blob: 8a938c2265cae636233d5ce9fcbe38866ef38f60 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOvalRenderer.h"
#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
#include "GrDrawTarget.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrPipelineBuilder.h"
#include "GrProcessor.h"
#include "GrResourceProvider.h"
#include "GrVertexBuffer.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "SkTLazy.h"
#include "batches/GrVertexBatch.h"
#include "effects/GrRRectEffect.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
// TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup
namespace {
// TODO(joshualitt) add per vertex colors
struct CircleVertex {
SkPoint fPos;
SkPoint fOffset;
SkScalar fOuterRadius;
SkScalar fInnerRadius;
};
struct EllipseVertex {
SkPoint fPos;
SkPoint fOffset;
SkPoint fOuterRadii;
SkPoint fInnerRadii;
};
struct DIEllipseVertex {
SkPoint fPos;
SkPoint fOuterOffset;
SkPoint fInnerOffset;
};
inline bool circle_stays_circle(const SkMatrix& m) {
return m.isSimilarity();
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for a circle. It
* operates in a space normalized by the circle radius (outer radius in the case of a stroke)
* with origin at the circle center. Two vertex attributes are used:
* vec2f : position in device space of the bounding geometry vertices
* vec4f : (p.xy, outerRad, innerRad)
* p is the position in the normalized space.
* outerRad is the outerRadius in device space.
* innerRad is the innerRadius in normalized space (ignored if not stroking).
*/
class CircleEdgeEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix,
bool usesLocalCoords) {
return new CircleEdgeEffect(color, stroke, localMatrix, usesLocalCoords);
}
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inCircleEdge() const { return fInCircleEdge; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
virtual ~CircleEdgeEffect() {}
const char* name() const override { return "CircleEdge"; }
inline bool isStroked() const { return fStroke; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor()
: fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const CircleEdgeEffect& ce = args.fGP.cast<CircleEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ce);
GrGLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("CircleEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName);
// setup pass through color
if (!ce.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ce.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ce.inPosition()->fName,
ce.localMatrix(), args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn());
if (ce.isStroked()) {
fsBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha *= innerAlpha;");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const CircleEdgeEffect& ce = gp.cast<CircleEdgeEffect>();
uint16_t key = ce.isStroked() ? 0x1 : 0x0;
key |= ce.usesLocalCoords() && ce.localMatrix().hasPerspective() ? 0x2 : 0x0;
key |= ce.colorIgnored() ? 0x4 : 0x0;
b->add32(key);
}
void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override {
const CircleEdgeEffect& ce = gp.cast<CircleEdgeEffect>();
if (ce.color() != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(ce.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = ce.color();
}
}
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<CircleEdgeEffect>(primProc, pdman, index, transforms);
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLProcessor::GenKey(*this, caps, b);
}
GrGLPrimitiveProcessor* createGLInstance(const GrGLSLCaps&) const override {
return new GLProcessor();
}
private:
CircleEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix, bool usesLocalCoords)
: fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords) {
this->initClassID<CircleEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType,
kHigh_GrSLPrecision));
fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
GrColor fColor;
SkMatrix fLocalMatrix;
const Attribute* fInPosition;
const Attribute* fInCircleEdge;
bool fStroke;
bool fUsesLocalCoords;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect);
const GrGeometryProcessor* CircleEdgeEffect::TestCreate(GrProcessorTestData* d) {
return CircleEdgeEffect::Create(GrRandomColor(d->fRandom),
d->fRandom->nextBool(),
GrTest::TestMatrix(d->fRandom),
d->fRandom->nextBool());
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an axis-aligned
* ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii,
* in both x and y directions.
*
* We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0.
*/
class EllipseEdgeEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix,
bool usesLocalCoords) {
return new EllipseEdgeEffect(color, stroke, localMatrix, usesLocalCoords);
}
virtual ~EllipseEdgeEffect() {}
const char* name() const override { return "EllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inEllipseOffset() const { return fInEllipseOffset; }
const Attribute* inEllipseRadii() const { return fInEllipseRadii; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& localMatrix() const { return fLocalMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
inline bool isStroked() const { return fStroke; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor()
: fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{
const EllipseEdgeEffect& ee = args.fGP.cast<EllipseEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ee);
GrGLVertToFrag ellipseOffsets(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets", &ellipseOffsets);
vsBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(),
ee.inEllipseOffset()->fName);
GrGLVertToFrag ellipseRadii(kVec4f_GrSLType);
args.fPB->addVarying("EllipseRadii", &ellipseRadii);
vsBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(),
ee.inEllipseRadii()->fName);
// setup pass through color
if (!ee.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ee.inPosition()->fName);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
ee.localMatrix(), args.fTransformsIn, args.fTransformsOut);
// for outer curve
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(),
ellipseRadii.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
// for inner curve
if (ee.isStroked()) {
fsBuilder->codeAppendf("scaledOffset = %s*%s.zw;",
ellipseOffsets.fsIn(), ellipseRadii.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;",
ellipseRadii.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const EllipseEdgeEffect& ee = gp.cast<EllipseEdgeEffect>();
uint16_t key = ee.isStroked() ? 0x1 : 0x0;
key |= ee.usesLocalCoords() && ee.localMatrix().hasPerspective() ? 0x2 : 0x0;
key |= ee.colorIgnored() ? 0x4 : 0x0;
b->add32(key);
}
void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override {
const EllipseEdgeEffect& ee = gp.cast<EllipseEdgeEffect>();
if (ee.color() != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(ee.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = ee.color();
}
}
void setTransformData(const GrPrimitiveProcessor& primProc,
const GrGLProgramDataManager& pdman,
int index,
const SkTArray<const GrCoordTransform*, true>& transforms) override {
this->setTransformDataHelper<EllipseEdgeEffect>(primProc, pdman, index, transforms);
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLProcessor::GenKey(*this, caps, b);
}
GrGLPrimitiveProcessor* createGLInstance(const GrGLSLCaps&) const override {
return new GLProcessor();
}
private:
EllipseEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix,
bool usesLocalCoords)
: fColor(color)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords) {
this->initClassID<EllipseEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset",
kVec2f_GrVertexAttribType));
fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
const Attribute* fInPosition;
const Attribute* fInEllipseOffset;
const Attribute* fInEllipseRadii;
GrColor fColor;
SkMatrix fLocalMatrix;
bool fStroke;
bool fUsesLocalCoords;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect);
const GrGeometryProcessor* EllipseEdgeEffect::TestCreate(GrProcessorTestData* d) {
return EllipseEdgeEffect::Create(GrRandomColor(d->fRandom),
d->fRandom->nextBool(),
GrTest::TestMatrix(d->fRandom),
d->fRandom->nextBool());
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an ellipse,
* specified as a 2D offset from center for both the outer and inner paths (if stroked). The
* implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by
* using differentials.
*
* The result is device-independent and can be used with any affine matrix.
*/
class DIEllipseEdgeEffect : public GrGeometryProcessor {
public:
enum Mode { kStroke = 0, kHairline, kFill };
static GrGeometryProcessor* Create(GrColor color, const SkMatrix& viewMatrix, Mode mode,
bool usesLocalCoords) {
return new DIEllipseEdgeEffect(color, viewMatrix, mode, usesLocalCoords);
}
virtual ~DIEllipseEdgeEffect() {}
const char* name() const override { return "DIEllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; }
const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; }
GrColor color() const { return fColor; }
bool colorIgnored() const { return GrColor_ILLEGAL == fColor; }
const SkMatrix& viewMatrix() const { return fViewMatrix; }
bool usesLocalCoords() const { return fUsesLocalCoords; }
inline Mode getMode() const { return fMode; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor()
: fViewMatrix(SkMatrix::InvalidMatrix()), fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const DIEllipseEdgeEffect& ee = args.fGP.cast<DIEllipseEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ee);
GrGLVertToFrag offsets0(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets0", &offsets0);
vsBuilder->codeAppendf("%s = %s;", offsets0.vsOut(),
ee.inEllipseOffsets0()->fName);
GrGLVertToFrag offsets1(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets1", &offsets1);
vsBuilder->codeAppendf("%s = %s;", offsets1.vsOut(),
ee.inEllipseOffsets1()->fName);
// setup pass through color
if (!ee.colorIgnored()) {
this->setupUniformColor(pb, args.fOutputColor, &fColorUniform);
}
// Setup position
this->setupPosition(pb, gpArgs, ee.inPosition()->fName, ee.viewMatrix(),
&fViewMatrixUniform);
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
args.fTransformsIn, args.fTransformsOut);
GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// for outer curve
fsBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
if (kHairline == ee.getMode()) {
// can probably do this with one step
fsBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);");
fsBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);");
} else {
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
}
// for inner curve
if (kStroke == ee.getMode()) {
fsBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(),
offsets1.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
const DIEllipseEdgeEffect& ellipseEffect = gp.cast<DIEllipseEdgeEffect>();
uint16_t key = ellipseEffect.getMode();
key |= ellipseEffect.colorIgnored() << 9;
key |= ComputePosKey(ellipseEffect.viewMatrix()) << 10;
b->add32(key);
}
void setData(const GrGLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override {
const DIEllipseEdgeEffect& dee = gp.cast<DIEllipseEdgeEffect>();
if (!dee.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dee.viewMatrix())) {
fViewMatrix = dee.viewMatrix();
GrGLfloat viewMatrix[3 * 3];
GrGLGetMatrix<3>(viewMatrix, fViewMatrix);
pdman.setMatrix3f(fViewMatrixUniform, viewMatrix);
}
if (dee.color() != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(dee.color(), c);
pdman.set4fv(fColorUniform, 1, c);
fColor = dee.color();
}
}
private:
SkMatrix fViewMatrix;
GrColor fColor;
UniformHandle fColorUniform;
UniformHandle fViewMatrixUniform;
typedef GrGLGeometryProcessor INHERITED;
};
void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLProcessor::GenKey(*this, caps, b);
}
GrGLPrimitiveProcessor* createGLInstance(const GrGLSLCaps&) const override {
return new GLProcessor();
}
private:
DIEllipseEdgeEffect(GrColor color, const SkMatrix& viewMatrix, Mode mode,
bool usesLocalCoords)
: fColor(color)
, fViewMatrix(viewMatrix)
, fUsesLocalCoords(usesLocalCoords) {
this->initClassID<DIEllipseEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType,
kHigh_GrSLPrecision));
fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0",
kVec2f_GrVertexAttribType));
fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1",
kVec2f_GrVertexAttribType));
fMode = mode;
}
const Attribute* fInPosition;
const Attribute* fInEllipseOffsets0;
const Attribute* fInEllipseOffsets1;
GrColor fColor;
SkMatrix fViewMatrix;
Mode fMode;
bool fUsesLocalCoords;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect);
const GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(GrProcessorTestData* d) {
return DIEllipseEdgeEffect::Create(GrRandomColor(d->fRandom),
GrTest::TestMatrix(d->fRandom),
(Mode)(d->fRandom->nextRangeU(0,2)),
d->fRandom->nextBool());
}
///////////////////////////////////////////////////////////////////////////////
bool GrOvalRenderer::DrawOval(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRect& oval,
const SkStrokeRec& stroke) {
bool useCoverageAA = useAA && !pipelineBuilder.getRenderTarget()->isUnifiedMultisampled();
if (!useCoverageAA) {
return false;
}
// we can draw circles
if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) {
DrawCircle(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval, stroke);
// if we have shader derivative support, render as device-independent
} else if (target->caps()->shaderCaps()->shaderDerivativeSupport()) {
return DrawDIEllipse(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval,
stroke);
// otherwise axis-aligned ellipses only
} else if (viewMatrix.rectStaysRect()) {
return DrawEllipse(target, pipelineBuilder, color, viewMatrix, useCoverageAA, oval,
stroke);
} else {
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
class CircleBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fDevBounds;
SkScalar fInnerRadius;
SkScalar fOuterRadius;
GrColor fColor;
bool fStroke;
};
static GrDrawBatch* Create(const Geometry& geometry) { return new CircleBatch(geometry); }
const char* name() const override { return "CircleBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fStroke = fGeoData[0].fStroke;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
void onPrepareDraws(Target* target) override {
SkMatrix invert;
if (!this->viewMatrix().invert(&invert)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(CircleEdgeEffect::Create(this->color(),
this->stroke(),
invert,
this->usesLocalCoords()));
target->initDraw(gp, this->pipeline());
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(CircleVertex));
QuadHelper helper;
CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target, vertexStride,
instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
Geometry& geom = fGeoData[i];
SkScalar innerRadius = geom.fInnerRadius;
SkScalar outerRadius = geom.fOuterRadius;
const SkRect& bounds = geom.fDevBounds;
// The inner radius in the vertex data must be specified in normalized space.
innerRadius = innerRadius / outerRadius;
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOffset = SkPoint::Make(-1, -1);
verts[0].fOuterRadius = outerRadius;
verts[0].fInnerRadius = innerRadius;
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOffset = SkPoint::Make(-1, 1);
verts[1].fOuterRadius = outerRadius;
verts[1].fInnerRadius = innerRadius;
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOffset = SkPoint::Make(1, 1);
verts[2].fOuterRadius = outerRadius;
verts[2].fInnerRadius = innerRadius;
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOffset = SkPoint::Make(1, -1);
verts[3].fOuterRadius = outerRadius;
verts[3].fInnerRadius = innerRadius;
verts += kVerticesPerQuad;
}
helper.recordDraw(target);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
CircleBatch(const Geometry& geometry) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
CircleBatch* that = t->cast<CircleBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
// TODO use vertex color to avoid breaking batches
if (this->color() != that->color()) {
return false;
}
if (this->stroke() != that->stroke()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool stroke() const { return fBatch.fStroke; }
struct BatchTracker {
GrColor fColor;
bool fStroke;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_circle_batch(GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& circle,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width()));
SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth());
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = radius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(strokeWidth)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(strokeWidth);
}
outerRadius += halfWidth;
if (isStrokeOnly) {
innerRadius = radius - halfWidth;
}
}
// The radii are outset for two reasons. First, it allows the shader to simply perform simpler
// computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is rendered
// and the outset ensures the box will cover all partially covered by the circle.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
CircleBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fInnerRadius = innerRadius;
geometry.fOuterRadius = outerRadius;
geometry.fStroke = isStrokeOnly && innerRadius > 0;
geometry.fDevBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius,
center.fX + outerRadius, center.fY + outerRadius);
return CircleBatch::Create(geometry);
}
void GrOvalRenderer::DrawCircle(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& circle,
const SkStrokeRec& stroke) {
SkAutoTUnref<GrDrawBatch> batch(create_circle_batch(color, viewMatrix, useCoverageAA, circle,
stroke));
target->drawBatch(pipelineBuilder, batch);
}
///////////////////////////////////////////////////////////////////////////////
class EllipseBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fDevBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
GrColor fColor;
bool fStroke;
};
static GrDrawBatch* Create(const Geometry& geometry) { return new EllipseBatch(geometry); }
const char* name() const override { return "EllipseBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsCoverage()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fStroke = fGeoData[0].fStroke;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
void onPrepareDraws(Target* target) override {
SkMatrix invert;
if (!this->viewMatrix().invert(&invert)) {
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(EllipseEdgeEffect::Create(this->color(),
this->stroke(),
invert,
this->usesLocalCoords()));
target->initDraw(gp, this->pipeline());
int instanceCount = fGeoData.count();
QuadHelper helper;
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(EllipseVertex));
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(
helper.init(target, vertexStride, instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
Geometry& geom = fGeoData[i];
SkScalar xRadius = geom.fXRadius;
SkScalar yRadius = geom.fYRadius;
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(xRadius);
SkScalar yRadRecip = SkScalarInvert(yRadius);
SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius);
const SkRect& bounds = geom.fDevBounds;
// The inner radius in the vertex data must be specified in normalized space.
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius);
verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOffset = SkPoint::Make(-xRadius, yRadius);
verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOffset = SkPoint::Make(xRadius, yRadius);
verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOffset = SkPoint::Make(xRadius, -yRadius);
verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts += kVerticesPerQuad;
}
helper.recordDraw(target);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
EllipseBatch(const Geometry& geometry) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
EllipseBatch* that = t->cast<EllipseBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
// TODO use vertex color to avoid breaking batches
if (this->color() != that->color()) {
return false;
}
if (this->stroke() != that->stroke()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool stroke() const { return fBatch.fStroke; }
struct BatchTracker {
GrColor fColor;
bool fStroke;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_ellipse_batch(GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
#ifdef SK_DEBUG
{
// we should have checked for this previously
bool isAxisAlignedEllipse = viewMatrix.rectStaysRect();
SkASSERT(useCoverageAA && isAxisAlignedEllipse);
}
#endif
// do any matrix crunching before we reset the draw state for device coords
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar ellipseXRadius = SkScalarHalf(ellipse.width());
SkScalar ellipseYRadius = SkScalarHalf(ellipse.height());
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius +
viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius +
viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius);
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return nullptr;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
}
// We've extended the outer x radius out half a pixel to antialias.
// This will also expand the rect so all the pixels will be captured.
// TODO: Consider if we should use sqrt(2)/2 instead
xRadius += SK_ScalarHalf;
yRadius += SK_ScalarHalf;
EllipseBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fStroke = isStrokeOnly && innerXRadius > 0 && innerYRadius > 0;
geometry.fDevBounds = SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius,
center.fX + xRadius, center.fY + yRadius);
return EllipseBatch::Create(geometry);
}
bool GrOvalRenderer::DrawEllipse(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkAutoTUnref<GrDrawBatch> batch(create_ellipse_batch(color, viewMatrix, useCoverageAA, ellipse,
stroke));
if (!batch) {
return false;
}
target->drawBatch(pipelineBuilder, batch);
return true;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
class DIEllipseBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
SkScalar fGeoDx;
SkScalar fGeoDy;
GrColor fColor;
DIEllipseEdgeEffect::Mode fMode;
};
static GrDrawBatch* Create(const Geometry& geometry, const SkRect& bounds) {
return new DIEllipseBatch(geometry, bounds);
}
const char* name() const override { return "DIEllipseBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fMode = fGeoData[0].fMode;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
void onPrepareDraws(Target* target) override {
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(DIEllipseEdgeEffect::Create(this->color(),
this->viewMatrix(),
this->mode(),
this->usesLocalCoords()));
target->initDraw(gp, this->pipeline());
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(DIEllipseVertex));
QuadHelper helper;
DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>(
helper.init(target, vertexStride, instanceCount));
if (!verts) {
return;
}
for (int i = 0; i < instanceCount; i++) {
Geometry& geom = fGeoData[i];
SkScalar xRadius = geom.fXRadius;
SkScalar yRadius = geom.fYRadius;
const SkRect& bounds = geom.fBounds;
// This adjusts the "radius" to include the half-pixel border
SkScalar offsetDx = geom.fGeoDx / xRadius;
SkScalar offsetDy = geom.fGeoDy / yRadius;
SkScalar innerRatioX = xRadius / geom.fInnerXRadius;
SkScalar innerRatioY = yRadius / geom.fInnerYRadius;
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy);
verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy);
verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy);
verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy);
verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy);
verts += kVerticesPerQuad;
}
helper.recordDraw(target);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
DIEllipseBatch(const Geometry& geometry, const SkRect& bounds) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(bounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
DIEllipseBatch* that = t->cast<DIEllipseBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
// TODO use vertex color to avoid breaking batches
if (this->color() != that->color()) {
return false;
}
if (this->mode() != that->mode()) {
return false;
}
// TODO rewrite to allow positioning on CPU
if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
DIEllipseEdgeEffect::Mode mode() const { return fBatch.fMode; }
struct BatchTracker {
GrColor fColor;
DIEllipseEdgeEffect::Mode fMode;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_diellipse_batch(GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
SkScalar xRadius = SkScalarHalf(ellipse.width());
SkScalar yRadius = SkScalarHalf(ellipse.height());
SkStrokeRec::Style style = stroke.getStyle();
DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ?
DIEllipseEdgeEffect::kStroke :
(SkStrokeRec::kHairline_Style == style) ?
DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) {
SkScalar strokeWidth = stroke.getWidth();
if (SkScalarNearlyZero(strokeWidth)) {
strokeWidth = SK_ScalarHalf;
} else {
strokeWidth *= SK_ScalarHalf;
}
// we only handle thick strokes for near-circular ellipses
if (strokeWidth > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius ||
strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) {
return nullptr;
}
// set inner radius (if needed)
if (SkStrokeRec::kStroke_Style == style) {
innerXRadius = xRadius - strokeWidth;
innerYRadius = yRadius - strokeWidth;
}
xRadius += strokeWidth;
yRadius += strokeWidth;
}
if (DIEllipseEdgeEffect::kStroke == mode) {
mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke :
DIEllipseEdgeEffect::kFill;
}
// This expands the outer rect so that after CTM we end up with a half-pixel border
SkScalar a = viewMatrix[SkMatrix::kMScaleX];
SkScalar b = viewMatrix[SkMatrix::kMSkewX];
SkScalar c = viewMatrix[SkMatrix::kMSkewY];
SkScalar d = viewMatrix[SkMatrix::kMScaleY];
SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c);
SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d);
DIEllipseBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fGeoDx = geoDx;
geometry.fGeoDy = geoDy;
geometry.fMode = mode;
geometry.fBounds = SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy,
center.fX + xRadius + geoDx, center.fY + yRadius + geoDy);
SkRect devBounds = geometry.fBounds;
viewMatrix.mapRect(&devBounds);
return DIEllipseBatch::Create(geometry, devBounds);
}
bool GrOvalRenderer::DrawDIEllipse(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkAutoTUnref<GrDrawBatch> batch(create_diellipse_batch(color, viewMatrix, useCoverageAA,
ellipse, stroke));
if (!batch) {
return false;
}
target->drawBatch(pipelineBuilder, batch);
return true;
}
///////////////////////////////////////////////////////////////////////////////
static const uint16_t gRRectIndices[] = {
// corners
0, 1, 5, 0, 5, 4,
2, 3, 7, 2, 7, 6,
8, 9, 13, 8, 13, 12,
10, 11, 15, 10, 15, 14,
// edges
1, 2, 6, 1, 6, 5,
4, 5, 9, 4, 9, 8,
6, 7, 11, 6, 11, 10,
9, 10, 14, 9, 14, 13,
// center
// we place this at the end so that we can ignore these indices when rendering stroke-only
5, 6, 10, 5, 10, 9
};
static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6;
static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices);
static const int kVertsPerRRect = 16;
static const int kNumRRectsInIndexBuffer = 256;
GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey);
GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey);
static const GrIndexBuffer* ref_rrect_index_buffer(bool strokeOnly,
GrResourceProvider* resourceProvider) {
GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey);
GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey);
if (strokeOnly) {
return resourceProvider->findOrCreateInstancedIndexBuffer(
gRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, kVertsPerRRect,
gStrokeRRectOnlyIndexBufferKey);
} else {
return resourceProvider->findOrCreateInstancedIndexBuffer(
gRRectIndices, kIndicesPerRRect, kNumRRectsInIndexBuffer, kVertsPerRRect,
gRRectOnlyIndexBufferKey);
}
}
bool GrOvalRenderer::DrawDRRect(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRRect& origOuter,
const SkRRect& origInner) {
bool applyAA = useAA && !pipelineBuilder.getRenderTarget()->isUnifiedMultisampled();
GrPipelineBuilder::AutoRestoreFragmentProcessorState arfps;
if (!origInner.isEmpty()) {
SkTCopyOnFirstWrite<SkRRect> inner(origInner);
if (!viewMatrix.isIdentity()) {
if (!origInner.transform(viewMatrix, inner.writable())) {
return false;
}
}
GrPrimitiveEdgeType edgeType = applyAA ?
kInverseFillAA_GrProcessorEdgeType :
kInverseFillBW_GrProcessorEdgeType;
// TODO this needs to be a geometry processor
GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner);
if (nullptr == fp) {
return false;
}
arfps.set(&pipelineBuilder);
arfps.addCoverageFragmentProcessor(fp)->unref();
}
SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle);
if (DrawRRect(target, pipelineBuilder, color, viewMatrix, useAA, origOuter, fillRec)) {
return true;
}
SkASSERT(!origOuter.isEmpty());
SkTCopyOnFirstWrite<SkRRect> outer(origOuter);
if (!viewMatrix.isIdentity()) {
if (!origOuter.transform(viewMatrix, outer.writable())) {
return false;
}
}
GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType :
kFillBW_GrProcessorEdgeType;
GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer);
if (nullptr == effect) {
return false;
}
if (!arfps.isSet()) {
arfps.set(&pipelineBuilder);
}
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return false;
}
arfps.addCoverageFragmentProcessor(effect)->unref();
SkRect bounds = outer->getBounds();
if (applyAA) {
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
}
target->drawNonAARect(pipelineBuilder, color, SkMatrix::I(), bounds, invert);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class RRectCircleRendererBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fDevBounds;
SkScalar fInnerRadius;
SkScalar fOuterRadius;
GrColor fColor;
bool fStroke;
};
static GrDrawBatch* Create(const Geometry& geometry) {
return new RRectCircleRendererBatch(geometry);
}
const char* name() const override { return "RRectCircleBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fStroke = fGeoData[0].fStroke;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
void onPrepareDraws(Target* target) override {
// reset to device coordinates
SkMatrix invert;
if (!this->viewMatrix().invert(&invert)) {
SkDebugf("Failed to invert\n");
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(CircleEdgeEffect::Create(this->color(),
this->stroke(),
invert,
this->usesLocalCoords()));
target->initDraw(gp, this->pipeline());
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(CircleVertex));
// drop out the middle quad if we're stroked
int indicesPerInstance = this->stroke() ? kIndicesPerStrokeRRect : kIndicesPerRRect;
SkAutoTUnref<const GrIndexBuffer> indexBuffer(
ref_rrect_index_buffer(this->stroke(), target->resourceProvider()));
InstancedHelper helper;
CircleVertex* verts = reinterpret_cast<CircleVertex*>(helper.init(target,
kTriangles_GrPrimitiveType, vertexStride, indexBuffer, kVertsPerRRect,
indicesPerInstance, instanceCount));
if (!verts || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
Geometry& args = fGeoData[i];
SkScalar outerRadius = args.fOuterRadius;
const SkRect& bounds = args.fDevBounds;
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + outerRadius,
bounds.fBottom - outerRadius,
bounds.fBottom
};
SkScalar yOuterRadii[4] = {-1, 0, 0, 1 };
// The inner radius in the vertex data must be specified in normalized space.
SkScalar innerRadius = args.fInnerRadius / args.fOuterRadius;
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fOffset = SkPoint::Make(1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
}
}
helper.recordDraw(target);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
RRectCircleRendererBatch(const Geometry& geometry) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
RRectCircleRendererBatch* that = t->cast<RRectCircleRendererBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
// TODO use vertex color to avoid breaking batches
if (this->color() != that->color()) {
return false;
}
if (this->stroke() != that->stroke()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool stroke() const { return fBatch.fStroke; }
struct BatchTracker {
GrColor fColor;
bool fStroke;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
class RRectEllipseRendererBatch : public GrVertexBatch {
public:
DEFINE_BATCH_CLASS_ID
struct Geometry {
SkMatrix fViewMatrix;
SkRect fDevBounds;
SkScalar fXRadius;
SkScalar fYRadius;
SkScalar fInnerXRadius;
SkScalar fInnerYRadius;
GrColor fColor;
bool fStroke;
};
static GrDrawBatch* Create(const Geometry& geometry) {
return new RRectEllipseRendererBatch(geometry);
}
const char* name() const override { return "RRectEllipseRendererBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
private:
void initBatchTracker(const GrPipelineOptimizations& opt) override {
// Handle any color overrides
if (!opt.readsColor()) {
fGeoData[0].fColor = GrColor_ILLEGAL;
}
opt.getOverrideColorIfSet(&fGeoData[0].fColor);
// setup batch properties
fBatch.fColorIgnored = !opt.readsColor();
fBatch.fColor = fGeoData[0].fColor;
fBatch.fStroke = fGeoData[0].fStroke;
fBatch.fUsesLocalCoords = opt.readsLocalCoords();
fBatch.fCoverageIgnored = !opt.readsCoverage();
}
void onPrepareDraws(Target* target) override {
// reset to device coordinates
SkMatrix invert;
if (!this->viewMatrix().invert(&invert)) {
SkDebugf("Failed to invert\n");
return;
}
// Setup geometry processor
SkAutoTUnref<GrGeometryProcessor> gp(EllipseEdgeEffect::Create(this->color(),
this->stroke(),
invert,
this->usesLocalCoords()));
target->initDraw(gp, this->pipeline());
int instanceCount = fGeoData.count();
size_t vertexStride = gp->getVertexStride();
SkASSERT(vertexStride == sizeof(EllipseVertex));
// drop out the middle quad if we're stroked
int indicesPerInstance = this->stroke() ? kIndicesPerStrokeRRect : kIndicesPerRRect;
SkAutoTUnref<const GrIndexBuffer> indexBuffer(
ref_rrect_index_buffer(this->stroke(), target->resourceProvider()));
InstancedHelper helper;
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(
helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer,
kVertsPerRRect, indicesPerInstance, instanceCount));
if (!verts || !indexBuffer) {
SkDebugf("Could not allocate vertices\n");
return;
}
for (int i = 0; i < instanceCount; i++) {
Geometry& args = fGeoData[i];
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(args.fXRadius);
SkScalar yRadRecip = SkScalarInvert(args.fYRadius);
SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius);
// Extend the radii out half a pixel to antialias.
SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf;
SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf;
const SkRect& bounds = args.fDevBounds;
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + yOuterRadius,
bounds.fBottom - yOuterRadius,
bounds.fBottom
};
SkScalar yOuterOffsets[4] = {
yOuterRadius,
SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0
SK_ScalarNearlyZero,
yOuterRadius
};
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
}
}
helper.recordDraw(target);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
RRectEllipseRendererBatch(const Geometry& geometry) : INHERITED(ClassID()) {
fGeoData.push_back(geometry);
this->setBounds(geometry.fDevBounds);
}
bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
RRectEllipseRendererBatch* that = t->cast<RRectEllipseRendererBatch>();
if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
that->bounds(), caps)) {
return false;
}
// TODO use vertex color to avoid breaking batches
if (this->color() != that->color()) {
return false;
}
if (this->stroke() != that->stroke()) {
return false;
}
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool stroke() const { return fBatch.fStroke; }
struct BatchTracker {
GrColor fColor;
bool fStroke;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
typedef GrVertexBatch INHERITED;
};
static GrDrawBatch* create_rrect_batch(GrColor color,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const SkStrokeRec& stroke) {
SkASSERT(viewMatrix.rectStaysRect());
SkASSERT(rrect.isSimple());
SkASSERT(!rrect.isOval());
// RRect batchs only handle simple, but not too simple, rrects
// do any matrix crunching before we reset the draw state for device coords
const SkRect& rrectBounds = rrect.getBounds();
SkRect bounds;
viewMatrix.mapRect(&bounds, rrectBounds);
SkVector radii = rrect.getSimpleRadii();
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX +
viewMatrix[SkMatrix::kMSkewY]*radii.fY);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX +
viewMatrix[SkMatrix::kMScaleY]*radii.fY);
SkStrokeRec::Style style = stroke.getStyle();
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
if (hasStroke) {
if (SkStrokeRec::kHairline_Style == style) {
scaledStroke.set(1, 1);
} else {
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
}
// if half of strokewidth is greater than radius, we don't handle that right now
if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) {
return nullptr;
}
}
// The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on
// the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine-
// patch will have fractional coverage. This only matters when the interior is actually filled.
// We could consider falling back to rect rendering here, since a tiny radius is
// indistinguishable from a square corner.
if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) {
return nullptr;
}
// if the corners are circles, use the circle renderer
if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) {
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = xRadius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.fX)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(scaledStroke.fX);
}
if (isStrokeOnly) {
innerRadius = xRadius - halfWidth;
}
outerRadius += halfWidth;
bounds.outset(halfWidth, halfWidth);
}
isStrokeOnly = (isStrokeOnly && innerRadius >= 0);
// The radii are outset for two reasons. First, it allows the shader to simply perform
// simpler computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is
// rendered and the outset ensures the box will cover all partially covered by the rrect
// corners.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
RRectCircleRendererBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fInnerRadius = innerRadius;
geometry.fOuterRadius = outerRadius;
geometry.fStroke = isStrokeOnly;
geometry.fDevBounds = bounds;
return RRectCircleRendererBatch::Create(geometry);
// otherwise we use the ellipse renderer
} else {
SkScalar innerXRadius = 0.0f;
SkScalar innerYRadius = 0.0f;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return nullptr;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return nullptr;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
bounds.outset(scaledStroke.fX, scaledStroke.fY);
}
isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0);
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
RRectEllipseRendererBatch::Geometry geometry;
geometry.fViewMatrix = viewMatrix;
geometry.fColor = color;
geometry.fXRadius = xRadius;
geometry.fYRadius = yRadius;
geometry.fInnerXRadius = innerXRadius;
geometry.fInnerYRadius = innerYRadius;
geometry.fStroke = isStrokeOnly;
geometry.fDevBounds = bounds;
return RRectEllipseRendererBatch::Create(geometry);
}
}
bool GrOvalRenderer::DrawRRect(GrDrawTarget* target,
const GrPipelineBuilder& pipelineBuilder,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRRect& rrect,
const SkStrokeRec& stroke) {
if (rrect.isOval()) {
return DrawOval(target, pipelineBuilder, color, viewMatrix, useAA, rrect.getBounds(),
stroke);
}
bool useCoverageAA = useAA && !pipelineBuilder.getRenderTarget()->isUnifiedMultisampled();
// only anti-aliased rrects for now
if (!useCoverageAA) {
return false;
}
if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) {
return false;
}
SkAutoTUnref<GrDrawBatch> batch(create_rrect_batch(color, viewMatrix, rrect, stroke));
if (!batch) {
return false;
}
target->drawBatch(pipelineBuilder, batch);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
DRAW_BATCH_TEST_DEFINE(CircleBatch) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
GrColor color = GrRandomColor(random);
bool useCoverageAA = random->nextBool();
SkRect circle = GrTest::TestSquare(random);
return create_circle_batch(color, viewMatrix, useCoverageAA, circle,
GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(EllipseBatch) {
SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random);
GrColor color = GrRandomColor(random);
SkRect ellipse = GrTest::TestSquare(random);
return create_ellipse_batch(color, viewMatrix, true, ellipse,
GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(DIEllipseBatch) {
SkMatrix viewMatrix = GrTest::TestMatrix(random);
GrColor color = GrRandomColor(random);
bool useCoverageAA = random->nextBool();
SkRect ellipse = GrTest::TestSquare(random);
return create_diellipse_batch(color, viewMatrix, useCoverageAA, ellipse,
GrTest::TestStrokeRec(random));
}
DRAW_BATCH_TEST_DEFINE(RRectBatch) {
SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random);
GrColor color = GrRandomColor(random);
const SkRRect& rrect = GrTest::TestRRectSimple(random);
return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random));
}
#endif