| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkPathOpsCubic_DEFINED |
| #define SkPathOpsCubic_DEFINED |
| |
| #include "SkPath.h" |
| #include "SkPathOpsPoint.h" |
| |
| struct SkDCubicPair { |
| const SkDCubic& first() const { return (const SkDCubic&) pts[0]; } |
| const SkDCubic& second() const { return (const SkDCubic&) pts[3]; } |
| SkDPoint pts[7]; |
| }; |
| |
| struct SkDCubic { |
| static const int kPointCount = 4; |
| static const int kPointLast = kPointCount - 1; |
| static const int kMaxIntersections = 9; |
| |
| enum SearchAxis { |
| kXAxis, |
| kYAxis |
| }; |
| |
| enum CubicType { |
| kUnsplit_SkDCubicType, |
| kSplitAtLoop_SkDCubicType, |
| kSplitAtInflection_SkDCubicType, |
| kSplitAtMaxCurvature_SkDCubicType, |
| }; |
| |
| bool collapsed() const { |
| return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2]) |
| && fPts[0].approximatelyEqual(fPts[3]); |
| } |
| |
| bool controlsInside() const { |
| SkDVector v01 = fPts[0] - fPts[1]; |
| SkDVector v02 = fPts[0] - fPts[2]; |
| SkDVector v03 = fPts[0] - fPts[3]; |
| SkDVector v13 = fPts[1] - fPts[3]; |
| SkDVector v23 = fPts[2] - fPts[3]; |
| return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0; |
| } |
| |
| static bool IsCubic() { return true; } |
| |
| const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } |
| SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; } |
| |
| void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const; |
| double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const; |
| double calcPrecision() const; |
| SkDCubicPair chopAt(double t) const; |
| static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D); |
| static bool ComplexBreak(const SkPoint pts[4], SkScalar* t, CubicType* cubicType); |
| int convexHull(char order[kPointCount]) const; |
| |
| void debugInit() { |
| sk_bzero(fPts, sizeof(fPts)); |
| } |
| |
| void dump() const; // callable from the debugger when the implementation code is linked in |
| void dumpID(int id) const; |
| void dumpInner() const; |
| SkDVector dxdyAtT(double t) const; |
| bool endsAreExtremaInXOrY() const; |
| static int FindExtrema(const double src[], double tValue[2]); |
| int findInflections(double tValues[2]) const; |
| |
| static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) { |
| SkDCubic cubic; |
| return cubic.set(a).findInflections(tValues); |
| } |
| |
| int findMaxCurvature(double tValues[]) const; |
| bool hullIntersects(const SkDCubic& c2, bool* isLinear) const; |
| bool hullIntersects(const SkDConic& c, bool* isLinear) const; |
| bool hullIntersects(const SkDQuad& c2, bool* isLinear) const; |
| bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const; |
| bool isLinear(int startIndex, int endIndex) const; |
| bool monotonicInX() const; |
| bool monotonicInY() const; |
| void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const; |
| SkDPoint ptAtT(double t) const; |
| static int RootsReal(double A, double B, double C, double D, double t[3]); |
| static int RootsValidT(const double A, const double B, const double C, double D, double s[3]); |
| |
| int searchRoots(double extremes[6], int extrema, double axisIntercept, |
| SearchAxis xAxis, double* validRoots) const; |
| |
| /** |
| * Return the number of valid roots (0 < root < 1) for this cubic intersecting the |
| * specified horizontal line. |
| */ |
| int horizontalIntersect(double yIntercept, double roots[3]) const; |
| /** |
| * Return the number of valid roots (0 < root < 1) for this cubic intersecting the |
| * specified vertical line. |
| */ |
| int verticalIntersect(double xIntercept, double roots[3]) const; |
| |
| const SkDCubic& set(const SkPoint pts[kPointCount]) { |
| fPts[0] = pts[0]; |
| fPts[1] = pts[1]; |
| fPts[2] = pts[2]; |
| fPts[3] = pts[3]; |
| return *this; |
| } |
| |
| SkDCubic subDivide(double t1, double t2) const; |
| |
| static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) { |
| SkDCubic cubic; |
| return cubic.set(a).subDivide(t1, t2); |
| } |
| |
| void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const; |
| |
| static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1, |
| double t2, SkDPoint p[2]) { |
| SkDCubic cubic; |
| cubic.set(pts).subDivide(a, d, t1, t2, p); |
| } |
| |
| double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const; |
| SkDQuad toQuad() const; |
| |
| static const int gPrecisionUnit; |
| |
| SkDPoint fPts[kPointCount]; |
| }; |
| |
| /* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask |
| that computes the other two. Note that: |
| |
| one ^ two == 3 for (0, 3), (1, 2) |
| one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
| 3 - (one ^ two) is either 0, 1, or 2 |
| 1 >> (3 - (one ^ two)) is either 0 or 1 |
| thus: |
| returned == 2 for (0, 3), (1, 2) |
| returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3) |
| given that: |
| (0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0) |
| (0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0) |
| */ |
| inline int other_two(int one, int two) { |
| return 1 >> (3 - (one ^ two)) ^ 3; |
| } |
| |
| #endif |