;
}
}
static inline GrColor skcolor_to_grcolor_nopremultiply(SkColor c) {
unsigned r = SkColorGetR(c);
unsigned g = SkColorGetG(c);
unsigned b = SkColorGetB(c);
return GrColorPackRGBA(r, g, b, 0xff);
}
};
GrAtlasTextContext::GrAtlasTextContext(GrContext* context, const SkSurfaceProps& surfaceProps)
: INHERITED(context, surfaceProps)
, fDistanceAdjustTable(new DistanceAdjustTable) {
// We overallocate vertices in our textblobs based on the assumption that A8 has the greatest
// vertexStride
static_assert(kGrayTextVASize >= kColorTextVASize && kGrayTextVASize >= kLCDTextVASize,
"vertex_attribute_changed");
fCurrStrike = nullptr;
fCache = context->getTextBlobCache();
}
void GrAtlasTextContext::DistanceAdjustTable::buildDistanceAdjustTable() {
// This is used for an approximation of the mask gamma hack, used by raster and bitmap
// text. The mask gamma hack is based off of guessing what the blend color is going to
// be, and adjusting the mask so that when run through the linear blend will
// produce the value closest to the desired result. However, in practice this means
// that the 'adjusted' mask is just increasing or decreasing the coverage of
// the mask depending on what it is thought it will blit against. For black (on
// assumed white) this means that coverages are decreased (on a curve). For white (on
// assumed black) this means that coverages are increased (on a a curve). At
// middle (perceptual) gray (which could be blit against anything) the coverages
// remain the same.
//
// The idea here is that instead of determining the initial (real) coverage and
// then adjusting that coverage, we determine an adjusted coverage directly by
// essentially manipulating the geometry (in this case, the distance to the glyph
// edge). So for black (on assumed white) this thins a bit; for white (on
// assumed black) this fake bolds the geometry a bit.
//
// The distance adjustment is calculated by determining the actual coverage value which
// when fed into in the mask gamma table gives us an 'adjusted coverage' value of 0.5. This
// actual coverage value (assuming it's between 0 and 1) corresponds to a distance from the
// actual edge. So by subtracting this distance adjustment and computing without the
// the coverage adjustment we should get 0.5 coverage at the same point.
//
// This has several implications:
// For non-gray lcd smoothed text, each subpixel essentially is using a
// slightly different geometry.
//
// For black (on assumed white) this may not cover some pixels which were
// previously covered; however those pixels would have been only slightly
// covered and that slight coverage would have been decreased anyway. Also, some pixels
// which were previously fully covered may no longer be fully covered.
//
// For white (on assumed black) this may cover some pixels which weren't
// previously covered at all.
int width, height;
size_t size;
#ifdef SK_GAMMA_CONTRAST
SkScalar contrast = SK_GAMMA_CONTRAST;
#else
SkScalar contrast = 0.5f;
#endif
SkScalar paintGamma = SK_GAMMA_EXPONENT;
SkScalar deviceGamma = SK_GAMMA_EXPONENT;
size = SkScalerContext::GetGammaLUTSize(contrast, paintGamma, deviceGamma,
&width, &height);
SkASSERT(kExpectedDistanceAdjustTableSize == height);
fTable = new SkScalar[height];
SkAutoTArray<uint8_t> data((int)size);
SkScalerContext::GetGammaLUTData(contrast, paintGamma, deviceGamma, data.get());
// find the inverse points where we cross 0.5
// binsearch might be better, but we only need to do this once on creation
for (int row = 0; row < height; ++row) {
uint8_t* rowPtr = data.get() + row*width;
for (int col = 0; col < width - 1; ++col) {
if (rowPtr[col] <= 127 && rowPtr[col + 1] >= 128) {
// compute point where a mask value will give us a result of 0.5
float interp = (127.5f - rowPtr[col]) / (rowPtr[col + 1] - rowPtr[col]);
float borderAlpha = (col + interp) / 255.f;
// compute t value for that alpha
// this is an approximate inverse for smoothstep()
float t = borderAlpha*(borderAlpha*(4.0f*borderAlpha - 6.0f) + 5.0f) / 3.0f;
// compute distance which gives us that t value
const float kDistanceFieldAAFactor = 0.65f; // should match SK_DistanceFieldAAFactor
float d = 2.0f*kDistanceFieldAAFactor*t - kDistanceFieldAAFactor;
fTable[row] = d;
break;
}
}
}
}
GrAtlasTextContext* GrAtlasTextContext::Create(GrContext* context,
const SkSurfaceProps& surfaceProps) {
return new GrAtlasTextContext(context, surfaceProps);
}
bool GrAtlasTextContext::canDraw(const GrRenderTarget*,
const GrClip&,
const GrPaint&,
const SkPaint& skPaint,
const SkMatrix& viewMatrix) {
return this->canDrawAsDistanceFields(skPaint, viewMatrix) ||
!SkDraw::ShouldDrawTextAsPaths(skPaint, viewMatrix);
}
GrColor GrAtlasTextContext::ComputeCanonicalColor(const SkPaint& paint, bool lcd) {
GrColor canonicalColor = paint.computeLuminanceColor();
if (lcd) {
// This is the correct computation, but there are tons of cases where LCD can be overridden.
// For now we just regenerate if any run in a textblob has LCD.
// TODO figure out where all of these overrides are and see if we can incorporate that logic
// at a higher level *OR* use sRGB
SkASSERT(false);
//canonicalColor = SkMaskGamma::CanonicalColor(canonicalColor);
} else {
// A8, though can have mixed BMP text but it shouldn't matter because BMP text won't have
// gamma corrected masks anyways, nor color
U8CPU lum = SkComputeLuminance(SkColorGetR(canonicalColor),
SkColorGetG(canonicalColor),
SkColorGetB(canonicalColor));
// reduce to our finite number of bits
canonicalColor = SkMaskGamma::CanonicalColor(SkColorSetRGB(lum, lum, lum));
}
return canonicalColor;
}
// TODO if this function ever shows up in profiling, then we can compute this value when the
// textblob is being built and cache it. However, for the time being textblobs mostly only have 1
// run so this is not a big deal to compute here.
bool GrAtlasTextContext::HasLCD(const SkTextBlob* blob) {
SkTextBlob::RunIterator it(blob);
for (; !it.done(); it.next()) {
if (it.isLCD()) {
return true;
}
}
return false;
}
bool GrAtlasTextContext::MustRegenerateBlob(SkScalar* outTransX, SkScalar* outTransY,
const GrAtlasTextBlob& blob, const SkPaint& paint,
GrColor color, const SkMaskFilter::BlurRec& blurRec,
const SkMatrix& viewMatrix, SkScalar x, SkScalar y) {
// If we have LCD text then our canonical color will be set to transparent, in this case we have
// to regenerate the blob on any color change
// We use the grPaint to get any color filter effects
if (blob.fKey.fCanonicalColor == SK_ColorTRANSPARENT &&
blob.fPaintColor != color) {
return true;
}
if (blob.fViewMatrix.hasPerspective() != viewMatrix.hasPerspective()) {
return true;
}
if (blob.fViewMatrix.hasPerspective() && !blob.fViewMatrix.cheapEqualTo(viewMatrix)) {
return true;
}
// We only cache one masked version
if (blob.fKey.fHasBlur &&
(blob.fBlurRec.fSigma != blurRec.fSigma ||
blob.fBlurRec.fStyle != blurRec.fStyle ||
blob.fBlurRec.fQuality != blurRec.fQuality)) {
return true;
}
// Similarly, we only cache one version for each style
if (blob.fKey.fStyle != SkPaint::kFill_Style &&
(blob.fStrokeInfo.fFrameWidth != paint.getStrokeWidth() ||
blob.fStrokeInfo.fMiterLimit != paint.getStrokeMiter() ||
blob.fStrokeInfo.fJoin != paint.getStrokeJoin())) {
return true;
}
// Mixed blobs must be regenerated. We could probably figure out a way to do integer scrolls
// for mixed blobs if this becomes an issue.
if (blob.hasBitmap() && blob.hasDistanceField()) {
// Identical viewmatrices and we can reuse in all cases
if (blob.fViewMatrix.cheapEqualTo(viewMatrix) && x == blob.fX && y == blob.fY) {
return false;
}
return true;
}
if (blob.hasBitmap()) {
if (blob.fViewMatrix.getScaleX() != viewMatrix.getScaleX() ||
blob.fViewMatrix.getScaleY() != viewMatrix.getScaleY() ||
blob.fViewMatrix.getSkewX() != viewMatrix.getSkewX() ||
blob.fViewMatrix.getSkewY() != viewMatrix.getSkewY()) {
return true;
}
// We can update the positions in the cachedtextblobs without regenerating the whole blob,
// but only for integer translations.
// This cool bit of math will determine the necessary translation to apply to the already
// generated vertex coordinates to move them to the correct position
SkScalar transX = viewMatrix.getTranslateX() +
viewMatrix.getScaleX() * (x - blob.fX) +
viewMatrix.getSkewX() * (y - blob.fY) -
blob.fViewMatrix.getTranslateX();
SkScalar transY = viewMatrix.getTranslateY() +
viewMatrix.getSkewY() * (x - blob.fX) +
viewMatrix.getScaleY() * (y - blob.fY) -
blob.fViewMatrix.getTranslateY();
if (!SkScalarIsInt(transX) || !SkScalarIsInt(transY) ) {
return true;
}
(*outTransX) = transX;
(*outTransY) = transY;
} else if (blob.hasDistanceField()) {
// A scale outside of [blob.fMaxMinScale, blob.fMinMaxScale] would result in a different
// distance field being generated, so we have to regenerate in those cases
SkScalar newMaxScale = viewMatrix.getMaxScale();
SkScalar oldMaxScale = blob.fViewMatrix.getMaxScale();
SkScalar scaleAdjust = newMaxScale / oldMaxScale;
if (scaleAdjust < blob.fMaxMinScale || scaleAdjust > blob.fMinMaxScale) {
return true;
}
(*outTransX) = x - blob.fX;
(*outTransY) = y - blob.fY;
}
// It is possible that a blob has neither distanceField nor bitmaptext. This is in the case
// when all of the runs inside the blob are drawn as paths. In this case, we always regenerate
// the blob anyways at flush time, so no need to regenerate explicitly
return false;
}
inline SkGlyphCache* GrAtlasTextContext::setupCache(GrAtlasTextBlob::Run* run,
const SkPaint& skPaint,
const SkMatrix* viewMatrix,
bool noGamma) {
skPaint.getScalerContextDescriptor(&run->fDescriptor, fSurfaceProps, viewMatrix, noGamma);
run->fTypeface.reset(SkSafeRef(skPaint.getTypeface()));
return SkGlyphCache::DetachCache(run->fTypeface, run->fDescriptor.getDesc());
}
void GrAtlasTextContext::drawTextBlob(GrDrawContext* dc, GrRenderTarget* rt,
const GrClip& clip, const SkPaint& skPaint,
const SkMatrix& viewMatrix, const SkTextBlob* blob,
SkScalar x, SkScalar y,
SkDrawFilter* drawFilter, const SkIRect& clipBounds) {
// If we have been abandoned, then don't draw
if (fContext->abandoned()) {
return;
}
SkAutoTUnref<GrAtlasTextBlob> cacheBlob;
SkMaskFilter::BlurRec blurRec;
GrAtlasTextBlob::Key key;
// It might be worth caching these things, but its not clear at this time
// TODO for animated mask filters, this will fill up our cache. We need a safeguard here
const SkMaskFilter* mf = skPaint.getMaskFilter();
bool canCache = !(skPaint.getPathEffect() ||
(mf && !mf->asABlur(&blurRec)) ||
drawFilter);
if (canCache) {
bool hasLCD = HasLCD(blob);
// We canonicalize all non-lcd draws to use kUnknown_SkPixelGeometry
SkPixelGeometry pixelGeometry = hasLCD ? fSurfaceProps.pixelGeometry() :
kUnknown_SkPixelGeometry;
// TODO we want to figure out a way to be able to use the canonical color on LCD text,
// see the note on ComputeCanonicalColor above. We pick a dummy value for LCD text to
// ensure we always match the same key
GrColor canonicalColor = hasLCD ? SK_ColorTRANSPARENT :
ComputeCanonicalColor(skPaint, hasLCD);
key.fPixelGeometry = pixelGeometry;
key.fUniqueID = blob->uniqueID();
key.fStyle = skPaint.getStyle();
key.fHasBlur = SkToBool(mf);
key.fCanonicalColor = canonicalColor;
cacheBlob.reset(SkSafeRef(fCache->find(key)));
}
SkIRect clipRect;
clip.getConservativeBounds(rt->width(), rt->height(), &clipRect);
SkScalar transX = 0.f;
SkScalar transY = 0.f;
// Though for the time being runs in the textblob can override the paint, they only touch font
// info.
GrPaint grPaint;
if (!SkPaint2GrPaint(fContext, rt, skPaint, viewMatrix, true, &grPaint)) {
return;
}
if (cacheBlob) {
if (MustRegenerateBlob(&transX, &transY, *cacheBlob, skPaint, grPaint.getColor(), blurRec,
viewMatrix, x, y)) {
// We have to remake the blob because changes may invalidate our masks.
// TODO we could probably get away reuse most of the time if the pointer is unique,
// but we'd have to clear the subrun information
fCache->remove(cacheBlob);
cacheBlob.reset(SkRef(fCache->createCachedBlob(blob, key, blurRec, skPaint,
kGrayTextVASize)));
this->regenerateTextBlob(cacheBlob, skPaint, grPaint.getColor(), viewMatrix,
blob, x, y, drawFilter, clipRect, rt, clip);
} else {
// If we can reuse the blob, then make sure we update the blob's viewmatrix, and x/y
// offsets. Note, we offset the vertex bounds right before flushing
cacheBlob->fViewMatrix = viewMatrix;
cacheBlob->fX = x;
cacheBlob->fY = y;
fCache->makeMRU(cacheBlob);
#ifdef CACHE_SANITY_CHECK
{
int glyphCount = 0;
int runCount = 0;
GrTextBlobCache::BlobGlyphCount(&glyphCount, &runCount, blob);
SkAutoTUnref<GrAtlasTextBlob> sanityBlob(fCache->createBlob(glyphCount, runCount,
kGrayTextVASize));
GrTextBlobCache::SetupCacheBlobKey(sanityBlob, key, blurRec, skPaint);
this->regenerateTextBlob(sanityBlob, skPaint, grPaint.getColor(), viewMatrix,
blob, x, y, drawFilter, clipRect, rt, clip);
GrAtlasTextBlob::AssertEqual(*sanityBlob, *cacheBlob);
}
#endif
}
} else {
if (canCache) {
cacheBlob.reset(SkRef(fCache->createCachedBlob(blob, key, blurRec, skPaint,
kGrayTextVASize)));
} else {
cacheBlob.reset(fCache->createBlob(blob, kGrayTextVASize));
}
this->regenerateTextBlob(cacheBlob, skPaint, grPaint.getColor(), viewMatrix,
blob, x, y, drawFilter, clipRect, rt, clip);
}
this->flush(blob, cacheBlob, dc, rt, skPaint, grPaint, drawFilter,
clip, viewMatrix, clipBounds, x, y, transX, transY);
}
inline bool GrAtlasTextContext::canDrawAsDistanceFields(const SkPaint& skPaint,
const SkMatrix& viewMatrix) {
// TODO: support perspective (need getMaxScale replacement)
if (viewMatrix.hasPerspective()) {
return false;
}
SkScalar maxScale = viewMatrix.getMaxScale();
SkScalar scaledTextSize = maxScale*skPaint.getTextSize();
// Hinted text looks far better at small resolutions
// Scaling up beyond 2x yields undesireable artifacts
if (scaledTextSize < kMinDFFontSize || scaledTextSize > kLargeDFFontLimit) {
return false;
}
bool useDFT = fSurfaceProps.isUseDeviceIndependentFonts();
#if SK_FORCE_DISTANCE_FIELD_TEXT
useDFT = true;
#endif
if (!useDFT && scaledTextSize < kLargeDFFontSize) {
return false;
}
// rasterizers and mask filters modify alpha, which doesn't
// translate well to distance
if (skPaint.getRasterizer() || skPaint.getMaskFilter() ||
!fContext->caps()->shaderCaps()->shaderDerivativeSupport()) {
return false;
}
// TODO: add some stroking support
if (skPaint.getStyle() != SkPaint::kFill_Style) {
return false;
}
return true;
}
void GrAtlasTextContext::regenerateTextBlob(GrAtlasTextBlob* cacheBlob,
const SkPaint& skPaint, GrColor color,
const SkMatrix& viewMatrix,
const SkTextBlob* blob, SkScalar x, SkScalar y,
SkDrawFilter* drawFilter, const SkIRect& clipRect,
GrRenderTarget* rt, const GrClip& clip) {
// The color here is the GrPaint color, and it is used to determine whether we
// have to regenerate LCD text blobs.
// We use this color vs the SkPaint color because it has the colorfilter applied.
cacheBlob->fPaintColor = color;
cacheBlob->fViewMatrix = viewMatrix;
cacheBlob->fX = x;
cacheBlob->fY = y;
// Regenerate textblob
SkPaint runPaint = skPaint;
SkTextBlob::RunIterator it(blob);
for (int run = 0; !it.done(); it.next(), run++) {
int glyphCount = it.glyphCount();
size_t textLen = glyphCount * sizeof(uint16_t);
const SkPoint& offset = it.offset();
// applyFontToPaint() always overwrites the exact same attributes,
// so it is safe to not re-seed the paint for this reason.
it.applyFontToPaint(&runPaint);
if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) {
// A false return from filter() means we should abort the current draw.
runPaint = skPaint;
continue;
}
runPaint.setFlags(FilterTextFlags(fSurfaceProps, runPaint));
// setup vertex / glyphIndex for the new run
if (run > 0) {
PerSubRunInfo& newRun = cacheBlob->fRuns[run].fSubRunInfo.back();
PerSubRunInfo& lastRun = cacheBlob->fRuns[run - 1].fSubRunInfo.back();
newRun.fVertexStartIndex = lastRun.fVertexEndIndex;
newRun.fVertexEndIndex = lastRun.fVertexEndIndex;
newRun.fGlyphStartIndex = lastRun.fGlyphEndIndex;
newRun.fGlyphEndIndex = lastRun.fGlyphEndIndex;
}
if (this->canDrawAsDistanceFields(runPaint, viewMatrix)) {
cacheBlob->setHasDistanceField();
SkPaint dfPaint = runPaint;
SkScalar textRatio;
this->initDistanceFieldPaint(cacheBlob, &dfPaint, &textRatio, viewMatrix);
Run& runIdx = cacheBlob->fRuns[run];
PerSubRunInfo& subRun = runIdx.fSubRunInfo.back();
subRun.fUseLCDText = runPaint.isLCDRenderText();
subRun.fDrawAsDistanceFields = true;
SkTDArray<char> fallbackTxt;
SkTDArray<SkScalar> fallbackPos;
SkPoint dfOffset;
int scalarsPerPosition = 2;
switch (it.positioning()) {
case SkTextBlob::kDefault_Positioning: {
this->internalDrawDFText(cacheBlob, run, dfPaint, color, viewMatrix,
(const char *)it.glyphs(), textLen,
x + offset.x(), y + offset.y(), clipRect, textRatio,
&fallbackTxt, &fallbackPos, &dfOffset, runPaint);
break;
}
case SkTextBlob::kHorizontal_Positioning: {
scalarsPerPosition = 1;
dfOffset = SkPoint::Make(x, y + offset.y());
this->internalDrawDFPosText(cacheBlob, run, dfPaint, color, viewMatrix,
(const char*)it.glyphs(), textLen, it.pos(),
scalarsPerPosition, dfOffset, clipRect, textRatio,
&fallbackTxt, &fallbackPos);
break;
}
case SkTextBlob::kFull_Positioning: {
dfOffset = SkPoint::Make(x, y);
this->internalDrawDFPosText(cacheBlob, run, dfPaint, color, viewMatrix,
(const char*)it.glyphs(), textLen, it.pos(),
scalarsPerPosition, dfOffset, clipRect, textRatio,
&fallbackTxt, &fallbackPos);
break;
}
}
if (fallbackTxt.count()) {
this->fallbackDrawPosText(cacheBlob, run, rt, clip, color, runPaint, viewMatrix,
fallbackTxt, fallbackPos, scalarsPerPosition, dfOffset,
clipRect);
}
} else if (SkDraw::ShouldDrawTextAsPaths(runPaint, viewMatrix)) {
cacheBlob->fRuns[run].fDrawAsPaths = true;
} else {
cacheBlob->setHasBitmap();
SkGlyphCache* cache = this->setupCache(&cacheBlob->fRuns[run], runPaint, &viewMatrix,
false);
switch (it.positioning()) {
case SkTextBlob::kDefault_Positioning:
this->internalDrawBMPText(cacheBlob, run, cache, runPaint, color, viewMatrix,
(const char *)it.glyphs(), textLen,
x + offset.x(), y + offset.y(), clipRect);
break;
case SkTextBlob::kHorizontal_Positioning:
this->internalDrawBMPPosText(cacheBlob, run, cache, runPaint, color, viewMatrix,
(const char*)it.glyphs(), textLen, it.pos(), 1,
SkPoint::Make(x, y + offset.y()), clipRect);
break;
case SkTextBlob::kFull_Positioning:
this->internalDrawBMPPosText(cacheBlob, run, cache, runPaint, color, viewMatrix,
(const char*)it.glyphs(), textLen, it.pos(), 2,
SkPoint::Make(x, y), clipRect);
break;
}
SkGlyphCache::AttachCache(cache);
}
if (drawFilter) {
// A draw filter may change the paint arbitrarily, so we must re-seed in this case.
runPaint = skPaint;
}
}
}
inline void GrAtlasTextContext::initDistanceFieldPaint(GrAtlasTextBlob* blob,
SkPaint* skPaint,
SkScalar* textRatio,
const SkMatrix& viewMatrix) {
// getMaxScale doesn't support perspective, so neither do we at the moment
SkASSERT(!viewMatrix.hasPerspective());
SkScalar maxScale = viewMatrix.getMaxScale();
SkScalar textSize = skPaint->getTextSize();
SkScalar scaledTextSize = textSize;
// if we have non-unity scale, we need to choose our base text size
// based on the SkPaint's text size multiplied by the max scale factor
// TODO: do we need to do this if we're scaling down (i.e. maxScale < 1)?
if (maxScale > 0 && !SkScalarNearlyEqual(maxScale, SK_Scalar1)) {
scaledTextSize *= maxScale;
}
// We have three sizes of distance field text, and within each size 'bucket' there is a floor
// and ceiling. A scale outside of this range would require regenerating the distance fields
SkScalar dfMaskScaleFloor;
SkScalar dfMaskScaleCeil;
if (scaledTextSize <= kSmallDFFontLimit) {
dfMaskScaleFloor = kMinDFFontSize;
dfMaskScaleCeil = kSmallDFFontLimit;
*textRatio = textSize / kSmallDFFontSize;
skPaint->setTextSize(SkIntToScalar(kSmallDFFontSize));
} else if (scaledTextSize <= kMediumDFFontLimit) {
dfMaskScaleFloor = kSmallDFFontLimit;
dfMaskScaleCeil = kMediumDFFontLimit;
*textRatio = textSize / kMediumDFFontSize;
skPaint->setTextSize(SkIntToScalar(kMediumDFFontSize));
} else {
dfMaskScaleFloor = kMediumDFFontLimit;
dfMaskScaleCeil = kLargeDFFontLimit;
*textRatio = textSize / kLargeDFFontSize;
skPaint->setTextSize(SkIntToScalar(kLargeDFFontSize));
}
// Because there can be multiple runs in the blob, we want the overall maxMinScale, and
// minMaxScale to make regeneration decisions. Specifically, we want the maximum minimum scale
// we can tolerate before we'd drop to a lower mip size, and the minimum maximum scale we can
// tolerate before we'd have to move to a large mip size. When we actually test these values
// we look at the delta in scale between the new viewmatrix and the old viewmatrix, and test
// against these values to decide if we can reuse or not(ie, will a given scale change our mip
// level)
SkASSERT(dfMaskScaleFloor <= scaledTextSize && scaledTextSize <= dfMaskScaleCeil);
blob->fMaxMinScale = SkMaxScalar(dfMaskScaleFloor / scaledTextSize, blob->fMaxMinScale);
blob->fMinMaxScale = SkMinScalar(dfMaskScaleCeil / scaledTextSize, blob->fMinMaxScale);
skPaint->setLCDRenderText(false);
skPaint->setAutohinted(false);
skPaint->setHinting(SkPaint::kNormal_Hinting);
skPaint->setSubpixelText(true);
}
inline void GrAtlasTextContext::fallbackDrawPosText(GrAtlasTextBlob* blob,
int runIndex,
GrRenderTarget* rt, const GrClip& clip,
GrColor color,
const SkPaint& skPaint,
const SkMatrix& viewMatrix,
const SkTDArray<char>& fallbackTxt,
const SkTDArray<SkScalar>& fallbackPos,
int scalarsPerPosition,
const SkPoint& offset,
const SkIRect& clipRect) {
SkASSERT(fallbackTxt.count());
blob->setHasBitmap();
Run& run = blob->fRuns[runIndex];
// Push back a new subrun to fill and set the override descriptor
run.push_back();
run.fOverrideDescriptor.reset(new SkAutoDescriptor);
skPaint.getScalerContextDescriptor(run.fOverrideDescriptor,
fSurfaceProps, &viewMatrix, false);
SkGlyphCache* cache = SkGlyphCache::DetachCache(run.fTypeface,
run.fOverrideDescriptor->getDesc());
this->internalDrawBMPPosText(blob, runIndex, cache, skPaint, color, viewMatrix,
fallbackTxt.begin(), fallbackTxt.count(),
fallbackPos.begin(), scalarsPerPosition, offset, clipRect);
SkGlyphCache::AttachCache(cache);
}
inline GrAtlasTextBlob*
GrAtlasTextContext::setupDFBlob(int glyphCount, const SkPaint& origPaint,
const SkMatrix& viewMatrix, SkPaint* dfPaint,
SkScalar* textRatio) {
GrAtlasTextBlob* blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize);
*dfPaint = origPaint;
this->initDistanceFieldPaint(blob, dfPaint, textRatio, viewMatrix);
blob->fViewMatrix = viewMatrix;
Run& run = blob->fRuns[0];
PerSubRunInfo& subRun = run.fSubRunInfo.back();
subRun.fUseLCDText = origPaint.isLCDRenderText();
subRun.fDrawAsDistanceFields = true;
return blob;
}
inline GrAtlasTextBlob*
GrAtlasTextContext::createDrawTextBlob(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint, const SkPaint& skPaint,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y, const SkIRect& regionClipBounds) {
int glyphCount = skPaint.countText(text, byteLength);
SkIRect clipRect;
clip.getConservativeBounds(rt->width(), rt->height(), &clipRect);
GrAtlasTextBlob* blob;
if (this->canDrawAsDistanceFields(skPaint, viewMatrix)) {
SkPaint dfPaint;
SkScalar textRatio;
blob = this->setupDFBlob(glyphCount, skPaint, viewMatrix, &dfPaint, &textRatio);
SkTDArray<char> fallbackTxt;
SkTDArray<SkScalar> fallbackPos;
SkPoint offset;
this->internalDrawDFText(blob, 0, dfPaint, paint.getColor(), viewMatrix, text,
byteLength, x, y, clipRect, textRatio, &fallbackTxt, &fallbackPos,
&offset, skPaint);
if (fallbackTxt.count()) {
this->fallbackDrawPosText(blob, 0, rt, clip, paint.getColor(), skPaint, viewMatrix,
fallbackTxt, fallbackPos, 2, offset, clipRect);
}
} else {
blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize);
blob->fViewMatrix = viewMatrix;
SkGlyphCache* cache = this->setupCache(&blob->fRuns[0], skPaint, &viewMatrix, false);
this->internalDrawBMPText(blob, 0, cache, skPaint, paint.getColor(), viewMatrix, text,
byteLength, x, y, clipRect);
SkGlyphCache::AttachCache(cache);
}
return blob;
}
inline GrAtlasTextBlob*
GrAtlasTextContext::createDrawPosTextBlob(GrRenderTarget* rt, const GrClip& clip,
const GrPaint& paint, const SkPaint& skPaint,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset, const SkIRect& regionClipBounds) {
int glyphCount = skPaint.countText(text, byteLength);
SkIRect clipRect;
clip.getConservativeBounds(rt->width(), rt->height(), &clipRect);
GrAtlasTextBlob* blob;
if (this->canDrawAsDistanceFields(skPaint, viewMatrix)) {
SkPaint dfPaint;
SkScalar textRatio;
blob = this->setupDFBlob(glyphCount, skPaint, viewMatrix, &dfPaint, &textRatio);
SkTDArray<char> fallbackTxt;
SkTDArray<SkScalar> fallbackPos;
this->internalDrawDFPosText(blob, 0, dfPaint, paint.getColor(), viewMatrix, text,
byteLength, pos, scalarsPerPosition, offset, clipRect,
textRatio, &fallbackTxt, &fallbackPos);
if (fallbackTxt.count()) {
this->fallbackDrawPosText(blob, 0, rt, clip, paint.getColor(), skPaint, viewMatrix,
fallbackTxt, fallbackPos, scalarsPerPosition, offset,
clipRect);
}
} else {
blob = fCache->createBlob(glyphCount, 1, kGrayTextVASize);
blob->fViewMatrix = viewMatrix;
SkGlyphCache* cache = this->setupCache(&blob->fRuns[0], skPaint, &viewMatrix, false);
this->internalDrawBMPPosText(blob, 0, cache, skPaint, paint.getColor(), viewMatrix, text,
byteLength, pos, scalarsPerPosition, offset, clipRect);
SkGlyphCache::AttachCache(cache);
}
return blob;
}
void GrAtlasTextContext::onDrawText(GrDrawContext* dc, GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint, const SkPaint& skPaint,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y, const SkIRect& regionClipBounds) {
SkAutoTUnref<GrAtlasTextBlob> blob(
this->createDrawTextBlob(rt, clip, paint, skPaint, viewMatrix,
text, byteLength, x, y, regionClipBounds));
this->flush(blob, dc, rt, skPaint, paint, clip, regionClipBounds);
}
void GrAtlasTextContext::onDrawPosText(GrDrawContext* dc, GrRenderTarget* rt,
const GrClip& clip,
const GrPaint& paint, const SkPaint& skPaint,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset, const SkIRect& regionClipBounds) {
SkAutoTUnref<GrAtlasTextBlob> blob(
this->createDrawPosTextBlob(rt, clip, paint, skPaint, viewMatrix,
text, byteLength,
pos, scalarsPerPosition,
offset, regionClipBounds));
this->flush(blob, dc, rt, skPaint, paint, clip, regionClipBounds);
}
void GrAtlasTextContext::internalDrawBMPText(GrAtlasTextBlob* blob, int runIndex,
SkGlyphCache* cache, const SkPaint& skPaint,
GrColor color,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y, const SkIRect& clipRect) {
SkASSERT(byteLength == 0 || text != nullptr);
// nothing to draw
if (text == nullptr || byteLength == 0) {
return;
}
fCurrStrike = nullptr;
SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc();
// Get GrFontScaler from cache
GrFontScaler* fontScaler = GetGrFontScaler(cache);
// transform our starting point
{
SkPoint loc;
viewMatrix.mapXY(x, y, &loc);
x = loc.fX;
y = loc.fY;
}
// need to measure first
if (skPaint.getTextAlign() != SkPaint::kLeft_Align) {
SkVector stopVector;
MeasureText(cache, glyphCacheProc, text, byteLength, &stopVector);
SkScalar stopX = stopVector.fX;
SkScalar stopY = stopVector.fY;
if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
stopX = SkScalarHalf(stopX);
stopY = SkScalarHalf(stopY);
}
x -= stopX;
y -= stopY;
}
const char* stop = text + byteLength;
SkAutoKern autokern;
SkFixed fxMask = ~0;
SkFixed fyMask = ~0;
SkScalar halfSampleX, halfSampleY;
if (cache->isSubpixel()) {
halfSampleX = halfSampleY = SkFixedToScalar(SkGlyph::kSubpixelRound);
SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(viewMatrix);
if (kX_SkAxisAlignment == baseline) {
fyMask = 0;
halfSampleY = SK_ScalarHalf;
} else if (kY_SkAxisAlignment == baseline) {
fxMask = 0;
halfSampleX = SK_ScalarHalf;
}
} else {
halfSampleX = halfSampleY = SK_ScalarHalf;
}
Sk48Dot16 fx = SkScalarTo48Dot16(x + halfSampleX);
Sk48Dot16 fy = SkScalarTo48Dot16(y + halfSampleY);
while (text < stop) {
const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask);
fx += autokern.adjust(glyph);
if (glyph.fWidth) {
this->bmpAppendGlyph(blob,
runIndex,
glyph,
Sk48Dot16FloorToInt(fx),
Sk48Dot16FloorToInt(fy),
color,
fontScaler,
clipRect);
}
fx += glyph.fAdvanceX;
fy += glyph.fAdvanceY;
}
}
void GrAtlasTextContext::internalDrawBMPPosText(GrAtlasTextBlob* blob, int runIndex,
SkGlyphCache* cache, const SkPaint& skPaint,
GrColor color,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset, const SkIRect& clipRect) {
SkASSERT(byteLength == 0 || text != nullptr);
SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition);
// nothing to draw
if (text == nullptr || byteLength == 0) {
return;
}
fCurrStrike = nullptr;
SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc();
// Get GrFontScaler from cache
GrFontScaler* fontScaler = GetGrFontScaler(cache);
const char* stop = text + byteLength;
SkTextAlignProc alignProc(skPaint.getTextAlign());
SkTextMapStateProc tmsProc(viewMatrix, offset, scalarsPerPosition);
if (cache->isSubpixel()) {
// maybe we should skip the rounding if linearText is set
SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(viewMatrix);
SkFixed fxMask = ~0;
SkFixed fyMask = ~0;
SkScalar halfSampleX = SkFixedToScalar(SkGlyph::kSubpixelRound);
SkScalar halfSampleY = SkFixedToScalar(SkGlyph::kSubpixelRound);
if (kX_SkAxisAlignment == baseline) {
fyMask = 0;
halfSampleY = SK_ScalarHalf;
} else if (kY_SkAxisAlignment == baseline) {
fxMask = 0;
halfSampleX = SK_ScalarHalf;
}
if (SkPaint::kLeft_Align == skPaint.getTextAlign()) {
while (text < stop) {
SkPoint tmsLoc;
tmsProc(pos, &tmsLoc);
Sk48Dot16 fx = SkScalarTo48Dot16(tmsLoc.fX + halfSampleX);
Sk48Dot16 fy = SkScalarTo48Dot16(tmsLoc.fY + halfSampleY);
const SkGlyph& glyph = glyphCacheProc(cache, &text,
fx & fxMask, fy & fyMask);
if (glyph.fWidth) {
this->bmpAppendGlyph(blob,
runIndex,
glyph,
Sk48Dot16FloorToInt(fx),
Sk48Dot16FloorToInt(fy),
color,
fontScaler,
clipRect);
}
pos += scalarsPerPosition;
}
} else {
while (text < stop) {
const char* currentText = text;
const SkGlyph& metricGlyph = glyphCacheProc(cache, &text, 0, 0);
if (metricGlyph.fWidth) {
SkDEBUGCODE(SkFixed prevAdvX = metricGlyph.fAdvanceX;)
SkDEBUGCODE(SkFixed prevAdvY = metricGlyph.fAdvanceY;)
SkPoint tmsLoc;
tmsProc(pos, &tmsLoc);
SkPoint alignLoc;
alignProc(tmsLoc, metricGlyph, &alignLoc);
Sk48Dot16 fx = SkScalarTo48Dot16(alignLoc.fX + halfSampleX);
Sk48Dot16 fy = SkScalarTo48Dot16(alignLoc.fY + halfSampleY);
// have to call again, now that we've been "aligned"
const SkGlyph& glyph = glyphCacheProc(cache, &currentText,
fx & fxMask, fy & fyMask);
// the assumption is that the metrics haven't changed
SkASSERT(prevAdvX == glyph.fAdvanceX);
SkASSERT(prevAdvY == glyph.fAdvanceY);
SkASSERT(glyph.fWidth);
this->bmpAppendGlyph(blob,
runIndex,
glyph,
Sk48Dot16FloorToInt(fx),
Sk48Dot16FloorToInt(fy),
color,
fontScaler,
clipRect);
}
pos += scalarsPerPosition;
}
}
} else { // not subpixel
if (SkPaint::kLeft_Align == skPaint.getTextAlign()) {
while (text < stop) {
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkPoint tmsLoc;
tmsProc(pos, &tmsLoc);
Sk48Dot16 fx = SkScalarTo48Dot16(tmsLoc.fX + SK_ScalarHalf); //halfSampleX;
Sk48Dot16 fy = SkScalarTo48Dot16(tmsLoc.fY + SK_ScalarHalf); //halfSampleY;
this->bmpAppendGlyph(blob,
runIndex,
glyph,
Sk48Dot16FloorToInt(fx),
Sk48Dot16FloorToInt(fy),
color,
fontScaler,
clipRect);
}
pos += scalarsPerPosition;
}
} else {
while (text < stop) {
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkPoint tmsLoc;
tmsProc(pos, &tmsLoc);
SkPoint alignLoc;
alignProc(tmsLoc, glyph, &alignLoc);
Sk48Dot16 fx = SkScalarTo48Dot16(alignLoc.fX + SK_ScalarHalf); //halfSampleX;
Sk48Dot16 fy = SkScalarTo48Dot16(alignLoc.fY + SK_ScalarHalf); //halfSampleY;
this->bmpAppendGlyph(blob,
runIndex,
glyph,
Sk48Dot16FloorToInt(fx),
Sk48Dot16FloorToInt(fy),
color,
fontScaler,
clipRect);
}
pos += scalarsPerPosition;
}
}
}
}
void GrAtlasTextContext::internalDrawDFText(GrAtlasTextBlob* blob, int runIndex,
const SkPaint& skPaint, GrColor color,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
SkScalar x, SkScalar y, const SkIRect& clipRect,
SkScalar textRatio,
SkTDArray<char>* fallbackTxt,
SkTDArray<SkScalar>* fallbackPos,
SkPoint* offset,
const SkPaint& origPaint) {
SkASSERT(byteLength == 0 || text != nullptr);
// nothing to draw
if (text == nullptr || byteLength == 0) {
return;
}
SkDrawCacheProc glyphCacheProc = origPaint.getDrawCacheProc();
SkAutoDescriptor desc;
origPaint.getScalerContextDescriptor(&desc, fSurfaceProps, nullptr, true);
SkGlyphCache* origPaintCache = SkGlyphCache::DetachCache(origPaint.getTypeface(),
desc.getDesc());
SkTArray<SkScalar> positions;
const char* textPtr = text;
SkFixed stopX = 0;
SkFixed stopY = 0;
SkFixed origin = 0;
switch (origPaint.getTextAlign()) {
case SkPaint::kRight_Align: origin = SK_Fixed1; break;
case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
case SkPaint::kLeft_Align: origin = 0; break;
}
SkAutoKern autokern;
const char* stop = text + byteLength;
while (textPtr < stop) {
// don't need x, y here, since all subpixel variants will have the
// same advance
const SkGlyph& glyph = glyphCacheProc(origPaintCache, &textPtr, 0, 0);
SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));
SkFixed height = glyph.fAdvanceY;
positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));
stopX += width;
stopY += height;
}
SkASSERT(textPtr == stop);
SkGlyphCache::AttachCache(origPaintCache);
// now adjust starting point depending on alignment
SkScalar alignX = SkFixedToScalar(stopX);
SkScalar alignY = SkFixedToScalar(stopY);
if (origPaint.getTextAlign() == SkPaint::kCenter_Align) {
alignX = SkScalarHalf(alignX);
alignY = SkScalarHalf(alignY);
} else if (origPaint.getTextAlign() == SkPaint::kLeft_Align) {
alignX = 0;
alignY = 0;
}
x -= alignX;
y -= alignY;
*offset = SkPoint::Make(x, y);
this->internalDrawDFPosText(blob, runIndex, skPaint, color, viewMatrix, text, byteLength,
positions.begin(), 2, *offset, clipRect, textRatio, fallbackTxt,
fallbackPos);
}
void GrAtlasTextContext::internalDrawDFPosText(GrAtlasTextBlob* blob, int runIndex,
const SkPaint& skPaint, GrColor color,
const SkMatrix& viewMatrix,
const char text[], size_t byteLength,
const SkScalar pos[], int scalarsPerPosition,
const SkPoint& offset, const SkIRect& clipRect,
SkScalar textRatio,
SkTDArray<char>* fallbackTxt,
SkTDArray<SkScalar>* fallbackPos) {
SkASSERT(byteLength == 0 || text != nullptr);
SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition);
// nothing to draw
if (text == nullptr || byteLength == 0) {
return;
}
fCurrStrike = nullptr;
SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc();
SkGlyphCache* cache = this->setupCache(&blob->fRuns[runIndex], skPaint, nullptr, true);
GrFontScaler* fontScaler = GetGrFontScaler(cache);
const char* stop = text + byteLength;
if (SkPaint::kLeft_Align == skPaint.getTextAlign()) {
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
if (!this->dfAppendGlyph(blob,
runIndex,
glyph,
x, y, color, fontScaler, clipRect,
textRatio, viewMatrix)) {
// couldn't append, send to fallback
fallbackTxt->append(SkToInt(text-lastText), lastText);
*fallbackPos->append() = pos[0];
if (2 == scalarsPerPosition) {
*fallbackPos->append() = pos[1];
}
}
}
pos += scalarsPerPosition;
}
} else {
SkScalar alignMul = SkPaint::kCenter_Align == skPaint.getTextAlign() ? SK_ScalarHalf
: SK_Scalar1;
while (text < stop) {
const char* lastText = text;
// the last 2 parameters are ignored
const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0);
if (glyph.fWidth) {
SkScalar x = offset.x() + pos[0];
SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0);
SkScalar advanceX = SkFixedToScalar(glyph.fAdvanceX) * alignMul * textRatio;
SkScalar advanceY = SkFixedToScalar(glyph.fAdvanceY) * alignMul * textRatio;
if (!this->dfAppendGlyph(blob,
runIndex,
glyph,
x - advanceX, y - advanceY, color,
fontScaler,
clipRect,
textRatio,
viewMatrix)) {
// couldn't append, send to fallback
fallbackTxt->append(SkToInt(text-lastText), lastText);
*fallbackPos->append() = pos[0];
if (2 == scalarsPerPosition) {
*fallbackPos->append() = pos[1];
}
}
}
pos += scalarsPerPosition;
}
}
SkGlyphCache::AttachCache(cache);
}
void GrAtlasTextContext::bmpAppendGlyph(GrAtlasTextBlob* blob, int runIndex,
const SkGlyph& skGlyph,
int vx, int vy, GrColor color, GrFontScaler* scaler,
const SkIRect& clipRect) {
Run& run = blob->fRuns[runIndex];
if (!fCurrStrike) {
fCurrStrike = fContext->getBatchFontCache()->getStrike(scaler);
}
GrGlyph::PackedID id = GrGlyph::Pack(skGlyph.getGlyphID(),
skGlyph.getSubXFixed(),
skGlyph.getSubYFixed(),
GrGlyph::kCoverage_MaskStyle);
GrGlyph* glyph = fCurrStrike->getGlyph(skGlyph, id, scaler);
if (!glyph) {
return;
}
int x = vx + glyph->fBounds.fLeft;
int y = vy + glyph->fBounds.fTop;
// keep them as ints until we've done the clip-test
int width = glyph->fBounds.width();
int height = glyph->fBounds.height();
#if 0
// Not checking the clip bounds might introduce a performance regression. However, its not
// clear if this is still true today with the larger tiles we use in Chrome. For repositionable
// blobs, we want to make sure we have all of the glyphs, so clipping them out is not ideal.
// We could store the cliprect in the key, but then we'd lose the ability to do integer scrolls
// TODO verify this
// check if we clipped out
if (clipRect.quickReject(x, y, x + width, y + height)) {
return;
}
#endif
// If the glyph is too large we fall back to paths
if (glyph->fTooLargeForAtlas) {
this->appendGlyphPath(blob, glyph, scaler, skGlyph, SkIntToScalar(vx), SkIntToScalar(vy));
return;
}
GrMaskFormat format = glyph->fMaskFormat;
PerSubRunInfo* subRun = &run.fSubRunInfo.back();
if (run.fInitialized && subRun->fMaskFormat != format) {
subRun = &run.push_back();
subRun->fStrike.reset(SkRef(fCurrStrike));
} else if (!run.fInitialized) {
subRun->fStrike.reset(SkRef(fCurrStrike));
}
run.fInitialized = true;
size_t vertexStride = get_vertex_stride(format);
SkRect r;
r.fLeft = SkIntToScalar(x);
r.fTop = SkIntToScalar(y);
r.fRight = r.fLeft + SkIntToScalar(width);
r.fBottom = r.fTop + SkIntToScalar(height);
subRun->fMaskFormat = format;
this->appendGlyphCommon(blob, &run, subRun, r, color, vertexStride, kA8_GrMaskFormat == format,
glyph);
}
bool GrAtlasTextContext::dfAppendGlyph(GrAtlasTextBlob* blob, int runIndex,
const SkGlyph& skGlyph,
SkScalar sx, SkScalar sy, GrColor color,
GrFontScaler* scaler,
const SkIRect& clipRect,
SkScalar textRatio, const SkMatrix& viewMatrix) {
Run& run = blob->fRuns[runIndex];
if (!fCurrStrike) {
fCurrStrike = fContext->getBatchFontCache()->getStrike(scaler);
}
GrGlyph::PackedID id = GrGlyph::Pack(skGlyph.getGlyphID(),
skGlyph.getSubXFixed(),
skGlyph.getSubYFixed(),
GrGlyph::kDistance_MaskStyle);
GrGlyph* glyph = fCurrStrike->getGlyph(skGlyph, id, scaler);
if (!glyph) {
return true;
}
// fallback to color glyph support
if (kA8_GrMaskFormat != glyph->fMaskFormat) {
return false;
}
SkScalar dx = SkIntToScalar(glyph->fBounds.fLeft + SK_DistanceFieldInset);
SkScalar dy = SkIntToScalar(glyph->fBounds.fTop + SK_DistanceFieldInset);
SkScalar width = SkIntToScalar(glyph->fBounds.width() - 2 * SK_DistanceFieldInset);
SkScalar height = SkIntToScalar(glyph->fBounds.height() - 2 * SK_DistanceFieldInset);
SkScalar scale = textRatio;
dx *= scale;
dy *= scale;
width *= scale;
height *= scale;
sx += dx;
sy += dy;
SkRect glyphRect = SkRect::MakeXYWH(sx, sy, width, height);
#if 0
// check if we clipped out
SkRect dstRect;
viewMatrix.mapRect(&dstRect, glyphRect);
if (clipRect.quickReject(SkScalarTruncToInt(dstRect.left()),
SkScalarTruncToInt(dstRect.top()),
SkScalarTruncToInt(dstRect.right()),
SkScalarTruncToInt(dstRect.bottom()))) {
return true;
}
#endif
// TODO combine with the above
// If the glyph is too large we fall back to paths
if (glyph->fTooLargeForAtlas) {
this->appendGlyphPath(blob, glyph, scaler, skGlyph, sx - dx, sy - dy, scale, true);
return true;
}
PerSubRunInfo* subRun = &run.fSubRunInfo.back();
if (!run.fInitialized) {
subRun->fStrike.reset(SkRef(fCurrStrike));
}
run.fInitialized = true;
SkASSERT(glyph->fMaskFormat == kA8_GrMaskFormat);
subRun->fMaskFormat = kA8_GrMaskFormat;
size_t vertexStride = get_vertex_stride_df(kA8_GrMaskFormat, subRun->fUseLCDText);
bool useColorVerts = !subRun->fUseLCDText;
this->appendGlyphCommon(blob, &run, subRun, glyphRect, color, vertexStride, useColorVerts,
glyph);
return true;
}
inline void GrAtlasTextContext::appendGlyphPath(GrAtlasTextBlob* blob, GrGlyph* glyph,
GrFontScaler* scaler, const SkGlyph& skGlyph,
SkScalar x, SkScalar y, SkScalar scale,
bool applyVM) {
if (nullptr == glyph->fPath) {
const SkPath* glyphPath = scaler->getGlyphPath(skGlyph);
if (!glyphPath) {
return;
}
glyph->fPath = new SkPath(*glyphPath);
}
blob->fBigGlyphs.push_back(GrAtlasTextBlob::BigGlyph(*glyph->fPath, x, y, scale, applyVM));
}
inline void GrAtlasTextContext::appendGlyphCommon(GrAtlasTextBlob* blob, Run* run,
Run::SubRunInfo* subRun,
const SkRect& positions, GrColor color,
size_t vertexStride, bool useVertexColor,
GrGlyph* glyph) {
blob->fGlyphs[subRun->fGlyphEndIndex] = glyph;
run->fVertexBounds.joinNonEmptyArg(positions);
run->fColor = color;
intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices + subRun->fVertexEndIndex);
if (useVertexColor) {
// V0
SkPoint* position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fTop);
SkColor* colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V1
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fBottom);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V2
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fBottom);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
vertex += vertexStride;
// V3
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fTop);
colorPtr = reinterpret_cast<SkColor*>(vertex + sizeof(SkPoint));
*colorPtr = color;
} else {
// V0
SkPoint* position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fTop);
vertex += vertexStride;
// V1
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fLeft, positions.fBottom);
vertex += vertexStride;
// V2
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fBottom);
vertex += vertexStride;
// V3
position = reinterpret_cast<SkPoint*>(vertex);
position->set(positions.fRight, positions.fTop);
}
subRun->fGlyphEndIndex++;
subRun->fVertexEndIndex += vertexStride * kVerticesPerGlyph;
}
class TextBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
typedef GrAtlasTextContext::DistanceAdjustTable DistanceAdjustTable;
typedef GrAtlasTextBlob Blob;
typedef Blob::Run Run;
typedef Run::SubRunInfo TextInfo;
struct Geometry {
Blob* fBlob;
int fRun;
int fSubRun;
GrColor fColor;
SkScalar fTransX;
SkScalar fTransY;
};
static TextBatch* CreateBitmap(GrMaskFormat maskFormat, int glyphCount,
GrBatchFontCache* fontCache) {
TextBatch* batch = new TextBatch;
batch->fFontCache = fontCache;
switch (maskFormat) {
case kA8_GrMaskFormat:
batch->fMaskType = kGrayscaleCoverageMask_MaskType;
break;
case kA565_GrMaskFormat:
batch->fMaskType = kLCDCoverageMask_MaskType;
break;
case kARGB_GrMaskFormat:
batch->fMaskType = kColorBitmapMask_MaskType;
break;
}
batch->fBatch.fNumGlyphs = glyphCount;
batch->fGeoCount = 1;
batch->fFilteredColor = 0;
batch->fFontCache = fontCache;
batch->fUseBGR = false;
return batch;
}
static TextBatch* CreateDistanceField(int glyphCount, GrBatchFontCache* fontCache,
const DistanceAdjustTable* distanceAdjustTable,
SkColor filteredColor, bool isLCD,
bool useBGR) {
TextBatch* batch = new TextBatch;
batch->fFontCache = fontCache;
batch->fMaskType = isLCD ? kLCDDistanceField_MaskType : kGrayscaleDistanceField_MaskType;
batch->fDistanceAdjustTable.reset(SkRef(distanceAdjustTable));
batch->fFilteredColor = filteredColor;
batch->fUseBGR = useBGR;
batch->fBatch.fNumGlyphs = glyphCount;
batch->fGeoCount = 1;
return batch;
}
// to avoid even the initial copy of the struct, we have a getter for the first item which
// is used to seed the batch with its initial geometry. After seeding, the client should call
// init() so the Batch can initialize itself
Geometry& geometry() { return fGeoData[0]; }
void init() {
const Geometry& geo = fGeoData[0];
fBatch.fColor = geo.fColor;
fBatch.fViewMatrix = geo.fBlob->fViewMatrix;
// We don't yet position distance field text on the cpu, so we have to map the vertex bounds
// into device space
const Run& run = geo.fBlob->fRuns[geo.fRun];
if (run.fSubRunInfo[geo.fSubRun].fDrawAsDistanceFields) {
SkRect bounds = run.fVertexBounds;
fBatch.fViewMatrix.mapRect(&bounds);
this->setBounds(bounds);
} else {
this->setBounds(run.fVertexBounds);
}
}
const char* name() const override { return "TextBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
if (kColorBitmapMask_MaskType == fMaskType) {
out->setUnknownFourComponents();
} else {
out->setKnownFourComponents(fBatch.fColor);
}
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
switch (fMaskType) {
case kGrayscaleDistanceField_MaskType:
case kGrayscaleCoverageMask_MaskType:
out->setUnknownSingleComponent();
break;
case kLCDCoverageMask_MaskType:
case kLCDDistanceField_MaskType:
out->setUnknownOpaqueFourComponents();
out->setUsingLCDCoverage();
break;
case kColorBitmapMask_MaskType:
out->setKnownSingleComponent(0xff);
}
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
struct FlushInfo {
SkAutoTUnref<const GrVertexBuffer> fVertexBuffer;
SkAutoTUnref<const GrIndexBuffer> fIndexBuffer;
int fGlyphsToFlush;
int fVertexOffset;
};
void onPrepareDraws(Target* target) override {
// if we have RGB, then we won't have any SkShaders so no need to use a localmatrix.
// TODO actually only invert if we don't have RGBA
SkMatrix localMatrix;
if (this->usesLocalCoords() && !this->viewMatrix().invert(&localMatrix)) {
SkDebugf("Cannot invert viewmatrix\n");
return;
}
GrTexture* texture = fFontCache->getTexture(this->maskFormat());
if (!texture) {
SkDebugf("Could not allocate backing texture for atlas\n");
return;
}
bool usesDistanceFields = this->usesDistanceFields();
GrMaskFormat maskFormat = this->maskFormat();
bool isLCD = this->isLCD();
SkAutoTUnref<const GrGeometryProcessor> gp;
if (usesDistanceFields) {
gp.reset(this->setupDfProcessor(this->viewMatrix(), fFilteredColor, this->color(),
texture));
} else {
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode);
gp.reset(GrBitmapTextGeoProc::Create(this->color(),
texture,
params,
maskFormat,
localMatrix,
this->usesLocalCoords()));
}
FlushInfo flushInfo;
flushInfo.fGlyphsToFlush = 0;
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == (usesDistanceFields ?
get_vertex_stride_df(maskFormat, isLCD) :
get_vertex_stride(maskFormat)));
target->initDraw(gp, this->pipeline());
int glyphCount = this->numGlyphs();
const GrVertexBuffer* vertexBuffer;
void* vertices = target->makeVertexSpace(vertexStride,
glyphCount * kVerticesPerGlyph,
&vertexBuffer,
&flushInfo.fVertexOffset);
flushInfo.fVertexBuffer.reset(SkRef(vertexBuffer));
flushInfo.fIndexBuffer.reset(target->resourceProvider()->refQuadIndexBuffer());
if (!vertices || !flushInfo.fVertexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
unsigned char* currVertex = reinterpret_cast<unsigned char*>(vertices);
// We cache some values to avoid going to the glyphcache for the same fontScaler twice
// in a row
const SkDescriptor* desc = nullptr;
SkGlyphCache* cache = nullptr;
GrFontScaler* scaler = nullptr;
SkTypeface* typeface = nullptr;
for (int i = 0; i < fGeoCount; i++) {
Geometry& args = fGeoData[i];
Blob* blob = args.fBlob;
Run& run = blob->fRuns[args.fRun];
TextInfo& info = run.fSubRunInfo[args.fSubRun];
uint64_t currentAtlasGen = fFontCache->atlasGeneration(maskFormat);
bool regenerateTextureCoords = info.fAtlasGeneration != currentAtlasGen ||
info.fStrike->isAbandoned();
bool regenerateColors;
if (usesDistanceFields) {
regenerateColors = !isLCD && run.fColor != args.fColor;
} else {
regenerateColors = kA8_GrMaskFormat == maskFormat && run.fColor != args.fColor;
}
bool regeneratePositions = args.fTransX != 0.f || args.fTransY != 0.f;
int glyphCount = info.fGlyphEndIndex - info.fGlyphStartIndex;
// We regenerate both texture coords and colors in the blob itself, and update the
// atlas generation. If we don't end up purging any unused plots, we can avoid
// regenerating the coords. We could take a finer grained approach to updating texture
// coords but its not clear if the extra bookkeeping would offset any gains.
// To avoid looping over the glyphs twice, we do one loop and conditionally update color
// or coords as needed. One final note, if we have to break a run for an atlas eviction
// then we can't really trust the atlas has all of the correct data. Atlas evictions
// should be pretty rare, so we just always regenerate in those cases
if (regenerateTextureCoords || regenerateColors || regeneratePositions) {
// first regenerate texture coordinates / colors if need be
bool brokenRun = false;
// Because the GrBatchFontCache may evict the strike a blob depends on using for
// generating its texture coords, we have to track whether or not the strike has
// been abandoned. If it hasn't been abandoned, then we can use the GrGlyph*s as is
// otherwise we have to get the new strike, and use that to get the correct glyphs.
// Because we do not have the packed ids, and thus can't look up our glyphs in the
// new strike, we instead keep our ref to the old strike and use the packed ids from
// it. These ids will still be valid as long as we hold the ref. When we are done
// updating our cache of the GrGlyph*s, we drop our ref on the old strike
bool regenerateGlyphs = false;
GrBatchTextStrike* strike = nullptr;
if (regenerateTextureCoords) {
info.fBulkUseToken.reset();
// We can reuse if we have a valid strike and our descriptors / typeface are the
// same. The override descriptor is only for the non distance field text within
// a run
const SkDescriptor* newDesc = (run.fOverrideDescriptor && !usesDistanceFields) ?
run.fOverrideDescriptor->getDesc() :
run.fDescriptor.getDesc();
if (!cache || !SkTypeface::Equal(typeface, run.fTypeface) ||
!(desc->equals(*newDesc))) {
if (cache) {
SkGlyphCache::AttachCache(cache);
}
desc = newDesc;
cache = SkGlyphCache::DetachCache(run.fTypeface, desc);
scaler = GrTextContext::GetGrFontScaler(cache);
strike = info.fStrike;
typeface = run.fTypeface;
}
if (info.fStrike->isAbandoned()) {
regenerateGlyphs = true;
strike = fFontCache->getStrike(scaler);
} else {
strike = info.fStrike;
}
}
for (int glyphIdx = 0; glyphIdx < glyphCount; glyphIdx++) {
if (regenerateTextureCoords) {
size_t glyphOffset = glyphIdx + info.fGlyphStartIndex;
GrGlyph* glyph = blob->fGlyphs[glyphOffset];
GrGlyph::PackedID id = glyph->fPackedID;
const SkGlyph& skGlyph = scaler->grToSkGlyph(id);
if (regenerateGlyphs) {
// Get the id from the old glyph, and use the new strike to lookup
// the glyph.
blob->fGlyphs[glyphOffset] = strike->getGlyph(skGlyph, id, maskFormat,
scaler);
}
glyph = blob->fGlyphs[glyphOffset];
SkASSERT(glyph);
SkASSERT(id == glyph->fPackedID);
// We want to be able to assert this but cannot for testing purposes.
// once skbug:4143 has landed we can revist this assert
//SkASSERT(glyph->fMaskFormat == this->maskFormat());
if (!fFontCache->hasGlyph(glyph) &&
!strike->addGlyphToAtlas(target, glyph, scaler, skGlyph, maskFormat)) {
this->flush(target, &flushInfo);
target->initDraw(gp, this->pipeline());
brokenRun = glyphIdx > 0;
SkDEBUGCODE(bool success =) strike->addGlyphToAtlas(target,
glyph,
scaler,
skGlyph,
maskFormat);
SkASSERT(success);
}
fFontCache->addGlyphToBulkAndSetUseToken(&info.fBulkUseToken, glyph,
target->currentToken());
// Texture coords are the last vertex attribute so we get a pointer to the
// first one and then map with stride in regenerateTextureCoords
intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices);
vertex += info.fVertexStartIndex;
vertex += vertexStride * glyphIdx * kVerticesPerGlyph;
vertex += vertexStride - sizeof(SkIPoint16);
this->regenerateTextureCoords(glyph, vertex, vertexStride);
}
if (regenerateColors) {
intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices);
vertex += info.fVertexStartIndex;
vertex += vertexStride * glyphIdx * kVerticesPerGlyph + sizeof(SkPoint);
this->regenerateColors(vertex, vertexStride, args.fColor);
}
if (regeneratePositions) {
intptr_t vertex = reinterpret_cast<intptr_t>(blob->fVertices);
vertex += info.fVertexStartIndex;
vertex += vertexStride * glyphIdx * kVerticesPerGlyph;
SkScalar transX = args.fTransX;
SkScalar transY = args.fTransY;
this->regeneratePositions(vertex, vertexStride, transX, transY);
}
flushInfo.fGlyphsToFlush++;
}
// We my have changed the color so update it here
run.fColor = args.fColor;
if (regenerateTextureCoords) {
if (regenerateGlyphs) {
info.fStrike.reset(SkRef(strike));
}
info.fAtlasGeneration = brokenRun ? GrBatchAtlas::kInvalidAtlasGeneration :
fFontCache->atlasGeneration(maskFormat);
}
} else {
flushInfo.fGlyphsToFlush += glyphCount;
// set use tokens for all of the glyphs in our subrun. This is only valid if we
// have a valid atlas generation
fFontCache->setUseTokenBulk(info.fBulkUseToken, target->currentToken(), maskFormat);
}
// now copy all vertices
size_t byteCount = info.fVertexEndIndex - info.fVertexStartIndex;
memcpy(currVertex, blob->fVertices + info.fVertexStartIndex, byteCount);
currVertex += byteCount;
}
// Make sure to attach the last cache if applicable
if (cache) {
SkGlyphCache::AttachCache(cache);
}
this->flush(target, &flushInfo);
}
TextBatch() : INHERITED(ClassID()) {} // initialized in factory functions.
~TextBatch() {
for (int i = 0; i < fGeoCount; i++) {
fGeoData[i].fBlob->unref();
}
}
GrMaskFormat maskFormat() const {
switch (fMaskType) {
case kLCDCoverageMask_MaskType:
return kA565_GrMaskFormat;
case kColorBitmapMask_MaskType:
return kARGB_GrMaskFormat;
case kGrayscaleCoverageMask_MaskType:
case kGrayscaleDistanceField_MaskType:
case kLCDDistanceField_MaskType:
return kA8_GrMaskFormat;
}
return kA8_GrMaskFormat; // suppress warning
}
bool usesDistanceFields() const {
return kGrayscaleDistanceField_MaskType == fMaskType ||
kLCDDistanceField_MaskType == fMaskType;
}
bool isLCD() const {
return kLCDCoverageMask_MaskType == fMaskType ||
kLCDDistanceField_MaskType == fMaskType;
}
void regenerateTextureCoords(GrGlyph* glyph, intptr_t vertex, size_t vertexStride) {
int width = glyph->fBounds.width();
int height = glyph->fBounds.height();
int u0, v0, u1, v1;
if (this->usesDistanceFields()) {
u0 = glyph->fAtlasLocation.fX + SK_DistanceFieldInset;
v0 = glyph->fAtlasLocation.fY + SK_DistanceFieldInset;
u1 = u0 + width - 2 * SK_DistanceFieldInset;
v1 = v0 + height - 2 * SK_DistanceFieldInset;
} else {
u0 = glyph->fAtlasLocation.fX;
v0 = glyph->fAtlasLocation.fY;
u1 = u0 + width;
v1 = v0 + height;
}
SkIPoint16* textureCoords;
// V0
textureCoords = reinterpret_cast<SkIPoint16*>(vertex);
textureCoords->set(u0, v0);
vertex += vertexStride;
// V1
textureCoords = reinterpret_cast<SkIPoint16*>(vertex);
textureCoords->set(u0, v1);
vertex += vertexStride;
// V2
textureCoords = reinterpret_cast<SkIPoint16*>(vertex);
textureCoords->set(u1, v1);
vertex += vertexStride;
// V3
textureCoords = reinterpret_cast<SkIPoint16*>(vertex);
textureCoords->set(u1, v0);
}
void regenerateColors(intptr_t vertex, size_t vertexStride, GrColor color) {
for (int i = 0; i < kVerticesPerGlyph; i++) {
SkColor* vcolor = reinterpret_cast<SkColor*>(vertex);
*vcolor = color;
vertex += vertexStride;
}
}
void regeneratePositions(intptr_t vertex, size_t vertexStride, SkScalar transX,
SkScalar transY) {
for (int i = 0; i < kVerticesPerGlyph; i++) {
SkPoint* point = reinterpret_cast<SkPoint*>(vertex);
point->fX += transX;
point->fY += transY;
vertex += vertexStride;
}
}
void flush(GrVertexBatch::Target* target, FlushInfo* flushInfo) {
GrVertices vertices;
int maxGlyphsPerDraw = flushInfo->fIndexBuffer->maxQuads();
vertices.initInstanced(kTriangles_GrPrimitiveType, flushInfo->fVertexBuffer,
flushInfo->fIndexBuffer, flushInfo->fVertexOffset,
kVerticesPerGlyph, kIndicesPerGlyph, flushInfo->fGlyphsToFlush,
maxGlyphsPerDraw);
target->draw(vertices);
flushInfo->fVertexOffset += kVerticesPerGlyph * flushInfo->fGlyphsToFlush;
flushInfo->fGlyphsToFlush = 0;
}
GrColor color() const { return fBatch.fColor; }
const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
int numGlyphs() const { return fBatch.fNumGlyphs; }
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
TextBatch* that = t->cast<TextBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
if (fMaskType != that->fMaskType) {
return false;
}
if (!this->usesDistanceFields()) {
// TODO we can often batch across LCD text if we have dual source blending and don't
// have to use the blend constant
if (kGrayscaleCoverageMask_MaskType != fMaskType && this->color() != that->color()) {
return false;
}
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
} else {
if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
if (fFilteredColor != that->fFilteredColor) {
return false;
}
if (fUseBGR != that->fUseBGR) {
return false;
}
// TODO see note above
if (kLCDDistanceField_MaskType == fMaskType && this->color() != that->color()) {
return false;
}
}
fBatch.fNumGlyphs += that->numGlyphs();
// Reallocate space for geo data if necessary and then import that's geo data.
int newGeoCount = that->fGeoCount + fGeoCount;
// We assume (and here enforce) that the allocation size is the smallest power of two that
// is greater than or equal to the number of geometries (and at least
// kMinGeometryAllocated).
int newAllocSize = GrNextPow2(newGeoCount);
int currAllocSize = SkTMax<int>(kMinGeometryAllocated, GrNextPow2(fGeoCount));
if (newGeoCount > currAllocSize) {
fGeoData.realloc(newAllocSize);
}
memcpy(&fGeoData[fGeoCount], that->fGeoData.get(), that->fGeoCount * sizeof(Geometry));
// We steal the ref on the blobs from the other TextBatch and set its count to 0 so that
// it doesn't try to unref them.
#ifdef SK_DEBUG
for (int i = 0; i < that->fGeoCount; ++i) {
that->fGeoData.get()[i].fBlob = (Blob*)0x1;
}
#endif
that->fGeoCount = 0;
fGeoCount = newGeoCount;
this->joinBounds(that->bounds());
return true;
}
// TODO just use class params
// TODO trying to figure out why lcd is so whack
GrGeometryProcessor* setupDfProcessor(const SkMatrix& viewMatrix, SkColor filteredColor,
GrColor color, GrTexture* texture) {
GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kBilerp_FilterMode);
bool isLCD = this->isLCD();
// set up any flags
uint32_t flags = viewMatrix.isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0;
// see if we need to create a new effect
if (isLCD) {
flags |= kUseLCD_DistanceFieldEffectFlag;
flags |= viewMatrix.rectStaysRect() ? kRectToRect_DistanceFieldEffectFlag : 0;
flags |= fUseBGR ? kBGR_DistanceFieldEffectFlag : 0;
GrColor colorNoPreMul = skcolor_to_grcolor_nopremultiply(filteredColor);
float redCorrection =
(*fDistanceAdjustTable)[GrColorUnpackR(colorNoPreMul) >> kDistanceAdjustLumShift];
float greenCorrection =
(*fDistanceAdjustTable)[GrColorUnpackG(colorNoPreMul) >> kDistanceAdjustLumShift];
float blueCorrection =
(*fDistanceAdjustTable)[GrColorUnpackB(colorNoPreMul) >> kDistanceAdjustLumShift];
GrDistanceFieldLCDTextGeoProc::DistanceAdjust widthAdjust =
GrDistanceFieldLCDTextGeoProc::DistanceAdjust::Make(redCorrection,
greenCorrection,
blueCorrection);
return GrDistanceFieldLCDTextGeoProc::Create(color,
viewMatrix,
texture,
params,
widthAdjust,
flags,
this->usesLocalCoords());
} else {
flags |= kColorAttr_DistanceFieldEffectFlag;
#ifdef SK_GAMMA_APPLY_TO_A8
U8CPU lum = SkColorSpaceLuminance::computeLuminance(SK_GAMMA_EXPONENT, filteredColor);
float correction = (*fDistanceAdjustTable)[lum >> kDistanceAdjustLumShift];
return GrDistanceFieldA8TextGeoProc::Create(color,
viewMatrix,
texture,
params,
correction,
flags,
this->usesLocalCoords());
#else
return GrDistanceFieldA8TextGeoProc::Create(color,
viewMatrix,
texture,
params,
flags,
this->usesLocalCoords());
#endif
}
}
struct BatchTracker {
GrColor fColor;
SkMatrix fViewMatrix;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
int fNumGlyphs;
};
BatchTracker fBatch;
// The minimum number of Geometry we will try to allocate.
enum { kMinGeometryAllocated = 4 };
SkAutoSTMalloc<kMinGeometryAllocated, Geometry> fGeoData;
int fGeoCount;
enum MaskType {
kGrayscaleCoverageMask_MaskType,
kLCDCoverageMask_MaskType,
kColorBitmapMask_MaskType,
kGrayscaleDistanceField_MaskType,
kLCDDistanceField_MaskType,
} fMaskType;
bool fUseBGR; // fold this into the enum?
GrBatchFontCache* fFontCache;
// Distance field properties
SkAutoTUnref<const DistanceAdjustTable> fDistanceAdjustTable;
SkColor fFilteredColor;
typedef GrVertexBatch INHERITED;
};
void GrAtlasTextContext::flushRunAsPaths(GrDrawContext* dc, GrRenderTarget* rt,
const SkTextBlob::RunIterator& it,
const GrClip& clip, const SkPaint& skPaint,
SkDrawFilter* drawFilter, const SkMatrix& viewMatrix,
const SkIRect& clipBounds, SkScalar x, SkScalar y) {
SkPaint runPaint = skPaint;
size_t textLen = it.glyphCount() * sizeof(uint16_t);
const SkPoint& offset = it.offset();
it.applyFontToPaint(&runPaint);
if (drawFilter && !drawFilter->filter(&runPaint, SkDrawFilter::kText_Type)) {
return;
}
runPaint.setFlags(FilterTextFlags(fSurfaceProps, runPaint));
switch (it.positioning()) {
case SkTextBlob::kDefault_Positioning:
this->drawTextAsPath(dc, rt, clip, runPaint, viewMatrix,
(const char *)it.glyphs(),
textLen, x + offset.x(), y + offset.y(), clipBounds);
break;
case SkTextBlob::kHorizontal_Positioning:
this->drawPosTextAsPath(dc, rt, clip, runPaint, viewMatrix,
(const char*)it.glyphs(),
textLen, it.pos(), 1, SkPoint::Make(x, y + offset.y()),
clipBounds);
break;
case SkTextBlob::kFull_Positioning:
this->drawPosTextAsPath(dc, rt, clip, runPaint, viewMatrix,
(const char*)it.glyphs(),
textLen, it.pos(), 2, SkPoint::Make(x, y), clipBounds);
break;
}
}
inline GrDrawBatch*
GrAtlasTextContext::createBatch(GrAtlasTextBlob* cacheBlob, const PerSubRunInfo& info,
int glyphCount, int run, int subRun,
GrColor color, SkScalar transX, SkScalar transY,
const SkPaint& skPaint) {
GrMaskFormat format = info.fMaskFormat;
GrColor subRunColor;
if (kARGB_GrMaskFormat == format) {
uint8_t paintAlpha = skPaint.getAlpha();
subRunColor = SkColorSetARGB(paintAlpha, paintAlpha, paintAlpha, paintAlpha);
} else {
subRunColor = color;
}
TextBatch* batch;
if (info.fDrawAsDistanceFields) {
SkColor filteredColor;
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
filteredColor = colorFilter->filterColor(skPaint.getColor());
} else {
filteredColor = skPaint.getColor();
}
bool useBGR = SkPixelGeometryIsBGR(fSurfaceProps.pixelGeometry());
batch = TextBatch::CreateDistanceField(glyphCount, fContext->getBatchFontCache(),
fDistanceAdjustTable, filteredColor,
info.fUseLCDText, useBGR);
} else {
batch = TextBatch::CreateBitmap(format, glyphCount, fContext->getBatchFontCache());
}
TextBatch::Geometry& geometry = batch->geometry();
geometry.fBlob = SkRef(cacheBlob);
geometry.fRun = run;
geometry.fSubRun = subRun;
geometry.fColor = subRunColor;
geometry.fTransX = transX;
geometry.fTransY = transY;
batch->init();
return batch;
}
inline void GrAtlasTextContext::flushRun(GrDrawContext* dc, GrPipelineBuilder* pipelineBuilder,
GrAtlasTextBlob* cacheBlob, int run, GrColor color,
SkScalar transX, SkScalar transY,
const SkPaint& skPaint) {
for (int subRun = 0; subRun < cacheBlob->fRuns[run].fSubRunInfo.count(); subRun++) {
const PerSubRunInfo& info = cacheBlob->fRuns[run].fSubRunInfo[subRun];
int glyphCount = info.fGlyphEndIndex - info.fGlyphStartIndex;
if (0 == glyphCount) {
continue;
}
SkAutoTUnref<GrDrawBatch> batch(this->createBatch(cacheBlob, info, glyphCount, run,
subRun, color, transX, transY,
skPaint));
dc->drawBatch(pipelineBuilder, batch);
}
}
inline void GrAtlasTextContext::flushBigGlyphs(GrAtlasTextBlob* cacheBlob,
GrDrawContext* dc, GrRenderTarget* rt,
const GrClip& clip, const SkPaint& skPaint,
SkScalar transX, SkScalar transY,
const SkIRect& clipBounds) {
if (!cacheBlob->fBigGlyphs.count()) {
return;
}
for (int i = 0; i < cacheBlob->fBigGlyphs.count(); i++) {
GrAtlasTextBlob::BigGlyph& bigGlyph = cacheBlob->fBigGlyphs[i];
bigGlyph.fVx += transX;
bigGlyph.fVy += transY;
SkMatrix ctm;
ctm.setScale(bigGlyph.fScale, bigGlyph.fScale);
ctm.postTranslate(bigGlyph.fVx, bigGlyph.fVy);
if (bigGlyph.fApplyVM) {
ctm.postConcat(cacheBlob->fViewMatrix);
}
GrBlurUtils::drawPathWithMaskFilter(fContext, dc, rt, clip, bigGlyph.fPath,
skPaint, ctm, nullptr, clipBounds, false);
}
}
void GrAtlasTextContext::flush(const SkTextBlob* blob,
GrAtlasTextBlob* cacheBlob,
GrDrawContext* dc,
GrRenderTarget* rt,
const SkPaint& skPaint,
const GrPaint& grPaint,
SkDrawFilter* drawFilter,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkIRect& clipBounds,
SkScalar x, SkScalar y,
SkScalar transX, SkScalar transY) {
// We loop through the runs of the blob, flushing each. If any run is too large, then we flush
// it as paths
GrPipelineBuilder pipelineBuilder(grPaint, rt, clip);
GrColor color = grPaint.getColor();
SkTextBlob::RunIterator it(blob);
for (int run = 0; !it.done(); it.next(), run++) {
if (cacheBlob->fRuns[run].fDrawAsPaths) {
this->flushRunAsPaths(dc, rt, it, clip, skPaint,
drawFilter, viewMatrix, clipBounds, x, y);
continue;
}
cacheBlob->fRuns[run].fVertexBounds.offset(transX, transY);
this->flushRun(dc, &pipelineBuilder, cacheBlob, run, color,
transX, transY, skPaint);
}
// Now flush big glyphs
this->flushBigGlyphs(cacheBlob, dc, rt, clip, skPaint, transX, transY, clipBounds);
}
void GrAtlasTextContext::flush(GrAtlasTextBlob* cacheBlob,
GrDrawContext* dc,
GrRenderTarget* rt,
const SkPaint& skPaint,
const GrPaint& grPaint,
const GrClip& clip,
const SkIRect& clipBounds) {
GrPipelineBuilder pipelineBuilder(grPaint, rt, clip);
GrColor color = grPaint.getColor();
for (int run = 0; run < cacheBlob->fRunCount; run++) {
this->flushRun(dc, &pipelineBuilder, cacheBlob, run, color, 0, 0, skPaint);
}
// Now flush big glyphs
this->flushBigGlyphs(cacheBlob, dc, rt, clip, skPaint, 0, 0, clipBounds);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
DRAW_BATCH_TEST_DEFINE(TextBlobBatch) {
static uint32_t gContextID = SK_InvalidGenID;
static GrAtlasTextContext* gTextContext = nullptr;
static SkSurfaceProps gSurfaceProps(SkSurfaceProps::kLegacyFontHost_InitType);
if (context->uniqueID() != gContextID) {
gContextID = context->uniqueID();
delete gTextContext;
// We don't yet test the fall back to paths in the GrTextContext base class. This is mostly
// because we don't really want to have a gpu device here.
// We enable distance fields by twiddling a knob on the paint
gTextContext = GrAtlasTextContext::Create(context, gSurfaceProps);
}
// create dummy render target
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = 1024;
desc.fHeight = 1024;
desc.fConfig = kRGBA_8888_GrPixelConfig;
desc.fSampleCnt = 0;
SkAutoTUnref<GrTexture> texture(context->textureProvider()->createTexture(desc, true, nullptr, 0));
SkASSERT(texture);
SkASSERT(nullptr != texture->asRenderTarget());
GrRenderTarget* rt = texture->asRenderTarget();
// Setup dummy SkPaint / GrPaint
GrColor color = GrRandomColor(random);
SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
SkPaint skPaint;
skPaint.setColor(color);
skPaint.setLCDRenderText(random->nextBool());
skPaint.setAntiAlias(skPaint.isLCDRenderText() ? true : random->nextBool());
skPaint.setSubpixelText(random->nextBool());
GrPaint grPaint;
if (!SkPaint2GrPaint(context, rt, skPaint, viewMatrix, true, &grPaint)) {
SkFAIL("couldn't convert paint\n");
}
const char* text = "The quick brown fox jumps over the lazy dog.";
int textLen = (int)strlen(text);
// Setup clip
GrClip clip;
SkIRect noClip = SkIRect::MakeLargest();
// right now we don't handle textblobs, nor do we handle drawPosText. Since we only
// intend to test the batch with this unit test, that is okay.
SkAutoTUnref<GrAtlasTextBlob> blob(
gTextContext->createDrawTextBlob(rt, clip, grPaint, skPaint, viewMatrix, text,
static_cast<size_t>(textLen), 0, 0, noClip));
SkScalar transX = static_cast<SkScalar>(random->nextU());
SkScalar transY = static_cast<SkScalar>(random->nextU());
const GrAtlasTextBlob::Run::SubRunInfo& info = blob->fRuns[0].fSubRunInfo[0];
return gTextContext->createBatch(blob, info, textLen, 0, 0, color, transX, transY, skPaint);
}
#endif