blob: 39da2efbcee7a727b70b08b192de52112323b30f [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrix.h"
#include "SkOpEdgeBuilder.h"
#include "SkPath.h"
#include "SkPathOps.h"
#include "SkPathOpsCommon.h"
static bool one_contour(const SkPath& path) {
SkChunkAlloc allocator(256);
int verbCount = path.countVerbs();
uint8_t* verbs = (uint8_t*) allocator.alloc(sizeof(uint8_t) * verbCount,
SkChunkAlloc::kThrow_AllocFailType);
(void) path.getVerbs(verbs, verbCount);
for (int index = 1; index < verbCount; ++index) {
if (verbs[index] == SkPath::kMove_Verb) {
return false;
}
}
return true;
}
void FixWinding(SkPath* path) {
SkPath::FillType fillType = path->getFillType();
if (fillType == SkPath::kInverseEvenOdd_FillType) {
fillType = SkPath::kInverseWinding_FillType;
} else if (fillType == SkPath::kEvenOdd_FillType) {
fillType = SkPath::kWinding_FillType;
}
SkPath::Direction dir;
if (one_contour(*path) && path->cheapComputeDirection(&dir)) {
if (dir != SkPath::kCCW_Direction) {
SkPath temp;
temp.reverseAddPath(*path);
*path = temp;
}
path->setFillType(fillType);
return;
}
SkChunkAlloc allocator(4096);
SkOpContourHead contourHead;
SkOpGlobalState globalState(NULL, &contourHead);
SkOpEdgeBuilder builder(*path, &contourHead, &allocator, &globalState);
builder.finish(&allocator);
SkASSERT(contourHead.next());
contourHead.resetReverse();
bool writePath = false;
SkOpSpan* topSpan;
globalState.setPhase(SkOpGlobalState::kFixWinding);
while ((topSpan = FindSortableTop(&contourHead))) {
SkOpSegment* topSegment = topSpan->segment();
SkOpContour* topContour = topSegment->contour();
bool active = topSegment->activeWinding(topSpan, topSpan->next());
SkASSERT(topContour->isCcw() >= 0);
if (active != SkToBool(topContour->isCcw())) {
topContour->setReverse();
writePath = true;
}
topContour->markDone();
}
if (!writePath) {
path->setFillType(fillType);
return;
}
SkPath empty;
SkPathWriter woundPath(empty);
SkOpContour* test = &contourHead;
do {
if (test->reversed()) {
test->toReversePath(&woundPath);
} else {
test->toPath(&woundPath);
}
} while ((test = test->next()));
*path = *woundPath.nativePath();
path->setFillType(fillType);
}
void SkOpBuilder::add(const SkPath& path, SkPathOp op) {
if (0 == fOps.count() && op != kUnion_SkPathOp) {
fPathRefs.push_back() = SkPath();
*fOps.append() = kUnion_SkPathOp;
}
fPathRefs.push_back() = path;
*fOps.append() = op;
}
void SkOpBuilder::reset() {
fPathRefs.reset();
fOps.reset();
}
/* OPTIMIZATION: Union doesn't need to be all-or-nothing. A run of three or more convex
paths with union ops could be locally resolved and still improve over doing the
ops one at a time. */
bool SkOpBuilder::resolve(SkPath* result) {
SkPath original = *result;
int count = fOps.count();
bool allUnion = true;
SkPath::Direction firstDir;
for (int index = 0; index < count; ++index) {
SkPath* test = &fPathRefs[index];
if (kUnion_SkPathOp != fOps[index] || test->isInverseFillType()) {
allUnion = false;
break;
}
// If all paths are convex, track direction, reversing as needed.
if (test->isConvex()) {
SkPath::Direction dir;
if (!test->cheapComputeDirection(&dir)) {
allUnion = false;
break;
}
if (index == 0) {
firstDir = dir;
} else if (firstDir != dir) {
SkPath temp;
temp.reverseAddPath(*test);
*test = temp;
}
continue;
}
// If the path is not convex but its bounds do not intersect the others, simplify is enough.
const SkRect& testBounds = test->getBounds();
for (int inner = 0; inner < index; ++inner) {
// OPTIMIZE: check to see if the contour bounds do not intersect other contour bounds?
if (SkRect::Intersects(fPathRefs[inner].getBounds(), testBounds)) {
allUnion = false;
break;
}
}
}
if (!allUnion) {
*result = fPathRefs[0];
for (int index = 1; index < count; ++index) {
if (!Op(*result, fPathRefs[index], fOps[index], result)) {
reset();
*result = original;
return false;
}
}
reset();
return true;
}
SkPath sum;
for (int index = 0; index < count; ++index) {
if (!Simplify(fPathRefs[index], &fPathRefs[index])) {
reset();
*result = original;
return false;
}
// convert the even odd result back to winding form before accumulating it
FixWinding(&fPathRefs[index]);
sum.addPath(fPathRefs[index]);
}
reset();
bool success = Simplify(sum, result);
if (!success) {
*result = original;
}
return success;
}