| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkNx_sse_DEFINED |
| #define SkNx_sse_DEFINED |
| |
| // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. |
| |
| namespace { // See SkNx.h |
| |
| |
| template <> |
| class SkNf<2, float> { |
| public: |
| SkNf(const __m128& vec) : fVec(vec) {} |
| |
| SkNf() {} |
| explicit SkNf(float val) : fVec(_mm_set1_ps(val)) {} |
| static SkNf Load(const float vals[2]) { |
| return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)vals)); |
| } |
| SkNf(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} |
| |
| void store(float vals[2]) const { _mm_storel_pi((__m64*)vals, fVec); } |
| |
| SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); } |
| SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); } |
| SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); } |
| SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); } |
| |
| SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
| SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
| SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
| SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
| SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
| SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
| |
| static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); } |
| static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); } |
| |
| SkNf sqrt() const { return _mm_sqrt_ps (fVec); } |
| SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); } |
| SkNf rsqrt1() const { return this->rsqrt0(); } |
| SkNf rsqrt2() const { return this->rsqrt1(); } |
| |
| SkNf invert() const { return SkNf(1) / *this; } |
| SkNf approxInvert() const { return _mm_rcp_ps(fVec); } |
| |
| template <int k> float kth() const { |
| SkASSERT(0 <= k && k < 2); |
| union { __m128 v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&1]; |
| } |
| |
| bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
| bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } |
| |
| __m128 fVec; |
| }; |
| |
| template <> |
| class SkNf<2, double> { |
| public: |
| SkNf(const __m128d& vec) : fVec(vec) {} |
| |
| SkNf() {} |
| explicit SkNf(double val) : fVec( _mm_set1_pd(val) ) {} |
| static SkNf Load(const double vals[2]) { return _mm_loadu_pd(vals); } |
| SkNf(double a, double b) : fVec(_mm_setr_pd(a,b)) {} |
| |
| void store(double vals[2]) const { _mm_storeu_pd(vals, fVec); } |
| |
| SkNf operator + (const SkNf& o) const { return _mm_add_pd(fVec, o.fVec); } |
| SkNf operator - (const SkNf& o) const { return _mm_sub_pd(fVec, o.fVec); } |
| SkNf operator * (const SkNf& o) const { return _mm_mul_pd(fVec, o.fVec); } |
| SkNf operator / (const SkNf& o) const { return _mm_div_pd(fVec, o.fVec); } |
| |
| SkNf operator == (const SkNf& o) const { return _mm_cmpeq_pd (fVec, o.fVec); } |
| SkNf operator != (const SkNf& o) const { return _mm_cmpneq_pd(fVec, o.fVec); } |
| SkNf operator < (const SkNf& o) const { return _mm_cmplt_pd (fVec, o.fVec); } |
| SkNf operator > (const SkNf& o) const { return _mm_cmpgt_pd (fVec, o.fVec); } |
| SkNf operator <= (const SkNf& o) const { return _mm_cmple_pd (fVec, o.fVec); } |
| SkNf operator >= (const SkNf& o) const { return _mm_cmpge_pd (fVec, o.fVec); } |
| |
| static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_pd(l.fVec, r.fVec); } |
| static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_pd(l.fVec, r.fVec); } |
| |
| SkNf sqrt() const { return _mm_sqrt_pd(fVec); } |
| SkNf rsqrt0() const { return _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(fVec))); } |
| SkNf rsqrt1() const { return this->rsqrt0(); } |
| SkNf rsqrt2() const { return this->rsqrt1(); } |
| |
| SkNf invert() const { return SkNf(1) / *this; } |
| SkNf approxInvert() const { return _mm_cvtps_pd(_mm_rcp_ps(_mm_cvtpd_ps(fVec))); } |
| |
| template <int k> double kth() const { |
| SkASSERT(0 <= k && k < 2); |
| union { __m128d v; double ds[2]; } pun = {fVec}; |
| return pun.ds[k&1]; |
| } |
| |
| bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castpd_si128(fVec)); } |
| bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castpd_si128(fVec)); } |
| |
| __m128d fVec; |
| }; |
| |
| template <> |
| class SkNi<4, int> { |
| public: |
| SkNi(const __m128i& vec) : fVec(vec) {} |
| |
| SkNi() {} |
| explicit SkNi(int val) : fVec(_mm_set1_epi32(val)) {} |
| static SkNi Load(const int vals[4]) { return _mm_loadu_si128((const __m128i*)vals); } |
| SkNi(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {} |
| |
| void store(int vals[4]) const { _mm_storeu_si128((__m128i*)vals, fVec); } |
| |
| SkNi operator + (const SkNi& o) const { return _mm_add_epi32(fVec, o.fVec); } |
| SkNi operator - (const SkNi& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
| SkNi operator * (const SkNi& o) const { |
| __m128i mul20 = _mm_mul_epu32(fVec, o.fVec), |
| mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); |
| return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), |
| _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); |
| } |
| |
| SkNi operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } |
| SkNi operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } |
| |
| template <int k> int kth() const { |
| SkASSERT(0 <= k && k < 4); |
| switch (k) { |
| case 0: return _mm_cvtsi128_si32(fVec); |
| case 1: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 4)); |
| case 2: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 8)); |
| case 3: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 12)); |
| default: SkASSERT(false); return 0; |
| } |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNf<4, float> { |
| public: |
| SkNf(const __m128& vec) : fVec(vec) {} |
| |
| SkNf() {} |
| explicit SkNf(float val) : fVec( _mm_set1_ps(val) ) {} |
| static SkNf Load(const float vals[4]) { return _mm_loadu_ps(vals); } |
| |
| static SkNf FromBytes(const uint8_t bytes[4]) { |
| __m128i fix8 = _mm_cvtsi32_si128(*(const int*)bytes); |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 |
| const char _ = ~0; // Zero these bytes. |
| __m128i fix8_32 = _mm_shuffle_epi8(fix8, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_)); |
| #else |
| __m128i fix8_16 = _mm_unpacklo_epi8 (fix8, _mm_setzero_si128()), |
| fix8_32 = _mm_unpacklo_epi16(fix8_16, _mm_setzero_si128()); |
| #endif |
| return SkNf(_mm_cvtepi32_ps(fix8_32)); |
| // TODO: use _mm_cvtepu8_epi32 w/SSE4.1? |
| } |
| |
| SkNf(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} |
| |
| void store(float vals[4]) const { _mm_storeu_ps(vals, fVec); } |
| void toBytes(uint8_t bytes[4]) const { |
| __m128i fix8_32 = _mm_cvttps_epi32(fVec), |
| fix8_16 = _mm_packus_epi16(fix8_32, fix8_32), |
| fix8 = _mm_packus_epi16(fix8_16, fix8_16); |
| *(int*)bytes = _mm_cvtsi128_si32(fix8); |
| } |
| |
| SkNi<4, int> castTrunc() const { return _mm_cvttps_epi32(fVec); } |
| |
| SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); } |
| SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); } |
| SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); } |
| SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); } |
| |
| SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
| SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
| SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
| SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
| SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
| SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
| |
| static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); } |
| static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); } |
| |
| SkNf sqrt() const { return _mm_sqrt_ps (fVec); } |
| SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); } |
| SkNf rsqrt1() const { return this->rsqrt0(); } |
| SkNf rsqrt2() const { return this->rsqrt1(); } |
| |
| SkNf invert() const { return SkNf(1) / *this; } |
| SkNf approxInvert() const { return _mm_rcp_ps(fVec); } |
| |
| template <int k> float kth() const { |
| SkASSERT(0 <= k && k < 4); |
| union { __m128 v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&3]; |
| } |
| |
| bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
| bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); } |
| |
| SkNf thenElse(const SkNf& t, const SkNf& e) const { |
| return _mm_or_ps(_mm_and_ps (fVec, t.fVec), |
| _mm_andnot_ps(fVec, e.fVec)); |
| } |
| |
| __m128 fVec; |
| }; |
| |
| template <> |
| class SkNi<4, uint16_t> { |
| public: |
| SkNi(const __m128i& vec) : fVec(vec) {} |
| |
| SkNi() {} |
| explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
| static SkNi Load(const uint16_t vals[4]) { return _mm_loadl_epi64((const __m128i*)vals); } |
| SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} |
| |
| void store(uint16_t vals[4]) const { _mm_storel_epi64((__m128i*)vals, fVec); } |
| |
| SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); } |
| SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
| SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
| |
| SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
| SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
| |
| template <int k> uint16_t kth() const { |
| SkASSERT(0 <= k && k < 4); |
| return _mm_extract_epi16(fVec, k); |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNi<8, uint16_t> { |
| public: |
| SkNi(const __m128i& vec) : fVec(vec) {} |
| |
| SkNi() {} |
| explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {} |
| static SkNi Load(const uint16_t vals[8]) { return _mm_loadu_si128((const __m128i*)vals); } |
| SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
| uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} |
| |
| void store(uint16_t vals[8]) const { _mm_storeu_si128((__m128i*)vals, fVec); } |
| |
| SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); } |
| SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); } |
| SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); } |
| |
| SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } |
| SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } |
| |
| static SkNi Min(const SkNi& a, const SkNi& b) { |
| // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the |
| // signed version, _mm_min_epi16, then shift back. |
| const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. |
| const __m128i top_8x = _mm_set1_epi16(top); |
| return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), |
| _mm_sub_epi8(b.fVec, top_8x))); |
| } |
| |
| SkNi thenElse(const SkNi& t, const SkNi& e) const { |
| return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
| _mm_andnot_si128(fVec, e.fVec)); |
| } |
| |
| template <int k> uint16_t kth() const { |
| SkASSERT(0 <= k && k < 8); |
| return _mm_extract_epi16(fVec, k); |
| } |
| |
| __m128i fVec; |
| }; |
| |
| template <> |
| class SkNi<16, uint8_t> { |
| public: |
| SkNi(const __m128i& vec) : fVec(vec) {} |
| |
| SkNi() {} |
| explicit SkNi(uint8_t val) : fVec(_mm_set1_epi8(val)) {} |
| static SkNi Load(const uint8_t vals[16]) { return _mm_loadu_si128((const __m128i*)vals); } |
| SkNi(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
| uint8_t e, uint8_t f, uint8_t g, uint8_t h, |
| uint8_t i, uint8_t j, uint8_t k, uint8_t l, |
| uint8_t m, uint8_t n, uint8_t o, uint8_t p) |
| : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} |
| |
| void store(uint8_t vals[16]) const { _mm_storeu_si128((__m128i*)vals, fVec); } |
| |
| SkNi saturatedAdd(const SkNi& o) const { return _mm_adds_epu8(fVec, o.fVec); } |
| |
| SkNi operator + (const SkNi& o) const { return _mm_add_epi8(fVec, o.fVec); } |
| SkNi operator - (const SkNi& o) const { return _mm_sub_epi8(fVec, o.fVec); } |
| |
| static SkNi Min(const SkNi& a, const SkNi& b) { return _mm_min_epu8(a.fVec, b.fVec); } |
| SkNi operator < (const SkNi& o) const { |
| // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. |
| auto flip = _mm_set1_epi8(char(0x80)); |
| return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); |
| } |
| |
| template <int k> uint8_t kth() const { |
| SkASSERT(0 <= k && k < 16); |
| // SSE4.1 would just `return _mm_extract_epi8(fVec, k)`. We have to read 16-bits instead. |
| int pair = _mm_extract_epi16(fVec, k/2); |
| return k % 2 == 0 ? pair : (pair >> 8); |
| } |
| |
| SkNi thenElse(const SkNi& t, const SkNi& e) const { |
| return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), |
| _mm_andnot_si128(fVec, e.fVec)); |
| } |
| |
| __m128i fVec; |
| }; |
| |
| } // namespace |
| |
| #endif//SkNx_sse_DEFINED |