blob: 616613df5051f78715dc6a11c011072676e85f15 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PictureRenderer.h"
#include "picture_utils.h"
#include "SamplePipeControllers.h"
#include "SkCanvas.h"
#include "SkDevice.h"
#include "SkGPipe.h"
#if SK_SUPPORT_GPU
#include "SkGpuDevice.h"
#endif
#include "SkGraphics.h"
#include "SkImageEncoder.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
#include "SkPicture.h"
#include "SkRTree.h"
#include "SkScalar.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkTemplates.h"
#include "SkTileGridPicture.h"
#include "SkTDArray.h"
#include "SkThreadUtils.h"
#include "SkTypes.h"
#include "SkData.h"
#include "SkPictureUtils.h"
namespace sk_tools {
enum {
kDefaultTileWidth = 256,
kDefaultTileHeight = 256
};
void PictureRenderer::init(SkPicture* pict) {
SkASSERT(NULL == fPicture);
SkASSERT(NULL == fCanvas.get());
if (fPicture != NULL || NULL != fCanvas.get()) {
return;
}
SkASSERT(pict != NULL);
if (NULL == pict) {
return;
}
fPicture = pict;
fPicture->ref();
fCanvas.reset(this->setupCanvas());
}
class FlagsDrawFilter : public SkDrawFilter {
public:
FlagsDrawFilter(PictureRenderer::DrawFilterFlags* flags) :
fFlags(flags) {}
virtual bool filter(SkPaint* paint, Type t) {
paint->setFlags(paint->getFlags() & ~fFlags[t] & SkPaint::kAllFlags);
if (PictureRenderer::kBlur_DrawFilterFlag & fFlags[t]) {
SkMaskFilter* maskFilter = paint->getMaskFilter();
SkMaskFilter::BlurInfo blurInfo;
if (maskFilter && maskFilter->asABlur(&blurInfo)) {
paint->setMaskFilter(NULL);
}
}
if (PictureRenderer::kHinting_DrawFilterFlag & fFlags[t]) {
paint->setHinting(SkPaint::kNo_Hinting);
} else if (PictureRenderer::kSlightHinting_DrawFilterFlag & fFlags[t]) {
paint->setHinting(SkPaint::kSlight_Hinting);
}
return true;
}
private:
PictureRenderer::DrawFilterFlags* fFlags;
};
static void setUpFilter(SkCanvas* canvas, PictureRenderer::DrawFilterFlags* drawFilters) {
if (drawFilters && !canvas->getDrawFilter()) {
canvas->setDrawFilter(SkNEW_ARGS(FlagsDrawFilter, (drawFilters)))->unref();
if (drawFilters[0] & PictureRenderer::kAAClip_DrawFilterFlag) {
canvas->setAllowSoftClip(false);
}
}
}
SkCanvas* PictureRenderer::setupCanvas() {
const int width = this->getViewWidth();
const int height = this->getViewHeight();
return this->setupCanvas(width, height);
}
SkCanvas* PictureRenderer::setupCanvas(int width, int height) {
SkCanvas* canvas;
switch(fDeviceType) {
case kBitmap_DeviceType: {
SkBitmap bitmap;
sk_tools::setup_bitmap(&bitmap, width, height);
canvas = SkNEW_ARGS(SkCanvas, (bitmap));
}
break;
#if SK_SUPPORT_GPU
case kGPU_DeviceType: {
SkAutoTUnref<SkGpuDevice> device(SkNEW_ARGS(SkGpuDevice,
(fGrContext, SkBitmap::kARGB_8888_Config,
width, height)));
canvas = SkNEW_ARGS(SkCanvas, (device.get()));
}
break;
#endif
default:
SkASSERT(0);
return NULL;
}
setUpFilter(canvas, fDrawFilters);
this->scaleToScaleFactor(canvas);
return canvas;
}
void PictureRenderer::scaleToScaleFactor(SkCanvas* canvas) {
SkASSERT(canvas != NULL);
if (fScaleFactor != SK_Scalar1) {
canvas->scale(fScaleFactor, fScaleFactor);
}
}
void PictureRenderer::end() {
this->resetState();
SkSafeUnref(fPicture);
fPicture = NULL;
fCanvas.reset(NULL);
}
int PictureRenderer::getViewWidth() {
SkASSERT(fPicture != NULL);
int width = fPicture->width();
if (fViewport.width() > 0) {
width = SkMin32(width, fViewport.width());
}
return width;
}
int PictureRenderer::getViewHeight() {
SkASSERT(fPicture != NULL);
int height = fPicture->height();
if (fViewport.height() > 0) {
height = SkMin32(height, fViewport.height());
}
return height;
}
/** Converts fPicture to a picture that uses a BBoxHierarchy.
* PictureRenderer subclasses that are used to test picture playback
* should call this method during init.
*/
void PictureRenderer::buildBBoxHierarchy() {
SkASSERT(NULL != fPicture);
if (kNone_BBoxHierarchyType != fBBoxHierarchyType && NULL != fPicture) {
SkPicture* newPicture = this->createPicture();
SkCanvas* recorder = newPicture->beginRecording(fPicture->width(), fPicture->height(),
this->recordFlags());
fPicture->draw(recorder);
newPicture->endRecording();
fPicture->unref();
fPicture = newPicture;
}
}
void PictureRenderer::resetState() {
#if SK_SUPPORT_GPU
if (this->isUsingGpuDevice()) {
SkGLContext* glContext = fGrContextFactory.getGLContext(
GrContextFactory::kNative_GLContextType);
SkASSERT(glContext != NULL);
if (NULL == glContext) {
return;
}
fGrContext->flush();
SK_GL(*glContext, Finish());
}
#endif
}
uint32_t PictureRenderer::recordFlags() {
return kNone_BBoxHierarchyType == fBBoxHierarchyType ? 0 :
SkPicture::kOptimizeForClippedPlayback_RecordingFlag;
}
/**
* Write the canvas to the specified path.
* @param canvas Must be non-null. Canvas to be written to a file.
* @param path Path for the file to be written. Should have no extension; write() will append
* an appropriate one. Passed in by value so it can be modified.
* @return bool True if the Canvas is written to a file.
*/
static bool write(SkCanvas* canvas, SkString path) {
SkASSERT(canvas != NULL);
if (NULL == canvas) {
return false;
}
SkBitmap bitmap;
SkISize size = canvas->getDeviceSize();
sk_tools::setup_bitmap(&bitmap, size.width(), size.height());
canvas->readPixels(&bitmap, 0, 0);
sk_tools::force_all_opaque(bitmap);
// Since path is passed in by value, it is okay to modify it.
path.append(".png");
return SkImageEncoder::EncodeFile(path.c_str(), bitmap, SkImageEncoder::kPNG_Type, 100);
}
/**
* If path is non NULL, append number to it, and call write(SkCanvas*, SkString) to write the
* provided canvas to a file. Returns true if path is NULL or if write() succeeds.
*/
static bool writeAppendNumber(SkCanvas* canvas, const SkString* path, int number) {
if (NULL == path) {
return true;
}
SkString pathWithNumber(*path);
pathWithNumber.appendf("%i", number);
return write(canvas, pathWithNumber);
}
///////////////////////////////////////////////////////////////////////////////////////////////
SkCanvas* RecordPictureRenderer::setupCanvas(int width, int height) {
// defer the canvas setup until the render step
return NULL;
}
static bool PNGEncodeBitmapToStream(SkWStream* wStream, const SkBitmap& bm) {
return SkImageEncoder::EncodeStream(wStream, bm, SkImageEncoder::kPNG_Type, 100);
}
bool RecordPictureRenderer::render(const SkString* path, SkBitmap** out) {
SkAutoTUnref<SkPicture> replayer(this->createPicture());
SkCanvas* recorder = replayer->beginRecording(this->getViewWidth(), this->getViewHeight(),
this->recordFlags());
this->scaleToScaleFactor(recorder);
fPicture->draw(recorder);
replayer->endRecording();
if (path != NULL) {
// Record the new picture as a new SKP with PNG encoded bitmaps.
SkString skpPath(*path);
// ".skp" was removed from 'path' before being passed in here.
skpPath.append(".skp");
SkFILEWStream stream(skpPath.c_str());
replayer->serialize(&stream, &PNGEncodeBitmapToStream);
return true;
}
return false;
}
SkString RecordPictureRenderer::getConfigNameInternal() {
return SkString("record");
}
///////////////////////////////////////////////////////////////////////////////////////////////
bool PipePictureRenderer::render(const SkString* path, SkBitmap** out) {
SkASSERT(fCanvas.get() != NULL);
SkASSERT(fPicture != NULL);
if (NULL == fCanvas.get() || NULL == fPicture) {
return false;
}
PipeController pipeController(fCanvas.get());
SkGPipeWriter writer;
SkCanvas* pipeCanvas = writer.startRecording(&pipeController);
pipeCanvas->drawPicture(*fPicture);
writer.endRecording();
fCanvas->flush();
if (NULL != path) {
return write(fCanvas, *path);
}
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
fCanvas->readPixels(*out, 0, 0);
}
return true;
}
SkString PipePictureRenderer::getConfigNameInternal() {
return SkString("pipe");
}
///////////////////////////////////////////////////////////////////////////////////////////////
void SimplePictureRenderer::init(SkPicture* picture) {
INHERITED::init(picture);
this->buildBBoxHierarchy();
}
bool SimplePictureRenderer::render(const SkString* path, SkBitmap** out) {
SkASSERT(fCanvas.get() != NULL);
SkASSERT(fPicture != NULL);
if (NULL == fCanvas.get() || NULL == fPicture) {
return false;
}
fCanvas->drawPicture(*fPicture);
fCanvas->flush();
if (NULL != path) {
return write(fCanvas, *path);
}
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
fCanvas->readPixels(*out, 0, 0);
}
return true;
}
SkString SimplePictureRenderer::getConfigNameInternal() {
return SkString("simple");
}
///////////////////////////////////////////////////////////////////////////////////////////////
TiledPictureRenderer::TiledPictureRenderer()
: fTileWidth(kDefaultTileWidth)
, fTileHeight(kDefaultTileHeight)
, fTileWidthPercentage(0.0)
, fTileHeightPercentage(0.0)
, fTileMinPowerOf2Width(0)
, fCurrentTileOffset(-1)
, fTilesX(0)
, fTilesY(0) { }
void TiledPictureRenderer::init(SkPicture* pict) {
SkASSERT(pict != NULL);
SkASSERT(0 == fTileRects.count());
if (NULL == pict || fTileRects.count() != 0) {
return;
}
// Do not call INHERITED::init(), which would create a (potentially large) canvas which is not
// used by bench_pictures.
fPicture = pict;
fPicture->ref();
this->buildBBoxHierarchy();
if (fTileWidthPercentage > 0) {
fTileWidth = sk_float_ceil2int(float(fTileWidthPercentage * fPicture->width() / 100));
}
if (fTileHeightPercentage > 0) {
fTileHeight = sk_float_ceil2int(float(fTileHeightPercentage * fPicture->height() / 100));
}
if (fTileMinPowerOf2Width > 0) {
this->setupPowerOf2Tiles();
} else {
this->setupTiles();
}
fCanvas.reset(this->setupCanvas(fTileWidth, fTileHeight));
// Initialize to -1 so that the first call to nextTile will set this up to draw tile 0 on the
// first call to drawCurrentTile.
fCurrentTileOffset = -1;
}
void TiledPictureRenderer::end() {
fTileRects.reset();
this->INHERITED::end();
}
void TiledPictureRenderer::setupTiles() {
// Only use enough tiles to cover the viewport
const int width = this->getViewWidth();
const int height = this->getViewHeight();
fTilesX = fTilesY = 0;
for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) {
fTilesY++;
for (int tile_x_start = 0; tile_x_start < width; tile_x_start += fTileWidth) {
if (0 == tile_y_start) {
// Only count tiles in the X direction on the first pass.
fTilesX++;
}
*fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start),
SkIntToScalar(tile_y_start),
SkIntToScalar(fTileWidth),
SkIntToScalar(fTileHeight));
}
}
}
bool TiledPictureRenderer::tileDimensions(int &x, int &y) {
if (fTileRects.count() == 0 || NULL == fPicture) {
return false;
}
x = fTilesX;
y = fTilesY;
return true;
}
// The goal of the powers of two tiles is to minimize the amount of wasted tile
// space in the width-wise direction and then minimize the number of tiles. The
// constraints are that every tile must have a pixel width that is a power of
// two and also be of some minimal width (that is also a power of two).
//
// This is solved by first taking our picture size and rounding it up to the
// multiple of the minimal width. The binary representation of this rounded
// value gives us the tiles we need: a bit of value one means we need a tile of
// that size.
void TiledPictureRenderer::setupPowerOf2Tiles() {
// Only use enough tiles to cover the viewport
const int width = this->getViewWidth();
const int height = this->getViewHeight();
int rounded_value = width;
if (width % fTileMinPowerOf2Width != 0) {
rounded_value = width - (width % fTileMinPowerOf2Width) + fTileMinPowerOf2Width;
}
int num_bits = SkScalarCeilToInt(SkScalarLog2(SkIntToScalar(width)));
int largest_possible_tile_size = 1 << num_bits;
fTilesX = fTilesY = 0;
// The tile height is constant for a particular picture.
for (int tile_y_start = 0; tile_y_start < height; tile_y_start += fTileHeight) {
fTilesY++;
int tile_x_start = 0;
int current_width = largest_possible_tile_size;
// Set fTileWidth to be the width of the widest tile, so that each canvas is large enough
// to draw each tile.
fTileWidth = current_width;
while (current_width >= fTileMinPowerOf2Width) {
// It is very important this is a bitwise AND.
if (current_width & rounded_value) {
if (0 == tile_y_start) {
// Only count tiles in the X direction on the first pass.
fTilesX++;
}
*fTileRects.append() = SkRect::MakeXYWH(SkIntToScalar(tile_x_start),
SkIntToScalar(tile_y_start),
SkIntToScalar(current_width),
SkIntToScalar(fTileHeight));
tile_x_start += current_width;
}
current_width >>= 1;
}
}
}
/**
* Draw the specified playback to the canvas translated to rectangle provided, so that this mini
* canvas represents the rectangle's portion of the overall picture.
* Saves and restores so that the initial clip and matrix return to their state before this function
* is called.
*/
template<class T>
static void DrawTileToCanvas(SkCanvas* canvas, const SkRect& tileRect, T* playback) {
int saveCount = canvas->save();
// Translate so that we draw the correct portion of the picture.
// Perform a postTranslate so that the scaleFactor does not interfere with the positioning.
SkMatrix mat(canvas->getTotalMatrix());
mat.postTranslate(-tileRect.fLeft, -tileRect.fTop);
canvas->setMatrix(mat);
playback->draw(canvas);
canvas->restoreToCount(saveCount);
canvas->flush();
}
///////////////////////////////////////////////////////////////////////////////////////////////
static void bitmapCopySubset(const SkBitmap& src, SkBitmap* dst, int xDst,
int yDst) {
for (int y = 0; y <src.height() && y + yDst < dst->height() ; y++) {
for (int x = 0; x < src.width() && x + xDst < dst->width() ; x++) {
*dst->getAddr32(xDst + x, yDst + y) = *src.getAddr32(x, y);
}
}
}
bool TiledPictureRenderer::nextTile(int &i, int &j) {
if (++fCurrentTileOffset < fTileRects.count()) {
i = fCurrentTileOffset % fTilesX;
j = fCurrentTileOffset / fTilesX;
return true;
}
return false;
}
void TiledPictureRenderer::drawCurrentTile() {
SkASSERT(fCurrentTileOffset >= 0 && fCurrentTileOffset < fTileRects.count());
DrawTileToCanvas(fCanvas, fTileRects[fCurrentTileOffset], fPicture);
}
bool TiledPictureRenderer::render(const SkString* path, SkBitmap** out) {
SkASSERT(fPicture != NULL);
if (NULL == fPicture) {
return false;
}
SkBitmap bitmap;
if (out){
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
setup_bitmap(&bitmap, fTileWidth, fTileHeight);
}
bool success = true;
for (int i = 0; i < fTileRects.count(); ++i) {
DrawTileToCanvas(fCanvas, fTileRects[i], fPicture);
if (NULL != path) {
success &= writeAppendNumber(fCanvas, path, i);
}
if (NULL != out) {
if (fCanvas->readPixels(&bitmap, 0, 0)) {
bitmapCopySubset(bitmap, *out, SkScalarFloorToInt(fTileRects[i].left()),
SkScalarFloorToInt(fTileRects[i].top()));
} else {
success = false;
}
}
}
return success;
}
SkCanvas* TiledPictureRenderer::setupCanvas(int width, int height) {
SkCanvas* canvas = this->INHERITED::setupCanvas(width, height);
SkASSERT(fPicture != NULL);
// Clip the tile to an area that is completely inside both the SkPicture and the viewport. This
// is mostly important for tiles on the right and bottom edges as they may go over this area and
// the picture may have some commands that draw outside of this area and so should not actually
// be written.
// Uses a clipRegion so that it will be unaffected by the scale factor, which may have been set
// by INHERITED::setupCanvas.
SkRegion clipRegion;
clipRegion.setRect(0, 0, this->getViewWidth(), this->getViewHeight());
canvas->clipRegion(clipRegion);
return canvas;
}
SkString TiledPictureRenderer::getConfigNameInternal() {
SkString name;
if (fTileMinPowerOf2Width > 0) {
name.append("pow2tile_");
name.appendf("%i", fTileMinPowerOf2Width);
} else {
name.append("tile_");
if (fTileWidthPercentage > 0) {
name.appendf("%.f%%", fTileWidthPercentage);
} else {
name.appendf("%i", fTileWidth);
}
}
name.append("x");
if (fTileHeightPercentage > 0) {
name.appendf("%.f%%", fTileHeightPercentage);
} else {
name.appendf("%i", fTileHeight);
}
return name;
}
///////////////////////////////////////////////////////////////////////////////////////////////
// Holds all of the information needed to draw a set of tiles.
class CloneData : public SkRunnable {
public:
CloneData(SkPicture* clone, SkCanvas* canvas, SkTDArray<SkRect>& rects, int start, int end,
SkRunnable* done)
: fClone(clone)
, fCanvas(canvas)
, fPath(NULL)
, fRects(rects)
, fStart(start)
, fEnd(end)
, fSuccess(NULL)
, fDone(done) {
SkASSERT(fDone != NULL);
}
virtual void run() SK_OVERRIDE {
SkGraphics::SetTLSFontCacheLimit(1024 * 1024);
SkBitmap bitmap;
if (fBitmap != NULL) {
// All tiles are the same size.
setup_bitmap(&bitmap, SkScalarFloorToInt(fRects[0].width()), SkScalarFloorToInt(fRects[0].height()));
}
for (int i = fStart; i < fEnd; i++) {
DrawTileToCanvas(fCanvas, fRects[i], fClone);
if (fPath != NULL && !writeAppendNumber(fCanvas, fPath, i)
&& fSuccess != NULL) {
*fSuccess = false;
// If one tile fails to write to a file, do not continue drawing the rest.
break;
}
if (fBitmap != NULL) {
if (fCanvas->readPixels(&bitmap, 0, 0)) {
SkAutoLockPixels alp(*fBitmap);
bitmapCopySubset(bitmap, fBitmap, SkScalarFloorToInt(fRects[i].left()),
SkScalarFloorToInt(fRects[i].top()));
} else {
*fSuccess = false;
// If one tile fails to read pixels, do not continue drawing the rest.
break;
}
}
}
fDone->run();
}
void setPathAndSuccess(const SkString* path, bool* success) {
fPath = path;
fSuccess = success;
}
void setBitmap(SkBitmap* bitmap) {
fBitmap = bitmap;
}
private:
// All pointers unowned.
SkPicture* fClone; // Picture to draw from. Each CloneData has a unique one which
// is threadsafe.
SkCanvas* fCanvas; // Canvas to draw to. Reused for each tile.
const SkString* fPath; // If non-null, path to write the result to as a PNG.
SkTDArray<SkRect>& fRects; // All tiles of the picture.
const int fStart; // Range of tiles drawn by this thread.
const int fEnd;
bool* fSuccess; // Only meaningful if path is non-null. Shared by all threads,
// and only set to false upon failure to write to a PNG.
SkRunnable* fDone;
SkBitmap* fBitmap;
};
MultiCorePictureRenderer::MultiCorePictureRenderer(int threadCount)
: fNumThreads(threadCount)
, fThreadPool(threadCount)
, fCountdown(threadCount) {
// Only need to create fNumThreads - 1 clones, since one thread will use the base
// picture.
fPictureClones = SkNEW_ARRAY(SkPicture, fNumThreads - 1);
fCloneData = SkNEW_ARRAY(CloneData*, fNumThreads);
}
void MultiCorePictureRenderer::init(SkPicture *pict) {
// Set fPicture and the tiles.
this->INHERITED::init(pict);
for (int i = 0; i < fNumThreads; ++i) {
*fCanvasPool.append() = this->setupCanvas(this->getTileWidth(), this->getTileHeight());
}
// Only need to create fNumThreads - 1 clones, since one thread will use the base picture.
fPicture->clone(fPictureClones, fNumThreads - 1);
// Populate each thread with the appropriate data.
// Group the tiles into nearly equal size chunks, rounding up so we're sure to cover them all.
const int chunkSize = (fTileRects.count() + fNumThreads - 1) / fNumThreads;
for (int i = 0; i < fNumThreads; i++) {
SkPicture* pic;
if (i == fNumThreads-1) {
// The last set will use the original SkPicture.
pic = fPicture;
} else {
pic = &fPictureClones[i];
}
const int start = i * chunkSize;
const int end = SkMin32(start + chunkSize, fTileRects.count());
fCloneData[i] = SkNEW_ARGS(CloneData,
(pic, fCanvasPool[i], fTileRects, start, end, &fCountdown));
}
}
bool MultiCorePictureRenderer::render(const SkString *path, SkBitmap** out) {
bool success = true;
if (path != NULL) {
for (int i = 0; i < fNumThreads-1; i++) {
fCloneData[i]->setPathAndSuccess(path, &success);
}
}
if (NULL != out) {
*out = SkNEW(SkBitmap);
setup_bitmap(*out, fPicture->width(), fPicture->height());
for (int i = 0; i < fNumThreads; i++) {
fCloneData[i]->setBitmap(*out);
}
} else {
for (int i = 0; i < fNumThreads; i++) {
fCloneData[i]->setBitmap(NULL);
}
}
fCountdown.reset(fNumThreads);
for (int i = 0; i < fNumThreads; i++) {
fThreadPool.add(fCloneData[i]);
}
fCountdown.wait();
return success;
}
void MultiCorePictureRenderer::end() {
for (int i = 0; i < fNumThreads - 1; i++) {
SkDELETE(fCloneData[i]);
fCloneData[i] = NULL;
}
fCanvasPool.unrefAll();
this->INHERITED::end();
}
MultiCorePictureRenderer::~MultiCorePictureRenderer() {
// Each individual CloneData was deleted in end.
SkDELETE_ARRAY(fCloneData);
SkDELETE_ARRAY(fPictureClones);
}
SkString MultiCorePictureRenderer::getConfigNameInternal() {
SkString name = this->INHERITED::getConfigNameInternal();
name.appendf("_multi_%i_threads", fNumThreads);
return name;
}
///////////////////////////////////////////////////////////////////////////////////////////////
void PlaybackCreationRenderer::setup() {
fReplayer.reset(this->createPicture());
SkCanvas* recorder = fReplayer->beginRecording(this->getViewWidth(), this->getViewHeight(),
this->recordFlags());
this->scaleToScaleFactor(recorder);
fPicture->draw(recorder);
}
bool PlaybackCreationRenderer::render(const SkString*, SkBitmap** out) {
fReplayer->endRecording();
// Since this class does not actually render, return false.
return false;
}
SkString PlaybackCreationRenderer::getConfigNameInternal() {
return SkString("playback_creation");
}
///////////////////////////////////////////////////////////////////////////////////////////////
// SkPicture variants for each BBoxHierarchy type
class RTreePicture : public SkPicture {
public:
virtual SkBBoxHierarchy* createBBoxHierarchy() const SK_OVERRIDE{
static const int kRTreeMinChildren = 6;
static const int kRTreeMaxChildren = 11;
SkScalar aspectRatio = SkScalarDiv(SkIntToScalar(fWidth),
SkIntToScalar(fHeight));
return SkRTree::Create(kRTreeMinChildren, kRTreeMaxChildren,
aspectRatio);
}
};
SkPicture* PictureRenderer::createPicture() {
switch (fBBoxHierarchyType) {
case kNone_BBoxHierarchyType:
return SkNEW(SkPicture);
case kRTree_BBoxHierarchyType:
return SkNEW(RTreePicture);
case kTileGrid_BBoxHierarchyType:
return SkNEW_ARGS(SkTileGridPicture, (fGridWidth, fGridHeight, fPicture->width(),
fPicture->height()));
}
SkASSERT(0); // invalid bbhType
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
class GatherRenderer : public PictureRenderer {
public:
virtual bool render(const SkString* path, SkBitmap** out = NULL)
SK_OVERRIDE {
SkRect bounds = SkRect::MakeWH(SkIntToScalar(fPicture->width()),
SkIntToScalar(fPicture->height()));
SkData* data = SkPictureUtils::GatherPixelRefs(fPicture, bounds);
SkSafeUnref(data);
return NULL == path; // we don't have anything to write
}
private:
virtual SkString getConfigNameInternal() SK_OVERRIDE {
return SkString("gather_pixelrefs");
}
};
PictureRenderer* CreateGatherPixelRefsRenderer() {
return SkNEW(GatherRenderer);
}
///////////////////////////////////////////////////////////////////////////////
class PictureCloneRenderer : public PictureRenderer {
public:
virtual bool render(const SkString* path, SkBitmap** out = NULL)
SK_OVERRIDE {
for (int i = 0; i < 100; ++i) {
SkPicture* clone = fPicture->clone();
SkSafeUnref(clone);
}
return NULL == path; // we don't have anything to write
}
private:
virtual SkString getConfigNameInternal() SK_OVERRIDE {
return SkString("picture_clone");
}
};
PictureRenderer* CreatePictureCloneRenderer() {
return SkNEW(PictureCloneRenderer);
}
} // namespace sk_tools