blob: 3dfdc9daeeb88d3e86de78980e6f9bc97a41b33a [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkReduceOrder.h"
int SkReduceOrder::reduce(const SkDLine& line) {
fLine[0] = line[0];
int different = line[0] != line[1];
fLine[1] = line[different];
return 1 + different;
}
static double interp_quad_coords(double a, double b, double c, double t) {
double ab = SkDInterp(a, b, t);
double bc = SkDInterp(b, c, t);
return SkDInterp(ab, bc, t);
}
static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
reduction[0] = reduction[1] = quad[0];
return 1;
}
static int reductionLineCount(const SkDQuad& reduction) {
return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}
static int vertical_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle,
SkDQuad& reduction) {
double tValue;
reduction[0] = quad[0];
reduction[1] = quad[2];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int smaller = reduction[1].fY > reduction[0].fY;
int larger = smaller ^ 1;
if (SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue)) {
double yExtrema = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue);
if (reduction[smaller].fY > yExtrema) {
reduction[smaller].fY = yExtrema;
} else if (reduction[larger].fY < yExtrema) {
reduction[larger].fY = yExtrema;
}
}
return reductionLineCount(reduction);
}
static int horizontal_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle,
SkDQuad& reduction) {
double tValue;
reduction[0] = quad[0];
reduction[1] = quad[2];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int smaller = reduction[1].fX > reduction[0].fX;
int larger = smaller ^ 1;
if (SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue)) {
double xExtrema = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue);
if (reduction[smaller].fX > xExtrema) {
reduction[smaller].fX = xExtrema;
} else if (reduction[larger].fX < xExtrema) {
reduction[larger].fX = xExtrema;
}
}
return reductionLineCount(reduction);
}
static int check_linear(const SkDQuad& quad, SkReduceOrder::Style reduceStyle,
int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
int startIndex = 0;
int endIndex = 2;
while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
--endIndex;
if (endIndex == 0) {
SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
SkASSERT(0);
}
}
if (!quad.isLinear(startIndex, endIndex)) {
return 0;
}
// four are colinear: return line formed by outside
reduction[0] = quad[0];
reduction[1] = quad[2];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int sameSide;
bool useX = quad[maxX].fX - quad[minX].fX >= quad[maxY].fY - quad[minY].fY;
if (useX) {
sameSide = SkDSign(quad[0].fX - quad[1].fX) + SkDSign(quad[2].fX - quad[1].fX);
} else {
sameSide = SkDSign(quad[0].fY - quad[1].fY) + SkDSign(quad[2].fY - quad[1].fY);
}
if ((sameSide & 3) != 2) {
return reductionLineCount(reduction);
}
double tValue;
int root;
if (useX) {
root = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue);
} else {
root = SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue);
}
if (root) {
SkDPoint extrema;
extrema.fX = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue);
extrema.fY = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue);
// sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller
int replace;
if (useX) {
if ((extrema.fX < quad[0].fX) ^ (extrema.fX < quad[2].fX)) {
return reductionLineCount(reduction);
}
replace = ((extrema.fX < quad[0].fX) | (extrema.fX < quad[2].fX))
^ (quad[0].fX < quad[2].fX);
} else {
if ((extrema.fY < quad[0].fY) ^ (extrema.fY < quad[2].fY)) {
return reductionLineCount(reduction);
}
replace = ((extrema.fY < quad[0].fY) | (extrema.fY < quad[2].fY))
^ (quad[0].fY < quad[2].fY);
}
reduction[replace] = extrema;
}
return reductionLineCount(reduction);
}
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
// note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
// save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDQuad& quad, Style reduceStyle) {
int index, minX, maxX, minY, maxY;
int minXSet, minYSet;
minX = maxX = minY = maxY = 0;
minXSet = minYSet = 0;
for (index = 1; index < 3; ++index) {
if (quad[minX].fX > quad[index].fX) {
minX = index;
}
if (quad[minY].fY > quad[index].fY) {
minY = index;
}
if (quad[maxX].fX < quad[index].fX) {
maxX = index;
}
if (quad[maxY].fY < quad[index].fY) {
maxY = index;
}
}
for (index = 0; index < 3; ++index) {
if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
minXSet |= 1 << index;
}
if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
minYSet |= 1 << index;
}
}
if (minXSet == 0x7) { // test for vertical line
if (minYSet == 0x7) { // return 1 if all four are coincident
return coincident_line(quad, fQuad);
}
return vertical_line(quad, reduceStyle, fQuad);
}
if (minYSet == 0xF) { // test for horizontal line
return horizontal_line(quad, reduceStyle, fQuad);
}
int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, fQuad);
if (result) {
return result;
}
fQuad = quad;
return 3;
}
////////////////////////////////////////////////////////////////////////////////////
static double interp_cubic_coords(const double* src, double t) {
double ab = SkDInterp(src[0], src[2], t);
double bc = SkDInterp(src[2], src[4], t);
double cd = SkDInterp(src[4], src[6], t);
double abc = SkDInterp(ab, bc, t);
double bcd = SkDInterp(bc, cd, t);
return SkDInterp(abc, bcd, t);
}
static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
reduction[0] = reduction[1] = cubic[0];
return 1;
}
static int reductionLineCount(const SkDCubic& reduction) {
return 1 + !reduction[0].approximatelyEqual(reduction[1]);
}
static int vertical_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle,
SkDCubic& reduction) {
double tValues[2];
reduction[0] = cubic[0];
reduction[1] = cubic[3];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int smaller = reduction[1].fY > reduction[0].fY;
int larger = smaller ^ 1;
int roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues);
for (int index = 0; index < roots; ++index) {
double yExtrema = interp_cubic_coords(&cubic[0].fY, tValues[index]);
if (reduction[smaller].fY > yExtrema) {
reduction[smaller].fY = yExtrema;
continue;
}
if (reduction[larger].fY < yExtrema) {
reduction[larger].fY = yExtrema;
}
}
return reductionLineCount(reduction);
}
static int horizontal_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle,
SkDCubic& reduction) {
double tValues[2];
reduction[0] = cubic[0];
reduction[1] = cubic[3];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int smaller = reduction[1].fX > reduction[0].fX;
int larger = smaller ^ 1;
int roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues);
for (int index = 0; index < roots; ++index) {
double xExtrema = interp_cubic_coords(&cubic[0].fX, tValues[index]);
if (reduction[smaller].fX > xExtrema) {
reduction[smaller].fX = xExtrema;
continue;
}
if (reduction[larger].fX < xExtrema) {
reduction[larger].fX = xExtrema;
}
}
return reductionLineCount(reduction);
}
// check to see if it is a quadratic or a line
static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
double dx10 = cubic[1].fX - cubic[0].fX;
double dx23 = cubic[2].fX - cubic[3].fX;
double midX = cubic[0].fX + dx10 * 3 / 2;
double sideAx = midX - cubic[3].fX;
double sideBx = dx23 * 3 / 2;
if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
: !AlmostEqualUlps(sideAx, sideBx)) {
return 0;
}
double dy10 = cubic[1].fY - cubic[0].fY;
double dy23 = cubic[2].fY - cubic[3].fY;
double midY = cubic[0].fY + dy10 * 3 / 2;
double sideAy = midY - cubic[3].fY;
double sideBy = dy23 * 3 / 2;
if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
: !AlmostEqualUlps(sideAy, sideBy)) {
return 0;
}
reduction[0] = cubic[0];
reduction[1].fX = midX;
reduction[1].fY = midY;
reduction[2] = cubic[3];
return 3;
}
static int check_linear(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle,
int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
int startIndex = 0;
int endIndex = 3;
while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
--endIndex;
if (endIndex == 0) {
SkDebugf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__);
SkASSERT(0);
}
}
if (!cubic.isLinear(startIndex, endIndex)) {
return 0;
}
// four are colinear: return line formed by outside
reduction[0] = cubic[0];
reduction[1] = cubic[3];
if (reduceStyle == SkReduceOrder::kFill_Style) {
return reductionLineCount(reduction);
}
int sameSide1;
int sameSide2;
bool useX = cubic[maxX].fX - cubic[minX].fX >= cubic[maxY].fY - cubic[minY].fY;
if (useX) {
sameSide1 = SkDSign(cubic[0].fX - cubic[1].fX) + SkDSign(cubic[3].fX - cubic[1].fX);
sameSide2 = SkDSign(cubic[0].fX - cubic[2].fX) + SkDSign(cubic[3].fX - cubic[2].fX);
} else {
sameSide1 = SkDSign(cubic[0].fY - cubic[1].fY) + SkDSign(cubic[3].fY - cubic[1].fY);
sameSide2 = SkDSign(cubic[0].fY - cubic[2].fY) + SkDSign(cubic[3].fY - cubic[2].fY);
}
if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) {
return reductionLineCount(reduction);
}
double tValues[2];
int roots;
if (useX) {
roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues);
} else {
roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues);
}
for (int index = 0; index < roots; ++index) {
SkDPoint extrema;
extrema.fX = interp_cubic_coords(&cubic[0].fX, tValues[index]);
extrema.fY = interp_cubic_coords(&cubic[0].fY, tValues[index]);
// sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller
int replace;
if (useX) {
if ((extrema.fX < cubic[0].fX) ^ (extrema.fX < cubic[3].fX)) {
continue;
}
replace = ((extrema.fX < cubic[0].fX) | (extrema.fX < cubic[3].fX))
^ (cubic[0].fX < cubic[3].fX);
} else {
if ((extrema.fY < cubic[0].fY) ^ (extrema.fY < cubic[3].fY)) {
continue;
}
replace = ((extrema.fY < cubic[0].fY) | (extrema.fY < cubic[3].fY))
^ (cubic[0].fY < cubic[3].fY);
}
reduction[replace] = extrema;
}
return reductionLineCount(reduction);
}
/* food for thought:
http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
corresponding quadratic Bezier are (given in convex combinations of
points):
q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
Of course, this curve does not interpolate the end-points, but it would
be interesting to see the behaviour of such a curve in an applet.
--
Kalle Rutanen
http://kaba.hilvi.org
*/
// reduce to a quadratic or smaller
// look for identical points
// look for all four points in a line
// note that three points in a line doesn't simplify a cubic
// look for approximation with single quadratic
// save approximation with multiple quadratics for later
int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics,
Style reduceStyle) {
int index, minX, maxX, minY, maxY;
int minXSet, minYSet;
minX = maxX = minY = maxY = 0;
minXSet = minYSet = 0;
for (index = 1; index < 4; ++index) {
if (cubic[minX].fX > cubic[index].fX) {
minX = index;
}
if (cubic[minY].fY > cubic[index].fY) {
minY = index;
}
if (cubic[maxX].fX < cubic[index].fX) {
maxX = index;
}
if (cubic[maxY].fY < cubic[index].fY) {
maxY = index;
}
}
for (index = 0; index < 4; ++index) {
double cx = cubic[index].fX;
double cy = cubic[index].fY;
double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
if (denom == 0) {
minXSet |= 1 << index;
minYSet |= 1 << index;
continue;
}
double inv = 1 / denom;
if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
minXSet |= 1 << index;
}
if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
minYSet |= 1 << index;
}
}
if (minXSet == 0xF) { // test for vertical line
if (minYSet == 0xF) { // return 1 if all four are coincident
return coincident_line(cubic, fCubic);
}
return vertical_line(cubic, reduceStyle, fCubic);
}
if (minYSet == 0xF) { // test for horizontal line
return horizontal_line(cubic, reduceStyle, fCubic);
}
int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, fCubic);
if (result) {
return result;
}
if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
&& (result = check_quadratic(cubic, fCubic))) {
return result;
}
fCubic = cubic;
return 4;
}
SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
SkDQuad quad;
quad.set(a);
SkReduceOrder reducer;
int order = reducer.reduce(quad, kFill_Style);
if (order == 2) { // quad became line
for (int index = 0; index < order; ++index) {
*reducePts++ = reducer.fLine[index].asSkPoint();
}
}
return SkPathOpsPointsToVerb(order - 1);
}
SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
SkDCubic cubic;
cubic.set(a);
SkReduceOrder reducer;
int order = reducer.reduce(cubic, kAllow_Quadratics, kFill_Style);
if (order == 2 || order == 3) { // cubic became line or quad
for (int index = 0; index < order; ++index) {
*reducePts++ = reducer.fQuad[index].asSkPoint();
}
}
return SkPathOpsPointsToVerb(order - 1);
}