| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <functional> |
| #include <initializer_list> |
| #include <vector> |
| |
| #include "SkAutoPixmapStorage.h" |
| #include "SkBitmap.h" |
| #include "SkCanvas.h" |
| #include "SkColorSpacePriv.h" |
| #include "SkData.h" |
| #include "SkImageEncoder.h" |
| #include "SkImageGenerator.h" |
| #include "SkImage_Base.h" |
| #include "SkImagePriv.h" |
| #include "SkMakeUnique.h" |
| #include "SkPicture.h" |
| #include "SkPictureRecorder.h" |
| #include "SkPixelSerializer.h" |
| #include "SkRRect.h" |
| #include "SkStream.h" |
| #include "SkSurface.h" |
| #include "SkUtils.h" |
| #include "Test.h" |
| |
| #include "Resources.h" |
| #include "sk_tool_utils.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrContextPriv.h" |
| #include "GrGpu.h" |
| #include "GrResourceCache.h" |
| #include "GrTest.h" |
| #include "GrTexture.h" |
| #endif |
| |
| using namespace sk_gpu_test; |
| |
| SkImageInfo read_pixels_info(SkImage* image) { |
| if (as_IB(image)->onImageInfo().colorSpace()) { |
| return SkImageInfo::MakeS32(image->width(), image->height(), image->alphaType()); |
| } |
| |
| return SkImageInfo::MakeN32(image->width(), image->height(), image->alphaType()); |
| } |
| |
| static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA, |
| SkImage* b) { |
| const int widthA = subsetA ? subsetA->width() : a->width(); |
| const int heightA = subsetA ? subsetA->height() : a->height(); |
| |
| REPORTER_ASSERT(reporter, widthA == b->width()); |
| REPORTER_ASSERT(reporter, heightA == b->height()); |
| |
| // see https://bug.skia.org/3965 |
| //REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque()); |
| |
| SkAutoPixmapStorage pmapA, pmapB; |
| pmapA.alloc(read_pixels_info(a)); |
| pmapB.alloc(read_pixels_info(b)); |
| |
| const int srcX = subsetA ? subsetA->x() : 0; |
| const int srcY = subsetA ? subsetA->y() : 0; |
| |
| REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY)); |
| REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0)); |
| |
| const size_t widthBytes = widthA * 4; |
| for (int y = 0; y < heightA; ++y) { |
| REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes)); |
| } |
| } |
| static void draw_image_test_pattern(SkCanvas* canvas) { |
| canvas->clear(SK_ColorWHITE); |
| SkPaint paint; |
| paint.setColor(SK_ColorBLACK); |
| canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint); |
| } |
| static sk_sp<SkImage> create_image() { |
| const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); |
| auto surface(SkSurface::MakeRaster(info)); |
| draw_image_test_pattern(surface->getCanvas()); |
| return surface->makeImageSnapshot(); |
| } |
| static sk_sp<SkData> create_image_data(SkImageInfo* info) { |
| *info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); |
| const size_t rowBytes = info->minRowBytes(); |
| sk_sp<SkData> data(SkData::MakeUninitialized(rowBytes * info->height())); |
| { |
| SkBitmap bm; |
| bm.installPixels(*info, data->writable_data(), rowBytes); |
| SkCanvas canvas(bm); |
| draw_image_test_pattern(&canvas); |
| } |
| return data; |
| } |
| static sk_sp<SkImage> create_data_image() { |
| SkImageInfo info; |
| sk_sp<SkData> data(create_image_data(&info)); |
| return SkImage::MakeRasterData(info, std::move(data), info.minRowBytes()); |
| } |
| #if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests |
| static sk_sp<SkImage> create_image_large(int maxTextureSize) { |
| const SkImageInfo info = SkImageInfo::MakeN32(maxTextureSize + 1, 32, kOpaque_SkAlphaType); |
| auto surface(SkSurface::MakeRaster(info)); |
| surface->getCanvas()->clear(SK_ColorWHITE); |
| SkPaint paint; |
| paint.setColor(SK_ColorBLACK); |
| surface->getCanvas()->drawRect(SkRect::MakeXYWH(4000, 2, 28000, 30), paint); |
| return surface->makeImageSnapshot(); |
| } |
| static sk_sp<SkImage> create_picture_image() { |
| SkPictureRecorder recorder; |
| SkCanvas* canvas = recorder.beginRecording(10, 10); |
| canvas->clear(SK_ColorCYAN); |
| return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), |
| nullptr, nullptr, SkImage::BitDepth::kU8, |
| SkColorSpace::MakeSRGB()); |
| }; |
| #endif |
| // Want to ensure that our Release is called when the owning image is destroyed |
| struct RasterDataHolder { |
| RasterDataHolder() : fReleaseCount(0) {} |
| sk_sp<SkData> fData; |
| int fReleaseCount; |
| static void Release(const void* pixels, void* context) { |
| RasterDataHolder* self = static_cast<RasterDataHolder*>(context); |
| self->fReleaseCount++; |
| self->fData.reset(); |
| } |
| }; |
| static sk_sp<SkImage> create_rasterproc_image(RasterDataHolder* dataHolder) { |
| SkASSERT(dataHolder); |
| SkImageInfo info; |
| dataHolder->fData = create_image_data(&info); |
| return SkImage::MakeFromRaster(SkPixmap(info, dataHolder->fData->data(), info.minRowBytes()), |
| RasterDataHolder::Release, dataHolder); |
| } |
| static sk_sp<SkImage> create_codec_image() { |
| SkImageInfo info; |
| sk_sp<SkData> data(create_image_data(&info)); |
| SkBitmap bitmap; |
| bitmap.installPixels(info, data->writable_data(), info.minRowBytes()); |
| sk_sp<SkData> src(sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG, 100)); |
| return SkImage::MakeFromEncoded(std::move(src)); |
| } |
| #if SK_SUPPORT_GPU |
| static sk_sp<SkImage> create_gpu_image(GrContext* context) { |
| const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); |
| auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info)); |
| draw_image_test_pattern(surface->getCanvas()); |
| return surface->makeImageSnapshot(); |
| } |
| #endif |
| |
| static void test_encode(skiatest::Reporter* reporter, SkImage* image) { |
| const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10); |
| sk_sp<SkData> origEncoded = image->encodeToData(); |
| REPORTER_ASSERT(reporter, origEncoded); |
| REPORTER_ASSERT(reporter, origEncoded->size() > 0); |
| |
| sk_sp<SkImage> decoded(SkImage::MakeFromEncoded(origEncoded)); |
| if (!decoded) { |
| ERRORF(reporter, "failed to decode image!"); |
| return; |
| } |
| REPORTER_ASSERT(reporter, decoded); |
| assert_equal(reporter, image, nullptr, decoded.get()); |
| |
| // Now see if we can instantiate an image from a subset of the surface/origEncoded |
| |
| decoded = SkImage::MakeFromEncoded(origEncoded, &ir); |
| REPORTER_ASSERT(reporter, decoded); |
| assert_equal(reporter, image, &ir, decoded.get()); |
| } |
| |
| DEF_TEST(ImageEncode, reporter) { |
| test_encode(reporter, create_image().get()); |
| } |
| |
| #if SK_SUPPORT_GPU |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, ctxInfo) { |
| test_encode(reporter, create_gpu_image(ctxInfo.grContext()).get()); |
| } |
| #endif |
| |
| DEF_TEST(Image_MakeFromRasterBitmap, reporter) { |
| const struct { |
| SkCopyPixelsMode fCPM; |
| bool fExpectSameAsMutable; |
| bool fExpectSameAsImmutable; |
| } recs[] = { |
| { kIfMutable_SkCopyPixelsMode, false, true }, |
| { kAlways_SkCopyPixelsMode, false, false }, |
| { kNever_SkCopyPixelsMode, true, true }, |
| }; |
| for (auto rec : recs) { |
| SkPixmap pm; |
| SkBitmap bm; |
| bm.allocN32Pixels(100, 100); |
| |
| auto img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); |
| REPORTER_ASSERT(reporter, img->peekPixels(&pm)); |
| const bool sameMutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); |
| REPORTER_ASSERT(reporter, rec.fExpectSameAsMutable == sameMutable); |
| REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameMutable); |
| |
| bm.notifyPixelsChanged(); // force a new generation ID |
| |
| bm.setImmutable(); |
| img = SkMakeImageFromRasterBitmap(bm, rec.fCPM); |
| REPORTER_ASSERT(reporter, img->peekPixels(&pm)); |
| const bool sameImmutable = pm.addr32(0, 0) == bm.getAddr32(0, 0); |
| REPORTER_ASSERT(reporter, rec.fExpectSameAsImmutable == sameImmutable); |
| REPORTER_ASSERT(reporter, (bm.getGenerationID() == img->uniqueID()) == sameImmutable); |
| } |
| } |
| |
| namespace { |
| |
| const char* kSerializedData = "serialized"; |
| |
| class MockSerializer : public SkPixelSerializer { |
| public: |
| MockSerializer(sk_sp<SkData> (*func)()) : fFunc(func), fDidEncode(false) { } |
| |
| bool didEncode() const { return fDidEncode; } |
| |
| protected: |
| bool onUseEncodedData(const void*, size_t) override { |
| return false; |
| } |
| |
| SkData* onEncode(const SkPixmap&) override { |
| fDidEncode = true; |
| return fFunc().release(); |
| } |
| |
| private: |
| sk_sp<SkData> (*fFunc)(); |
| bool fDidEncode; |
| |
| typedef SkPixelSerializer INHERITED; |
| }; |
| |
| } // anonymous namespace |
| |
| // Test that SkImage encoding observes custom pixel serializers. |
| DEF_TEST(Image_Encode_Serializer, reporter) { |
| MockSerializer serializer([]() -> sk_sp<SkData> { |
| return SkData::MakeWithCString(kSerializedData); |
| }); |
| sk_sp<SkImage> image(create_image()); |
| sk_sp<SkData> encoded = image->encodeToData(&serializer); |
| sk_sp<SkData> reference(SkData::MakeWithCString(kSerializedData)); |
| |
| REPORTER_ASSERT(reporter, serializer.didEncode()); |
| REPORTER_ASSERT(reporter, encoded); |
| REPORTER_ASSERT(reporter, encoded->size() > 0); |
| REPORTER_ASSERT(reporter, encoded->equals(reference.get())); |
| } |
| |
| // Test that image encoding failures do not break picture serialization/deserialization. |
| DEF_TEST(Image_Serialize_Encoding_Failure, reporter) { |
| auto surface(SkSurface::MakeRasterN32Premul(100, 100)); |
| surface->getCanvas()->clear(SK_ColorGREEN); |
| sk_sp<SkImage> image(surface->makeImageSnapshot()); |
| REPORTER_ASSERT(reporter, image); |
| |
| SkPictureRecorder recorder; |
| SkCanvas* canvas = recorder.beginRecording(100, 100); |
| canvas->drawImage(image, 0, 0); |
| sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); |
| REPORTER_ASSERT(reporter, picture); |
| REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0); |
| |
| MockSerializer emptySerializer([]() -> sk_sp<SkData> { return SkData::MakeEmpty(); }); |
| MockSerializer nullSerializer([]() -> sk_sp<SkData> { return nullptr; }); |
| MockSerializer* serializers[] = { &emptySerializer, &nullSerializer }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) { |
| SkDynamicMemoryWStream wstream; |
| REPORTER_ASSERT(reporter, !serializers[i]->didEncode()); |
| picture->serialize(&wstream, serializers[i]); |
| REPORTER_ASSERT(reporter, serializers[i]->didEncode()); |
| |
| std::unique_ptr<SkStream> rstream(wstream.detachAsStream()); |
| sk_sp<SkPicture> deserialized(SkPicture::MakeFromStream(rstream.get())); |
| REPORTER_ASSERT(reporter, deserialized); |
| REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0); |
| } |
| } |
| |
| // Test that a draw that only partially covers the drawing surface isn't |
| // interpreted as covering the entire drawing surface (i.e., exercise one of the |
| // conditions of SkCanvas::wouldOverwriteEntireSurface()). |
| DEF_TEST(Image_RetainSnapshot, reporter) { |
| const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0); |
| const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0); |
| SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); |
| auto surface(SkSurface::MakeRaster(info)); |
| surface->getCanvas()->clear(0xFF00FF00); |
| |
| SkPMColor pixels[4]; |
| memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect |
| const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2); |
| const size_t dstRowBytes = 2 * sizeof(SkPMColor); |
| |
| sk_sp<SkImage> image1(surface->makeImageSnapshot()); |
| REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) { |
| REPORTER_ASSERT(reporter, pixels[i] == green); |
| } |
| |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| paint.setColor(SK_ColorRED); |
| |
| surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint); |
| |
| sk_sp<SkImage> image2(surface->makeImageSnapshot()); |
| REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); |
| REPORTER_ASSERT(reporter, pixels[0] == green); |
| REPORTER_ASSERT(reporter, pixels[1] == green); |
| REPORTER_ASSERT(reporter, pixels[2] == green); |
| REPORTER_ASSERT(reporter, pixels[3] == red); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static void make_bitmap_mutable(SkBitmap* bm) { |
| bm->allocN32Pixels(10, 10); |
| } |
| |
| static void make_bitmap_immutable(SkBitmap* bm) { |
| bm->allocN32Pixels(10, 10); |
| bm->setImmutable(); |
| } |
| |
| DEF_TEST(image_newfrombitmap, reporter) { |
| const struct { |
| void (*fMakeProc)(SkBitmap*); |
| bool fExpectPeekSuccess; |
| bool fExpectSharedID; |
| bool fExpectLazy; |
| } rec[] = { |
| { make_bitmap_mutable, true, false, false }, |
| { make_bitmap_immutable, true, true, false }, |
| }; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) { |
| SkBitmap bm; |
| rec[i].fMakeProc(&bm); |
| |
| sk_sp<SkImage> image(SkImage::MakeFromBitmap(bm)); |
| SkPixmap pmap; |
| |
| const bool sharedID = (image->uniqueID() == bm.getGenerationID()); |
| REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID); |
| |
| const bool peekSuccess = image->peekPixels(&pmap); |
| REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess); |
| |
| const bool lazy = image->isLazyGenerated(); |
| REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| #if SK_SUPPORT_GPU |
| |
| #include "SkBitmapCache.h" |
| |
| /* |
| * This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image. |
| * We cache it for performance when drawing into a raster surface. |
| * |
| * A cleaner test would know if each drawImage call triggered a read-back from the gpu, |
| * but we don't have that facility (at the moment) so we use a little internal knowledge |
| * of *how* the raster version is cached, and look for that. |
| */ |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(c, reporter, ctxInfo) { |
| SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); |
| sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); |
| const uint32_t uniqueID = image->uniqueID(); |
| const auto desc = SkBitmapCacheDesc::Make(image.get()); |
| |
| auto surface(SkSurface::MakeRaster(info)); |
| |
| // now we can test drawing a gpu-backed image into a cpu-backed surface |
| |
| { |
| SkBitmap cachedBitmap; |
| REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); |
| } |
| |
| surface->getCanvas()->drawImage(image, 0, 0); |
| { |
| SkBitmap cachedBitmap; |
| if (SkBitmapCache::Find(desc, &cachedBitmap)) { |
| REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID); |
| REPORTER_ASSERT(reporter, cachedBitmap.isImmutable()); |
| REPORTER_ASSERT(reporter, cachedBitmap.getPixels()); |
| } else { |
| // unexpected, but not really a bug, since the cache is global and this test may be |
| // run w/ other threads competing for its budget. |
| SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n"); |
| } |
| } |
| |
| image.reset(nullptr); |
| { |
| SkBitmap cachedBitmap; |
| REPORTER_ASSERT(reporter, !SkBitmapCache::Find(desc, &cachedBitmap)); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeTextureImage, reporter, contextInfo) { |
| GrContext* context = contextInfo.grContext(); |
| sk_gpu_test::TestContext* testContext = contextInfo.testContext(); |
| GrContextFactory otherFactory; |
| ContextInfo otherContextInfo = otherFactory.getContextInfo(contextInfo.type()); |
| testContext->makeCurrent(); |
| |
| std::function<sk_sp<SkImage>()> imageFactories[] = { |
| create_image, |
| create_codec_image, |
| create_data_image, |
| // Create an image from a picture. |
| create_picture_image, |
| // Create a texture image. |
| [context] { return create_gpu_image(context); }, |
| // Create a texture image in a another GrContext. |
| [testContext, otherContextInfo] { |
| otherContextInfo.testContext()->makeCurrent(); |
| sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); |
| testContext->makeCurrent(); |
| return otherContextImage; |
| } |
| }; |
| |
| sk_sp<SkColorSpace> dstColorSpaces[] ={ |
| nullptr, |
| SkColorSpace::MakeSRGB(), |
| }; |
| |
| for (auto& dstColorSpace : dstColorSpaces) { |
| for (auto factory : imageFactories) { |
| sk_sp<SkImage> image(factory()); |
| if (!image) { |
| ERRORF(reporter, "Error creating image."); |
| continue; |
| } |
| |
| sk_sp<SkImage> texImage(image->makeTextureImage(context, dstColorSpace.get())); |
| if (!texImage) { |
| GrContext* imageContext = as_IB(image)->context(); |
| |
| // We expect to fail if image comes from a different GrContext. |
| if (!image->isTextureBacked() || imageContext == context) { |
| ERRORF(reporter, "makeTextureImage failed."); |
| } |
| continue; |
| } |
| if (!texImage->isTextureBacked()) { |
| ERRORF(reporter, "makeTextureImage returned non-texture image."); |
| continue; |
| } |
| if (image->isTextureBacked()) { |
| GrSurfaceProxy* origProxy = as_IB(image)->peekProxy(); |
| GrSurfaceProxy* copyProxy = as_IB(texImage)->peekProxy(); |
| |
| if (origProxy->underlyingUniqueID() != copyProxy->underlyingUniqueID()) { |
| ERRORF(reporter, "makeTextureImage made unnecessary texture copy."); |
| } |
| } |
| if (image->width() != texImage->width() || image->height() != texImage->height()) { |
| ERRORF(reporter, "makeTextureImage changed the image size."); |
| } |
| if (image->alphaType() != texImage->alphaType()) { |
| ERRORF(reporter, "makeTextureImage changed image alpha type."); |
| } |
| } |
| |
| testContext->makeCurrent(); |
| context->flush(); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_makeNonTextureImage, reporter, contextInfo) { |
| GrContext* context = contextInfo.grContext(); |
| |
| std::function<sk_sp<SkImage>()> imageFactories[] = { |
| create_image, |
| create_codec_image, |
| create_data_image, |
| create_picture_image, |
| [context] { return create_gpu_image(context); }, |
| }; |
| SkColorSpace* legacyColorSpace = nullptr; |
| for (auto factory : imageFactories) { |
| sk_sp<SkImage> image = factory(); |
| if (!image->isTextureBacked()) { |
| REPORTER_ASSERT(reporter, image->makeNonTextureImage().get() == image.get()); |
| if (!(image = image->makeTextureImage(context, legacyColorSpace))) { |
| continue; |
| } |
| } |
| auto rasterImage = image->makeNonTextureImage(); |
| if (!rasterImage) { |
| ERRORF(reporter, "makeNonTextureImage failed for texture-backed image."); |
| } |
| REPORTER_ASSERT(reporter, !rasterImage->isTextureBacked()); |
| assert_equal(reporter, image.get(), nullptr, rasterImage.get()); |
| } |
| } |
| |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_drawAbandonedGpuImage, reporter, contextInfo) { |
| auto context = contextInfo.grContext(); |
| auto image = create_gpu_image(context); |
| auto info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); |
| auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info)); |
| image->getTexture()->abandon(); |
| surface->getCanvas()->drawImage(image, 0, 0); |
| } |
| |
| #endif |
| |
| class EmptyGenerator : public SkImageGenerator { |
| public: |
| EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {} |
| }; |
| |
| DEF_TEST(ImageEmpty, reporter) { |
| const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType); |
| SkPixmap pmap(info, nullptr, 0); |
| REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap)); |
| REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0)); |
| REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr)); |
| REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator( |
| skstd::make_unique<EmptyGenerator>())); |
| } |
| |
| DEF_TEST(ImageDataRef, reporter) { |
| SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); |
| size_t rowBytes = info.minRowBytes(); |
| size_t size = info.computeByteSize(rowBytes); |
| sk_sp<SkData> data = SkData::MakeUninitialized(size); |
| REPORTER_ASSERT(reporter, data->unique()); |
| sk_sp<SkImage> image = SkImage::MakeRasterData(info, data, rowBytes); |
| REPORTER_ASSERT(reporter, !data->unique()); |
| image.reset(); |
| REPORTER_ASSERT(reporter, data->unique()); |
| } |
| |
| static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) { |
| for (int i = 0; i < count; ++i) { |
| if (pixels[i] != expected) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static void image_test_read_pixels(skiatest::Reporter* reporter, SkImage* image) { |
| if (!image) { |
| ERRORF(reporter, "Failed to create image!"); |
| return; |
| } |
| const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE); |
| const SkPMColor notExpected = ~expected; |
| |
| const int w = 2, h = 2; |
| const size_t rowBytes = w * sizeof(SkPMColor); |
| SkPMColor pixels[w*h]; |
| |
| SkImageInfo info; |
| |
| info = SkImageInfo::MakeUnknown(w, h); |
| REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0)); |
| |
| // out-of-bounds should fail |
| info = SkImageInfo::MakeN32Premul(w, h); |
| REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0)); |
| REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h)); |
| REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0)); |
| REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height())); |
| |
| // top-left should succeed |
| sk_memset32(pixels, notExpected, w*h); |
| REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0)); |
| REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); |
| |
| // bottom-right should succeed |
| sk_memset32(pixels, notExpected, w*h); |
| REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, |
| image->width() - w, image->height() - h)); |
| REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); |
| |
| // partial top-left should succeed |
| sk_memset32(pixels, notExpected, w*h); |
| REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1)); |
| REPORTER_ASSERT(reporter, pixels[3] == expected); |
| REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected)); |
| |
| // partial bottom-right should succeed |
| sk_memset32(pixels, notExpected, w*h); |
| REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, |
| image->width() - 1, image->height() - 1)); |
| REPORTER_ASSERT(reporter, pixels[0] == expected); |
| REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected)); |
| } |
| DEF_TEST(ImageReadPixels, reporter) { |
| sk_sp<SkImage> image(create_image()); |
| image_test_read_pixels(reporter, image.get()); |
| |
| image = create_data_image(); |
| image_test_read_pixels(reporter, image.get()); |
| |
| RasterDataHolder dataHolder; |
| image = create_rasterproc_image(&dataHolder); |
| image_test_read_pixels(reporter, image.get()); |
| image.reset(); |
| REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); |
| |
| image = create_codec_image(); |
| image_test_read_pixels(reporter, image.get()); |
| } |
| #if SK_SUPPORT_GPU |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, ctxInfo) { |
| image_test_read_pixels(reporter, create_gpu_image(ctxInfo.grContext()).get()); |
| } |
| #endif |
| |
| static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, |
| const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) { |
| REPORTER_ASSERT(reporter, image->width() == bitmap.width()); |
| REPORTER_ASSERT(reporter, image->height() == bitmap.height()); |
| REPORTER_ASSERT(reporter, image->alphaType() == bitmap.alphaType()); |
| |
| if (SkImage::kRO_LegacyBitmapMode == mode) { |
| REPORTER_ASSERT(reporter, bitmap.isImmutable()); |
| } |
| |
| REPORTER_ASSERT(reporter, bitmap.getPixels()); |
| |
| const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType()); |
| SkPMColor imageColor; |
| REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0)); |
| REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0)); |
| } |
| |
| static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) { |
| if (!image) { |
| ERRORF(reporter, "Failed to create image."); |
| return; |
| } |
| SkBitmap bitmap; |
| REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode)); |
| check_legacy_bitmap(reporter, image, bitmap, mode); |
| |
| // Test subsetting to exercise the rowBytes logic. |
| SkBitmap tmp; |
| REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2, |
| image->height() / 2))); |
| sk_sp<SkImage> subsetImage(SkImage::MakeFromBitmap(tmp)); |
| REPORTER_ASSERT(reporter, subsetImage.get()); |
| |
| SkBitmap subsetBitmap; |
| REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode)); |
| check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode); |
| } |
| DEF_TEST(ImageLegacyBitmap, reporter) { |
| const SkImage::LegacyBitmapMode modes[] = { |
| SkImage::kRO_LegacyBitmapMode, |
| SkImage::kRW_LegacyBitmapMode, |
| }; |
| for (auto& mode : modes) { |
| sk_sp<SkImage> image(create_image()); |
| test_legacy_bitmap(reporter, image.get(), mode); |
| |
| image = create_data_image(); |
| test_legacy_bitmap(reporter, image.get(), mode); |
| |
| RasterDataHolder dataHolder; |
| image = create_rasterproc_image(&dataHolder); |
| test_legacy_bitmap(reporter, image.get(), mode); |
| image.reset(); |
| REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); |
| |
| image = create_codec_image(); |
| test_legacy_bitmap(reporter, image.get(), mode); |
| } |
| } |
| #if SK_SUPPORT_GPU |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, ctxInfo) { |
| const SkImage::LegacyBitmapMode modes[] = { |
| SkImage::kRO_LegacyBitmapMode, |
| SkImage::kRW_LegacyBitmapMode, |
| }; |
| for (auto& mode : modes) { |
| sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); |
| test_legacy_bitmap(reporter, image.get(), mode); |
| } |
| } |
| #endif |
| |
| static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) { |
| if (!image) { |
| ERRORF(reporter, "Failed to create image!"); |
| return; |
| } |
| SkPixmap pm; |
| bool success = image->peekPixels(&pm); |
| REPORTER_ASSERT(reporter, expectPeekSuccess == success); |
| if (success) { |
| const SkImageInfo& info = pm.info(); |
| REPORTER_ASSERT(reporter, 20 == info.width()); |
| REPORTER_ASSERT(reporter, 20 == info.height()); |
| REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType()); |
| REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() || |
| kOpaque_SkAlphaType == info.alphaType()); |
| REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes()); |
| REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0)); |
| } |
| } |
| DEF_TEST(ImagePeek, reporter) { |
| sk_sp<SkImage> image(create_image()); |
| test_peek(reporter, image.get(), true); |
| |
| image = create_data_image(); |
| test_peek(reporter, image.get(), true); |
| |
| RasterDataHolder dataHolder; |
| image = create_rasterproc_image(&dataHolder); |
| test_peek(reporter, image.get(), true); |
| image.reset(); |
| REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); |
| |
| image = create_codec_image(); |
| test_peek(reporter, image.get(), false); |
| } |
| #if SK_SUPPORT_GPU |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, ctxInfo) { |
| sk_sp<SkImage> image(create_gpu_image(ctxInfo.grContext())); |
| test_peek(reporter, image.get(), false); |
| } |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| struct TextureReleaseChecker { |
| TextureReleaseChecker() : fReleaseCount(0) {} |
| int fReleaseCount; |
| static void Release(void* self) { |
| static_cast<TextureReleaseChecker*>(self)->fReleaseCount++; |
| } |
| }; |
| |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(SkImage_NewFromTextureRelease, reporter, ctxInfo) { |
| const int kWidth = 10; |
| const int kHeight = 10; |
| std::unique_ptr<uint32_t[]> pixels(new uint32_t[kWidth * kHeight]); |
| |
| GrContext* ctx = ctxInfo.grContext(); |
| |
| GrBackendObject backendTexHandle = |
| ctxInfo.grContext()->getGpu()->createTestingOnlyBackendTexture( |
| pixels.get(), kWidth, kHeight, kRGBA_8888_GrPixelConfig, true); |
| |
| GrBackendTexture backendTex = GrTest::CreateBackendTexture(ctx->contextPriv().getBackend(), |
| kWidth, |
| kHeight, |
| kRGBA_8888_GrPixelConfig, |
| GrMipMapped::kNo, |
| backendTexHandle); |
| |
| TextureReleaseChecker releaseChecker; |
| GrSurfaceOrigin texOrigin = kBottomLeft_GrSurfaceOrigin; |
| sk_sp<SkImage> refImg( |
| SkImage::MakeFromTexture(ctx, backendTex, texOrigin, kPremul_SkAlphaType, nullptr, |
| TextureReleaseChecker::Release, &releaseChecker)); |
| |
| GrSurfaceOrigin readBackOrigin; |
| GrBackendObject readBackHandle = refImg->getTextureHandle(false, &readBackOrigin); |
| // TODO: Make it so we can check this (see skbug.com/5019) |
| #if 0 |
| if (*readBackHandle != *(backendTexHandle)) { |
| ERRORF(reporter, "backend mismatch %d %d\n", |
| (int)readBackHandle, (int)backendTexHandle); |
| } |
| REPORTER_ASSERT(reporter, readBackHandle == backendTexHandle); |
| #else |
| REPORTER_ASSERT(reporter, SkToBool(readBackHandle)); |
| #endif |
| if (readBackOrigin != texOrigin) { |
| ERRORF(reporter, "origin mismatch %d %d\n", readBackOrigin, texOrigin); |
| } |
| REPORTER_ASSERT(reporter, readBackOrigin == texOrigin); |
| |
| // Now exercise the release proc |
| REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount); |
| refImg.reset(nullptr); // force a release of the image |
| REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount); |
| |
| ctxInfo.grContext()->getGpu()->deleteTestingOnlyBackendTexture(backendTexHandle); |
| } |
| |
| DEF_GPUTEST(SkImage_MakeCrossContextRelease, reporter, /*factory*/) { |
| GrContextFactory testFactory; |
| |
| sk_sp<SkData> data = GetResourceAsData("mandrill_128.png"); |
| SkASSERT(data.get()); |
| |
| for (int i = 0; i < GrContextFactory::kContextTypeCnt; ++i) { |
| GrContextFactory::ContextType ctxType = static_cast<GrContextFactory::ContextType>(i); |
| ContextInfo ctxInfo = testFactory.getContextInfo(ctxType); |
| GrContext* ctx = ctxInfo.grContext(); |
| if (!ctx) { |
| continue; |
| } |
| |
| // If we don't have proper support for this feature, the factory will fallback to returning |
| // codec-backed images. Those will "work", but some of our checks will fail because we |
| // expect the cross-context images not to work on multiple contexts at once. |
| if (!ctx->caps()->crossContextTextureSupport()) { |
| continue; |
| } |
| |
| // We test three lifetime patterns for a single context: |
| // 1) Create image, free image |
| // 2) Create image, draw, flush, free image |
| // 3) Create image, draw, free image, flush |
| // ... and then repeat the last two patterns with drawing on a second* context: |
| // 4) Create image, draw*, flush*, free image |
| // 5) Create image, draw*, free iamge, flush* |
| |
| // Case #1: Create image, free image |
| { |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| refImg.reset(nullptr); // force a release of the image |
| } |
| |
| SkImageInfo info = SkImageInfo::MakeN32Premul(128, 128); |
| sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info); |
| SkCanvas* canvas = surface->getCanvas(); |
| |
| // Case #2: Create image, draw, flush, free image |
| { |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| |
| canvas->drawImage(refImg, 0, 0); |
| canvas->flush(); |
| |
| refImg.reset(nullptr); // force a release of the image |
| } |
| |
| // Case #3: Create image, draw, free image, flush |
| { |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| |
| canvas->drawImage(refImg, 0, 0); |
| refImg.reset(nullptr); // force a release of the image |
| |
| canvas->flush(); |
| } |
| |
| // Configure second context |
| sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); |
| |
| ContextInfo otherContextInfo = testFactory.getSharedContextInfo(ctx); |
| GrContext* otherCtx = otherContextInfo.grContext(); |
| sk_gpu_test::TestContext* otherTestContext = otherContextInfo.testContext(); |
| |
| // Creating a context in a share group may fail |
| if (!otherCtx) { |
| continue; |
| } |
| |
| surface = SkSurface::MakeRenderTarget(otherCtx, SkBudgeted::kNo, info); |
| canvas = surface->getCanvas(); |
| |
| // Case #4: Create image, draw*, flush*, free image |
| { |
| testContext->makeCurrent(); |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| |
| otherTestContext->makeCurrent(); |
| canvas->drawImage(refImg, 0, 0); |
| canvas->flush(); |
| |
| testContext->makeCurrent(); |
| refImg.reset(nullptr); // force a release of the image |
| } |
| |
| // Case #5: Create image, draw*, free image, flush* |
| { |
| testContext->makeCurrent(); |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| |
| otherTestContext->makeCurrent(); |
| canvas->drawImage(refImg, 0, 0); |
| |
| testContext->makeCurrent(); |
| refImg.reset(nullptr); // force a release of the image |
| |
| otherTestContext->makeCurrent(); |
| canvas->flush(); |
| |
| // This readPixels call is needed for Vulkan to make sure the ReleaseProc is called. |
| // Even though we flushed above, this does not guarantee the command buffer will finish |
| // which is when we call the ReleaseProc. The readPixels forces a CPU sync so we know |
| // that the command buffer has finished and we've called the ReleaseProc. |
| SkBitmap bitmap; |
| bitmap.allocPixels(info); |
| canvas->readPixels(bitmap, 0, 0); |
| } |
| |
| // Case #6: Verify that only one context can be using the image at a time |
| { |
| testContext->makeCurrent(); |
| sk_sp<SkImage> refImg(SkImage::MakeCrossContextFromEncoded(ctx, data, false, nullptr)); |
| |
| // Any context should be able to borrow the texture at this point |
| sk_sp<SkColorSpace> texColorSpace; |
| sk_sp<GrTextureProxy> proxy = as_IB(refImg)->asTextureProxyRef( |
| ctx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); |
| REPORTER_ASSERT(reporter, proxy); |
| |
| // But once it's borrowed, no other context should be able to borrow |
| otherTestContext->makeCurrent(); |
| sk_sp<GrTextureProxy> otherProxy = as_IB(refImg)->asTextureProxyRef( |
| otherCtx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); |
| REPORTER_ASSERT(reporter, !otherProxy); |
| |
| // Original context (that's already borrowing) should be okay |
| testContext->makeCurrent(); |
| sk_sp<GrTextureProxy> proxySecondRef = as_IB(refImg)->asTextureProxyRef( |
| ctx, GrSamplerState::ClampNearest(), nullptr, &texColorSpace, nullptr); |
| REPORTER_ASSERT(reporter, proxySecondRef); |
| |
| // Releae all refs from the original context |
| proxy.reset(nullptr); |
| proxySecondRef.reset(nullptr); |
| |
| // Now we should be able to borrow the texture from the other context |
| otherTestContext->makeCurrent(); |
| otherProxy = as_IB(refImg)->asTextureProxyRef(otherCtx, GrSamplerState::ClampNearest(), |
| nullptr, &texColorSpace, nullptr); |
| REPORTER_ASSERT(reporter, otherProxy); |
| |
| // Release everything |
| otherProxy.reset(nullptr); |
| refImg.reset(nullptr); |
| } |
| } |
| } |
| |
| static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) { |
| if (a->width() != b->width() || a->height() != b->height()) { |
| ERRORF(reporter, "Images must have the same size"); |
| return; |
| } |
| if (a->alphaType() != b->alphaType()) { |
| ERRORF(reporter, "Images must have the same alpha type"); |
| return; |
| } |
| |
| SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height()); |
| SkAutoPixmapStorage apm; |
| SkAutoPixmapStorage bpm; |
| |
| apm.alloc(info); |
| bpm.alloc(info); |
| |
| if (!a->readPixels(apm, 0, 0)) { |
| ERRORF(reporter, "Could not read image a's pixels"); |
| return; |
| } |
| if (!b->readPixels(bpm, 0, 0)) { |
| ERRORF(reporter, "Could not read image b's pixels"); |
| return; |
| } |
| |
| for (auto y = 0; y < info.height(); ++y) { |
| for (auto x = 0; x < info.width(); ++x) { |
| uint32_t pixelA = *apm.addr32(x, y); |
| uint32_t pixelB = *bpm.addr32(x, y); |
| if (pixelA != pixelB) { |
| ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x", |
| x, y, pixelA, pixelB); |
| return; |
| } |
| } |
| } |
| } |
| |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DeferredTextureImage, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); |
| sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy(); |
| |
| GrContextFactory otherFactory; |
| ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type()); |
| |
| testContext->makeCurrent(); |
| REPORTER_ASSERT(reporter, proxy); |
| auto createLarge = [context] { |
| return create_image_large(context->caps()->maxTextureSize()); |
| }; |
| struct { |
| std::function<sk_sp<SkImage> ()> fImageFactory; |
| std::vector<SkImage::DeferredTextureImageUsageParams> fParams; |
| sk_sp<SkColorSpace> fColorSpace; |
| SkColorType fColorType; |
| SkFilterQuality fExpectedQuality; |
| int fExpectedScaleFactor; |
| bool fExpectation; |
| } testCases[] = { |
| { create_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, |
| { create_codec_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, |
| { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, true }, |
| { create_picture_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, |
| { [context] { return create_gpu_image(context); }, |
| {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, |
| // Create a texture image in a another GrContext. |
| { [testContext, otherContextInfo] { |
| otherContextInfo.testContext()->makeCurrent(); |
| sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); |
| testContext->makeCurrent(); |
| return otherContextImage; |
| }, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, |
| // Create an image that is too large to upload. |
| { createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kN32_SkColorType, kNone_SkFilterQuality, 1, false }, |
| // Create an image that is too large, but is scaled to an acceptable size. |
| { createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 4}}, |
| nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, |
| // Create an image with multiple low filter qualities, make sure we round up. |
| { createLarge, {{SkMatrix::I(), kNone_SkFilterQuality, 4}, |
| {SkMatrix::I(), kMedium_SkFilterQuality, 4}}, |
| nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, |
| // Create an image with multiple prescale levels, make sure we chose the minimum scale. |
| { createLarge, {{SkMatrix::I(), kMedium_SkFilterQuality, 5}, |
| {SkMatrix::I(), kMedium_SkFilterQuality, 4}}, |
| nullptr, kN32_SkColorType, kMedium_SkFilterQuality, 16, true}, |
| // Create a images which are decoded to a 4444 backing. |
| { create_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, |
| { create_codec_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, |
| { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| nullptr, kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, true }, |
| // Valid SkColorSpace and SkColorType. |
| { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| SkColorSpace::MakeSRGB(), kN32_SkColorType, kNone_SkFilterQuality, 1, true }, |
| // Invalid SkColorSpace and SkColorType. |
| { create_data_image, {{SkMatrix::I(), kNone_SkFilterQuality, 0}}, |
| SkColorSpace::MakeSRGB(), kARGB_4444_SkColorType, kNone_SkFilterQuality, 1, false }, |
| }; |
| |
| |
| for (auto testCase : testCases) { |
| sk_sp<SkImage> image(testCase.fImageFactory()); |
| if (!image) { |
| ERRORF(reporter, "Failed to create image!"); |
| continue; |
| } |
| |
| size_t size = image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), |
| static_cast<int>(testCase.fParams.size()), |
| nullptr, testCase.fColorSpace.get(), |
| testCase.fColorType); |
| static const char *const kFS[] = { "fail", "succeed" }; |
| if (SkToBool(size) != testCase.fExpectation) { |
| ERRORF(reporter, "This image was expected to %s but did not.", |
| kFS[testCase.fExpectation]); |
| } |
| if (size) { |
| void* buffer = sk_malloc_throw(size); |
| void* misaligned = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(buffer) + 3); |
| if (image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), |
| static_cast<int>(testCase.fParams.size()), |
| misaligned, testCase.fColorSpace.get(), |
| testCase.fColorType)) { |
| ERRORF(reporter, "Should fail when buffer is misaligned."); |
| } |
| if (!image->getDeferredTextureImageData(*proxy, testCase.fParams.data(), |
| static_cast<int>(testCase.fParams.size()), |
| buffer, testCase.fColorSpace.get(), |
| testCase.fColorType)) { |
| ERRORF(reporter, "deferred image size succeeded but creation failed."); |
| } else { |
| for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) { |
| sk_sp<SkImage> newImage( |
| SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted)); |
| REPORTER_ASSERT(reporter, newImage != nullptr); |
| if (newImage) { |
| // Scale the image in software for comparison. |
| SkImageInfo scaled_info = SkImageInfo::MakeN32( |
| image->width() / testCase.fExpectedScaleFactor, |
| image->height() / testCase.fExpectedScaleFactor, |
| image->alphaType()); |
| SkAutoPixmapStorage scaled; |
| scaled.alloc(scaled_info); |
| image->scalePixels(scaled, testCase.fExpectedQuality); |
| sk_sp<SkImage> scaledImage = SkImage::MakeRasterCopy(scaled); |
| check_images_same(reporter, scaledImage.get(), newImage.get()); |
| } |
| // The other context should not be able to create images from texture data |
| // created by the original context. |
| sk_sp<SkImage> newImage2(SkImage::MakeFromDeferredTextureImageData( |
| otherContextInfo.grContext(), buffer, budgeted)); |
| REPORTER_ASSERT(reporter, !newImage2); |
| testContext->makeCurrent(); |
| } |
| } |
| sk_free(buffer); |
| } |
| |
| testContext->makeCurrent(); |
| context->flush(); |
| } |
| } |
| |
| static uint32_t GetIdForBackendObject(GrContext* ctx, GrBackendObject object) { |
| if (!object) { |
| return 0; |
| } |
| |
| if (ctx->contextPriv().getBackend() != kOpenGL_GrBackend) { |
| return 0; |
| } |
| |
| return reinterpret_cast<const GrGLTextureInfo*>(object)->fID; |
| } |
| |
| static uint32_t GetIdForBackendTexture(GrBackendTexture texture) { |
| if (!texture.isValid()) { |
| return 0; |
| } |
| |
| if (texture.backend() != kOpenGL_GrBackend) { |
| return 0; |
| } |
| |
| return texture.getGLTextureInfo()->fID; |
| } |
| |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(makeBackendTexture, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| sk_gpu_test::TestContext* testContext = ctxInfo.testContext(); |
| sk_sp<GrContextThreadSafeProxy> proxy = context->threadSafeProxy(); |
| |
| GrContextFactory otherFactory; |
| ContextInfo otherContextInfo = otherFactory.getContextInfo(ctxInfo.type()); |
| |
| testContext->makeCurrent(); |
| REPORTER_ASSERT(reporter, proxy); |
| auto createLarge = [context] { |
| return create_image_large(context->caps()->maxTextureSize()); |
| }; |
| struct { |
| std::function<sk_sp<SkImage> ()> fImageFactory; |
| bool fExpectation; |
| bool fCanTakeDirectly; |
| } testCases[] = { |
| { create_image, true, false }, |
| { create_codec_image, true, false }, |
| { create_data_image, true, false }, |
| { create_picture_image, true, false }, |
| { [context] { return create_gpu_image(context); }, true, true }, |
| // Create a texture image in a another GrContext. |
| { [testContext, otherContextInfo] { |
| otherContextInfo.testContext()->makeCurrent(); |
| sk_sp<SkImage> otherContextImage = create_gpu_image(otherContextInfo.grContext()); |
| testContext->makeCurrent(); |
| return otherContextImage; |
| }, false, false }, |
| // Create an image that is too large to be texture backed. |
| { createLarge, false, false } |
| }; |
| |
| for (auto testCase : testCases) { |
| sk_sp<SkImage> image(testCase.fImageFactory()); |
| if (!image) { |
| ERRORF(reporter, "Failed to create image!"); |
| continue; |
| } |
| |
| uint32_t originalID = GetIdForBackendObject(context, image->getTextureHandle(true, nullptr)); |
| GrBackendTexture texture; |
| SkImage::BackendTextureReleaseProc proc; |
| bool result = |
| SkImage::MakeBackendTextureFromSkImage(context, std::move(image), &texture, &proc); |
| if (result != testCase.fExpectation) { |
| static const char *const kFS[] = { "fail", "succeed" }; |
| ERRORF(reporter, "This image was expected to %s but did not.", |
| kFS[testCase.fExpectation]); |
| } |
| |
| bool tookDirectly = result && originalID == GetIdForBackendTexture(texture); |
| if (testCase.fCanTakeDirectly != tookDirectly) { |
| static const char *const kExpectedState[] = { "not expected", "expected" }; |
| ERRORF(reporter, "This backend texture was %s to be taken directly.", |
| kExpectedState[testCase.fCanTakeDirectly]); |
| } |
| |
| testContext->makeCurrent(); |
| context->flush(); |
| } |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static sk_sp<SkImage> create_picture_image(sk_sp<SkColorSpace> space) { |
| SkPictureRecorder recorder; |
| SkCanvas* canvas = recorder.beginRecording(10, 10); |
| canvas->clear(SK_ColorCYAN); |
| return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), |
| nullptr, nullptr, SkImage::BitDepth::kU8, std::move(space)); |
| }; |
| |
| static inline bool almost_equal(int a, int b) { |
| return SkTAbs(a - b) <= 1; |
| } |
| |
| DEF_TEST(Image_ColorSpace, r) { |
| sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB(); |
| sk_sp<SkImage> image = GetResourceAsImage("mandrill_512_q075.jpg"); |
| REPORTER_ASSERT(r, srgb.get() == image->colorSpace()); |
| |
| image = GetResourceAsImage("webp-color-profile-lossy.webp"); |
| SkColorSpaceTransferFn fn; |
| bool success = image->colorSpace()->isNumericalTransferFn(&fn); |
| REPORTER_ASSERT(r, success); |
| REPORTER_ASSERT(r, color_space_almost_equal(1.8f, fn.fG)); |
| |
| sk_sp<SkColorSpace> rec2020 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, |
| SkColorSpace::kRec2020_Gamut); |
| image = create_picture_image(rec2020); |
| REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); |
| |
| SkBitmap bitmap; |
| SkImageInfo info = SkImageInfo::MakeN32(10, 10, kPremul_SkAlphaType, rec2020); |
| bitmap.allocPixels(info); |
| image = SkImage::MakeFromBitmap(bitmap); |
| REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); |
| |
| sk_sp<SkSurface> surface = SkSurface::MakeRaster( |
| SkImageInfo::MakeN32Premul(SkISize::Make(10, 10))); |
| image = surface->makeImageSnapshot(); |
| REPORTER_ASSERT(r, nullptr == image->colorSpace()); |
| |
| surface = SkSurface::MakeRaster(info); |
| image = surface->makeImageSnapshot(); |
| REPORTER_ASSERT(r, SkColorSpace::Equals(rec2020.get(), image->colorSpace())); |
| } |
| |
| DEF_TEST(Image_makeColorSpace, r) { |
| sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma, |
| SkColorSpace::kDCIP3_D65_Gamut); |
| SkColorSpaceTransferFn fn; |
| fn.fA = 1.f; fn.fB = 0.f; fn.fC = 0.f; fn.fD = 0.f; fn.fE = 0.f; fn.fF = 0.f; fn.fG = 1.8f; |
| sk_sp<SkColorSpace> adobeGamut = SkColorSpace::MakeRGB(fn, SkColorSpace::kAdobeRGB_Gamut); |
| |
| SkBitmap srgbBitmap; |
| srgbBitmap.allocPixels(SkImageInfo::MakeS32(1, 1, kOpaque_SkAlphaType)); |
| *srgbBitmap.getAddr32(0, 0) = SkSwizzle_RGBA_to_PMColor(0xFF604020); |
| srgbBitmap.setImmutable(); |
| sk_sp<SkImage> srgbImage = SkImage::MakeFromBitmap(srgbBitmap); |
| sk_sp<SkImage> p3Image = srgbImage->makeColorSpace(p3, SkTransferFunctionBehavior::kIgnore); |
| SkBitmap p3Bitmap; |
| bool success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode); |
| REPORTER_ASSERT(r, success); |
| REPORTER_ASSERT(r, almost_equal(0x28, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x40, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x5E, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); |
| |
| sk_sp<SkImage> adobeImage = srgbImage->makeColorSpace(adobeGamut, |
| SkTransferFunctionBehavior::kIgnore); |
| SkBitmap adobeBitmap; |
| success = adobeImage->asLegacyBitmap(&adobeBitmap, SkImage::kRO_LegacyBitmapMode); |
| REPORTER_ASSERT(r, success); |
| REPORTER_ASSERT(r, almost_equal(0x21, SkGetPackedR32(*adobeBitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x31, SkGetPackedG32(*adobeBitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x4C, SkGetPackedB32(*adobeBitmap.getAddr32(0, 0)))); |
| |
| srgbImage = GetResourceAsImage("1x1.png"); |
| p3Image = srgbImage->makeColorSpace(p3, SkTransferFunctionBehavior::kIgnore); |
| success = p3Image->asLegacyBitmap(&p3Bitmap, SkImage::kRO_LegacyBitmapMode); |
| REPORTER_ASSERT(r, success); |
| REPORTER_ASSERT(r, almost_equal(0x8B, SkGetPackedR32(*p3Bitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x82, SkGetPackedG32(*p3Bitmap.getAddr32(0, 0)))); |
| REPORTER_ASSERT(r, almost_equal(0x77, SkGetPackedB32(*p3Bitmap.getAddr32(0, 0)))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static void make_all_premul(SkBitmap* bm) { |
| bm->allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); |
| for (int a = 0; a < 256; ++a) { |
| for (int r = 0; r < 256; ++r) { |
| // make all valid premul combinations |
| int c = SkTMin(a, r); |
| *bm->getAddr32(a, r) = SkPackARGB32(a, c, c, c); |
| } |
| } |
| } |
| |
| static bool equal(const SkBitmap& a, const SkBitmap& b) { |
| SkASSERT(a.width() == b.width()); |
| SkASSERT(a.height() == b.height()); |
| for (int y = 0; y < a.height(); ++y) { |
| for (int x = 0; x < a.width(); ++x) { |
| SkPMColor pa = *a.getAddr32(x, y); |
| SkPMColor pb = *b.getAddr32(x, y); |
| if (pa != pb) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| DEF_TEST(image_roundtrip_encode, reporter) { |
| SkBitmap bm0; |
| make_all_premul(&bm0); |
| |
| auto img0 = SkImage::MakeFromBitmap(bm0); |
| sk_sp<SkData> data = img0->encodeToData(SkEncodedImageFormat::kPNG, 100); |
| auto img1 = SkImage::MakeFromEncoded(data); |
| |
| SkBitmap bm1; |
| bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); |
| img1->readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); |
| |
| REPORTER_ASSERT(reporter, equal(bm0, bm1)); |
| } |
| |
| DEF_TEST(image_roundtrip_premul, reporter) { |
| SkBitmap bm0; |
| make_all_premul(&bm0); |
| |
| SkBitmap bm1; |
| bm1.allocPixels(SkImageInfo::MakeN32(256, 256, kUnpremul_SkAlphaType)); |
| bm0.readPixels(bm1.info(), bm1.getPixels(), bm1.rowBytes(), 0, 0); |
| |
| SkBitmap bm2; |
| bm2.allocPixels(SkImageInfo::MakeN32(256, 256, kPremul_SkAlphaType)); |
| bm1.readPixels(bm2.info(), bm2.getPixels(), bm2.rowBytes(), 0, 0); |
| |
| REPORTER_ASSERT(reporter, equal(bm0, bm2)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static void check_scaled_pixels(skiatest::Reporter* reporter, SkPixmap* pmap, uint32_t expected) { |
| // Verify that all pixels contain the original test color |
| for (auto y = 0; y < pmap->height(); ++y) { |
| for (auto x = 0; x < pmap->width(); ++x) { |
| uint32_t pixel = *pmap->addr32(x, y); |
| if (pixel != expected) { |
| ERRORF(reporter, "Expected scaled pixels to be the same. At %d,%d 0x%08x != 0x%08x", |
| x, y, pixel, expected); |
| return; |
| } |
| } |
| } |
| } |
| |
| static void test_scale_pixels(skiatest::Reporter* reporter, const SkImage* image, |
| uint32_t expected) { |
| SkImageInfo info = SkImageInfo::MakeN32Premul(image->width() * 2, image->height() * 2); |
| |
| // Make sure to test kDisallow first, so we don't just get a cache hit in that case |
| for (auto chint : { SkImage::kDisallow_CachingHint, SkImage::kAllow_CachingHint }) { |
| SkAutoPixmapStorage scaled; |
| scaled.alloc(info); |
| if (!image->scalePixels(scaled, kLow_SkFilterQuality, chint)) { |
| ERRORF(reporter, "Failed to scale image"); |
| continue; |
| } |
| |
| check_scaled_pixels(reporter, &scaled, expected); |
| } |
| } |
| |
| DEF_TEST(ImageScalePixels, reporter) { |
| const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); |
| const SkColor red = SK_ColorRED; |
| |
| // Test raster image |
| SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); |
| sk_sp<SkSurface> surface = SkSurface::MakeRaster(info); |
| surface->getCanvas()->clear(red); |
| sk_sp<SkImage> rasterImage = surface->makeImageSnapshot(); |
| test_scale_pixels(reporter, rasterImage.get(), pmRed); |
| |
| // Test encoded image |
| sk_sp<SkData> data = rasterImage->encodeToData(); |
| sk_sp<SkImage> codecImage = SkImage::MakeFromEncoded(data); |
| test_scale_pixels(reporter, codecImage.get(), pmRed); |
| } |
| |
| #if SK_SUPPORT_GPU |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageScalePixels_Gpu, reporter, ctxInfo) { |
| const SkPMColor pmRed = SkPackARGB32(0xFF, 0xFF, 0, 0); |
| const SkColor red = SK_ColorRED; |
| |
| SkImageInfo info = SkImageInfo::MakeN32Premul(16, 16); |
| sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, |
| info); |
| surface->getCanvas()->clear(red); |
| sk_sp<SkImage> gpuImage = surface->makeImageSnapshot(); |
| test_scale_pixels(reporter, gpuImage.get(), pmRed); |
| } |
| #endif |