| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkPDFShader.h" |
| |
| #include "SkData.h" |
| #include "SkPDFCanon.h" |
| #include "SkPDFDevice.h" |
| #include "SkPDFFormXObject.h" |
| #include "SkPDFGraphicState.h" |
| #include "SkPDFResourceDict.h" |
| #include "SkPDFUtils.h" |
| #include "SkScalar.h" |
| #include "SkStream.h" |
| #include "SkTemplates.h" |
| #include "SkTypes.h" |
| |
| static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) { |
| SkMatrix inverse; |
| if (!matrix.invert(&inverse)) { |
| return false; |
| } |
| inverse.mapRect(bbox); |
| return true; |
| } |
| |
| static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) { |
| SkVector vec = pts[1] - pts[0]; |
| SkScalar mag = vec.length(); |
| SkScalar inv = mag ? SkScalarInvert(mag) : 0; |
| |
| vec.scale(inv); |
| matrix->setSinCos(vec.fY, vec.fX); |
| matrix->preScale(mag, mag); |
| matrix->postTranslate(pts[0].fX, pts[0].fY); |
| } |
| |
| /* Assumes t + startOffset is on the stack and does a linear interpolation on t |
| between startOffset and endOffset from prevColor to curColor (for each color |
| component), leaving the result in component order on the stack. It assumes |
| there are always 3 components per color. |
| @param range endOffset - startOffset |
| @param curColor[components] The current color components. |
| @param prevColor[components] The previous color components. |
| @param result The result ps function. |
| */ |
| static void interpolateColorCode(SkScalar range, SkScalar* curColor, |
| SkScalar* prevColor, SkString* result) { |
| SkASSERT(range != SkIntToScalar(0)); |
| static const int kColorComponents = 3; |
| |
| // Figure out how to scale each color component. |
| SkScalar multiplier[kColorComponents]; |
| for (int i = 0; i < kColorComponents; i++) { |
| multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range); |
| } |
| |
| // Calculate when we no longer need to keep a copy of the input parameter t. |
| // If the last component to use t is i, then dupInput[0..i - 1] = true |
| // and dupInput[i .. components] = false. |
| bool dupInput[kColorComponents]; |
| dupInput[kColorComponents - 1] = false; |
| for (int i = kColorComponents - 2; i >= 0; i--) { |
| dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; |
| } |
| |
| if (!dupInput[0] && multiplier[0] == 0) { |
| result->append("pop "); |
| } |
| |
| for (int i = 0; i < kColorComponents; i++) { |
| // If the next components needs t and this component will consume a |
| // copy, make another copy. |
| if (dupInput[i] && multiplier[i] != 0) { |
| result->append("dup "); |
| } |
| |
| if (multiplier[i] == 0) { |
| result->appendScalar(prevColor[i]); |
| result->append(" "); |
| } else { |
| if (multiplier[i] != 1) { |
| result->appendScalar(multiplier[i]); |
| result->append(" mul "); |
| } |
| if (prevColor[i] != 0) { |
| result->appendScalar(prevColor[i]); |
| result->append(" add "); |
| } |
| } |
| |
| if (dupInput[i]) { |
| result->append("exch\n"); |
| } |
| } |
| } |
| |
| /* Generate Type 4 function code to map t=[0,1) to the passed gradient, |
| clamping at the edges of the range. The generated code will be of the form: |
| if (t < 0) { |
| return colorData[0][r,g,b]; |
| } else { |
| if (t < info.fColorOffsets[1]) { |
| return linearinterpolation(colorData[0][r,g,b], |
| colorData[1][r,g,b]); |
| } else { |
| if (t < info.fColorOffsets[2]) { |
| return linearinterpolation(colorData[1][r,g,b], |
| colorData[2][r,g,b]); |
| } else { |
| |
| ... } else { |
| return colorData[info.fColorCount - 1][r,g,b]; |
| } |
| ... |
| } |
| } |
| */ |
| static void gradientFunctionCode(const SkShader::GradientInfo& info, |
| SkString* result) { |
| /* We want to linearly interpolate from the previous color to the next. |
| Scale the colors from 0..255 to 0..1 and determine the multipliers |
| for interpolation. |
| C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. |
| */ |
| static const int kColorComponents = 3; |
| typedef SkScalar ColorTuple[kColorComponents]; |
| SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); |
| ColorTuple *colorData = colorDataAlloc.get(); |
| const SkScalar scale = SkScalarInvert(SkIntToScalar(255)); |
| for (int i = 0; i < info.fColorCount; i++) { |
| colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale); |
| colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale); |
| colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale); |
| } |
| |
| // Clamp the initial color. |
| result->append("dup 0 le {pop "); |
| result->appendScalar(colorData[0][0]); |
| result->append(" "); |
| result->appendScalar(colorData[0][1]); |
| result->append(" "); |
| result->appendScalar(colorData[0][2]); |
| result->append(" }\n"); |
| |
| // The gradient colors. |
| int gradients = 0; |
| for (int i = 1 ; i < info.fColorCount; i++) { |
| if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) { |
| continue; |
| } |
| gradients++; |
| |
| result->append("{dup "); |
| result->appendScalar(info.fColorOffsets[i]); |
| result->append(" le {"); |
| if (info.fColorOffsets[i - 1] != 0) { |
| result->appendScalar(info.fColorOffsets[i - 1]); |
| result->append(" sub\n"); |
| } |
| |
| interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1], |
| colorData[i], colorData[i - 1], result); |
| result->append("}\n"); |
| } |
| |
| // Clamp the final color. |
| result->append("{pop "); |
| result->appendScalar(colorData[info.fColorCount - 1][0]); |
| result->append(" "); |
| result->appendScalar(colorData[info.fColorCount - 1][1]); |
| result->append(" "); |
| result->appendScalar(colorData[info.fColorCount - 1][2]); |
| |
| for (int i = 0 ; i < gradients + 1; i++) { |
| result->append("} ifelse\n"); |
| } |
| } |
| |
| /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ |
| static void tileModeCode(SkShader::TileMode mode, SkString* result) { |
| if (mode == SkShader::kRepeat_TileMode) { |
| result->append("dup truncate sub\n"); // Get the fractional part. |
| result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) |
| return; |
| } |
| |
| if (mode == SkShader::kMirror_TileMode) { |
| // Map t mod 2 into [0, 1, 1, 0]. |
| // Code Stack |
| result->append("abs " // Map negative to positive. |
| "dup " // t.s t.s |
| "truncate " // t.s t |
| "dup " // t.s t t |
| "cvi " // t.s t T |
| "2 mod " // t.s t (i mod 2) |
| "1 eq " // t.s t true|false |
| "3 1 roll " // true|false t.s t |
| "sub " // true|false 0.s |
| "exch " // 0.s true|false |
| "{1 exch sub} if\n"); // 1 - 0.s|0.s |
| } |
| } |
| |
| /** |
| * Returns PS function code that applies inverse perspective |
| * to a x, y point. |
| * The function assumes that the stack has at least two elements, |
| * and that the top 2 elements are numeric values. |
| * After executing this code on a PS stack, the last 2 elements are updated |
| * while the rest of the stack is preserved intact. |
| * inversePerspectiveMatrix is the inverse perspective matrix. |
| */ |
| static SkString apply_perspective_to_coordinates( |
| const SkMatrix& inversePerspectiveMatrix) { |
| SkString code; |
| if (!inversePerspectiveMatrix.hasPerspective()) { |
| return code; |
| } |
| |
| // Perspective matrix should be: |
| // 1 0 0 |
| // 0 1 0 |
| // p0 p1 p2 |
| |
| const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0]; |
| const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1]; |
| const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2]; |
| |
| // y = y / (p2 + p0 x + p1 y) |
| // x = x / (p2 + p0 x + p1 y) |
| |
| // Input on stack: x y |
| code.append(" dup "); // x y y |
| code.appendScalar(p1); // x y y p1 |
| code.append(" mul " // x y y*p1 |
| " 2 index "); // x y y*p1 x |
| code.appendScalar(p0); // x y y p1 x p0 |
| code.append(" mul "); // x y y*p1 x*p0 |
| code.appendScalar(p2); // x y y p1 x*p0 p2 |
| code.append(" add " // x y y*p1 x*p0+p2 |
| "add " // x y y*p1+x*p0+p2 |
| "3 1 roll " // y*p1+x*p0+p2 x y |
| "2 index " // z x y y*p1+x*p0+p2 |
| "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2) |
| "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x |
| "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2 |
| "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2) |
| "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2) |
| return code; |
| } |
| |
| static SkString linearCode(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) { |
| SkString function("{"); |
| |
| function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
| |
| function.append("pop\n"); // Just ditch the y value. |
| tileModeCode(info.fTileMode, &function); |
| gradientFunctionCode(info, &function); |
| function.append("}"); |
| return function; |
| } |
| |
| static SkString radialCode(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) { |
| SkString function("{"); |
| |
| function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
| |
| // Find the distance from the origin. |
| function.append("dup " // x y y |
| "mul " // x y^2 |
| "exch " // y^2 x |
| "dup " // y^2 x x |
| "mul " // y^2 x^2 |
| "add " // y^2+x^2 |
| "sqrt\n"); // sqrt(y^2+x^2) |
| |
| tileModeCode(info.fTileMode, &function); |
| gradientFunctionCode(info, &function); |
| function.append("}"); |
| return function; |
| } |
| |
| /* The math here is all based on the description in Two_Point_Radial_Gradient, |
| with one simplification, the coordinate space has been scaled so that |
| Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2. |
| */ |
| static SkString twoPointRadialCode(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) { |
| SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX; |
| SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY; |
| SkScalar sr = info.fRadius[0]; |
| SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1; |
| bool posRoot = info.fRadius[1] > info.fRadius[0]; |
| |
| // We start with a stack of (x y), copy it and then consume one copy in |
| // order to calculate b and the other to calculate c. |
| SkString function("{"); |
| |
| function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
| |
| function.append("2 copy "); |
| |
| // Calculate -b and b^2. |
| function.appendScalar(dy); |
| function.append(" mul exch "); |
| function.appendScalar(dx); |
| function.append(" mul add "); |
| function.appendScalar(sr); |
| function.append(" sub 2 mul neg dup dup mul\n"); |
| |
| // Calculate c |
| function.append("4 2 roll dup mul exch dup mul add "); |
| function.appendScalar(SkScalarMul(sr, sr)); |
| function.append(" sub\n"); |
| |
| // Calculate the determinate |
| function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); |
| function.append(" mul sub abs sqrt\n"); |
| |
| // And then the final value of t. |
| if (posRoot) { |
| function.append("sub "); |
| } else { |
| function.append("add "); |
| } |
| function.appendScalar(SkScalarMul(SkIntToScalar(2), a)); |
| function.append(" div\n"); |
| |
| tileModeCode(info.fTileMode, &function); |
| gradientFunctionCode(info, &function); |
| function.append("}"); |
| return function; |
| } |
| |
| /* Conical gradient shader, based on the Canvas spec for radial gradients |
| See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient |
| */ |
| static SkString twoPointConicalCode(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) { |
| SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; |
| SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; |
| SkScalar r0 = info.fRadius[0]; |
| SkScalar dr = info.fRadius[1] - info.fRadius[0]; |
| SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - |
| SkScalarMul(dr, dr); |
| |
| // First compute t, if the pixel falls outside the cone, then we'll end |
| // with 'false' on the stack, otherwise we'll push 'true' with t below it |
| |
| // We start with a stack of (x y), copy it and then consume one copy in |
| // order to calculate b and the other to calculate c. |
| SkString function("{"); |
| |
| function.append(apply_perspective_to_coordinates(perspectiveRemover)); |
| |
| function.append("2 copy "); |
| |
| // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). |
| function.appendScalar(dy); |
| function.append(" mul exch "); |
| function.appendScalar(dx); |
| function.append(" mul add "); |
| function.appendScalar(SkScalarMul(r0, dr)); |
| function.append(" add -2 mul dup dup mul\n"); |
| |
| // c = x^2 + y^2 + radius0^2 |
| function.append("4 2 roll dup mul exch dup mul add "); |
| function.appendScalar(SkScalarMul(r0, r0)); |
| function.append(" sub dup 4 1 roll\n"); |
| |
| // Contents of the stack at this point: c, b, b^2, c |
| |
| // if a = 0, then we collapse to a simpler linear case |
| if (a == 0) { |
| |
| // t = -c/b |
| function.append("pop pop div neg dup "); |
| |
| // compute radius(t) |
| function.appendScalar(dr); |
| function.append(" mul "); |
| function.appendScalar(r0); |
| function.append(" add\n"); |
| |
| // if r(t) < 0, then it's outside the cone |
| function.append("0 lt {pop false} {true} ifelse\n"); |
| |
| } else { |
| |
| // quadratic case: the Canvas spec wants the largest |
| // root t for which radius(t) > 0 |
| |
| // compute the discriminant (b^2 - 4ac) |
| function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); |
| function.append(" mul sub dup\n"); |
| |
| // if d >= 0, proceed |
| function.append("0 ge {\n"); |
| |
| // an intermediate value we'll use to compute the roots: |
| // q = -0.5 * (b +/- sqrt(d)) |
| function.append("sqrt exch dup 0 lt {exch -1 mul} if"); |
| function.append(" add -0.5 mul dup\n"); |
| |
| // first root = q / a |
| function.appendScalar(a); |
| function.append(" div\n"); |
| |
| // second root = c / q |
| function.append("3 1 roll div\n"); |
| |
| // put the larger root on top of the stack |
| function.append("2 copy gt {exch} if\n"); |
| |
| // compute radius(t) for larger root |
| function.append("dup "); |
| function.appendScalar(dr); |
| function.append(" mul "); |
| function.appendScalar(r0); |
| function.append(" add\n"); |
| |
| // if r(t) > 0, we have our t, pop off the smaller root and we're done |
| function.append(" 0 gt {exch pop true}\n"); |
| |
| // otherwise, throw out the larger one and try the smaller root |
| function.append("{pop dup\n"); |
| function.appendScalar(dr); |
| function.append(" mul "); |
| function.appendScalar(r0); |
| function.append(" add\n"); |
| |
| // if r(t) < 0, push false, otherwise the smaller root is our t |
| function.append("0 le {pop false} {true} ifelse\n"); |
| function.append("} ifelse\n"); |
| |
| // d < 0, clear the stack and push false |
| function.append("} {pop pop pop false} ifelse\n"); |
| } |
| |
| // if the pixel is in the cone, proceed to compute a color |
| function.append("{"); |
| tileModeCode(info.fTileMode, &function); |
| gradientFunctionCode(info, &function); |
| |
| // otherwise, just write black |
| function.append("} {0 0 0} ifelse }"); |
| |
| return function; |
| } |
| |
| static SkString sweepCode(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) { |
| SkString function("{exch atan 360 div\n"); |
| tileModeCode(info.fTileMode, &function); |
| gradientFunctionCode(info, &function); |
| function.append("}"); |
| return function; |
| } |
| |
| static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) { |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->concat(matrix); |
| canvas->drawBitmap(bm, 0, 0); |
| } |
| |
| class SkPDFShader::State { |
| public: |
| SkShader::GradientType fType; |
| SkShader::GradientInfo fInfo; |
| SkAutoFree fColorData; // This provides storage for arrays in fInfo. |
| SkMatrix fCanvasTransform; |
| SkMatrix fShaderTransform; |
| SkIRect fBBox; |
| |
| SkBitmap fImage; |
| uint32_t fPixelGeneration; |
| SkShader::TileMode fImageTileModes[2]; |
| |
| State(const SkShader& shader, const SkMatrix& canvasTransform, |
| const SkIRect& bbox, SkScalar rasterScale); |
| |
| bool operator==(const State& b) const; |
| |
| SkPDFShader::State* CreateAlphaToLuminosityState() const; |
| SkPDFShader::State* CreateOpaqueState() const; |
| |
| bool GradientHasAlpha() const; |
| |
| private: |
| State(const State& other); |
| State operator=(const State& rhs); |
| void AllocateGradientInfoStorage(); |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state) |
| : SkPDFDict("Pattern"), fShaderState(state) {} |
| |
| SkPDFFunctionShader::~SkPDFFunctionShader() {} |
| |
| bool SkPDFFunctionShader::equals(const SkPDFShader::State& state) const { |
| return state == *fShaderState; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state) |
| : fShaderState(state) {} |
| |
| bool SkPDFAlphaFunctionShader::equals(const SkPDFShader::State& state) const { |
| return state == *fShaderState; |
| } |
| |
| SkPDFAlphaFunctionShader::~SkPDFAlphaFunctionShader() {} |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) |
| : fShaderState(state) {} |
| |
| bool SkPDFImageShader::equals(const SkPDFShader::State& state) const { |
| return state == *fShaderState; |
| } |
| |
| SkPDFImageShader::~SkPDFImageShader() {} |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static SkPDFObject* get_pdf_shader_by_state( |
| SkPDFCanon* canon, |
| SkScalar dpi, |
| SkAutoTDelete<SkPDFShader::State>* autoState) { |
| const SkPDFShader::State& state = **autoState; |
| if (state.fType == SkShader::kNone_GradientType && state.fImage.isNull()) { |
| // TODO(vandebo) This drops SKComposeShader on the floor. We could |
| // handle compose shader by pulling things up to a layer, drawing with |
| // the first shader, applying the xfer mode and drawing again with the |
| // second shader, then applying the layer to the original drawing. |
| return NULL; |
| } else if (state.fType == SkShader::kNone_GradientType) { |
| SkPDFObject* shader = canon->findImageShader(state); |
| return shader ? SkRef(shader) |
| : SkPDFImageShader::Create(canon, dpi, autoState); |
| } else if (state.GradientHasAlpha()) { |
| SkPDFObject* shader = canon->findAlphaShader(state); |
| return shader ? SkRef(shader) |
| : SkPDFAlphaFunctionShader::Create(canon, dpi, autoState); |
| } else { |
| SkPDFObject* shader = canon->findFunctionShader(state); |
| return shader ? SkRef(shader) |
| : SkPDFFunctionShader::Create(canon, autoState); |
| } |
| } |
| |
| // static |
| SkPDFObject* SkPDFShader::GetPDFShader(SkPDFCanon* canon, |
| SkScalar dpi, |
| const SkShader& shader, |
| const SkMatrix& matrix, |
| const SkIRect& surfaceBBox, |
| SkScalar rasterScale) { |
| SkAutoTDelete<SkPDFShader::State> state( |
| SkNEW_ARGS(State, (shader, matrix, surfaceBBox, rasterScale))); |
| return get_pdf_shader_by_state(canon, dpi, &state); |
| } |
| |
| static SkPDFResourceDict* get_gradient_resource_dict( |
| SkPDFObject* functionShader, |
| SkPDFObject* gState) { |
| SkPDFResourceDict* dict = new SkPDFResourceDict(); |
| |
| if (functionShader != NULL) { |
| dict->insertResourceAsReference( |
| SkPDFResourceDict::kPattern_ResourceType, 0, functionShader); |
| } |
| if (gState != NULL) { |
| dict->insertResourceAsReference( |
| SkPDFResourceDict::kExtGState_ResourceType, 0, gState); |
| } |
| |
| return dict; |
| } |
| |
| static void populate_tiling_pattern_dict(SkPDFDict* pattern, |
| SkRect& bbox, |
| SkPDFDict* resources, |
| const SkMatrix& matrix) { |
| const int kTiling_PatternType = 1; |
| const int kColoredTilingPattern_PaintType = 1; |
| const int kConstantSpacing_TilingType = 1; |
| |
| pattern->insertName("Type", "Pattern"); |
| pattern->insertInt("PatternType", kTiling_PatternType); |
| pattern->insertInt("PaintType", kColoredTilingPattern_PaintType); |
| pattern->insertInt("TilingType", kConstantSpacing_TilingType); |
| pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref(); |
| pattern->insertScalar("XStep", bbox.width()); |
| pattern->insertScalar("YStep", bbox.height()); |
| pattern->insert("Resources", resources); |
| if (!matrix.isIdentity()) { |
| pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref(); |
| } |
| } |
| |
| /** |
| * Creates a content stream which fills the pattern P0 across bounds. |
| * @param gsIndex A graphics state resource index to apply, or <0 if no |
| * graphics state to apply. |
| */ |
| static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) { |
| SkDynamicMemoryWStream content; |
| if (gsIndex >= 0) { |
| SkPDFUtils::ApplyGraphicState(gsIndex, &content); |
| } |
| SkPDFUtils::ApplyPattern(0, &content); |
| SkPDFUtils::AppendRectangle(bounds, &content); |
| SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType, |
| &content); |
| |
| return content.detachAsStream(); |
| } |
| |
| /** |
| * Creates a ExtGState with the SMask set to the luminosityShader in |
| * luminosity mode. The shader pattern extends to the bbox. |
| */ |
| static SkPDFObject* create_smask_graphic_state( |
| SkPDFCanon* canon, SkScalar dpi, const SkPDFShader::State& state) { |
| SkRect bbox; |
| bbox.set(state.fBBox); |
| |
| SkAutoTDelete<SkPDFShader::State> alphaToLuminosityState( |
| state.CreateAlphaToLuminosityState()); |
| SkAutoTUnref<SkPDFObject> luminosityShader( |
| get_pdf_shader_by_state(canon, dpi, &alphaToLuminosityState)); |
| |
| SkAutoTDelete<SkStream> alphaStream(create_pattern_fill_content(-1, bbox)); |
| |
| SkAutoTUnref<SkPDFResourceDict> |
| resources(get_gradient_resource_dict(luminosityShader, NULL)); |
| |
| SkAutoTUnref<SkPDFFormXObject> alphaMask( |
| new SkPDFFormXObject(alphaStream.get(), bbox, resources.get())); |
| |
| return SkPDFGraphicState::GetSMaskGraphicState( |
| alphaMask.get(), false, |
| SkPDFGraphicState::kLuminosity_SMaskMode); |
| } |
| |
| SkPDFAlphaFunctionShader* SkPDFAlphaFunctionShader::Create( |
| SkPDFCanon* canon, |
| SkScalar dpi, |
| SkAutoTDelete<SkPDFShader::State>* autoState) { |
| const SkPDFShader::State& state = **autoState; |
| SkRect bbox; |
| bbox.set(state.fBBox); |
| |
| SkAutoTDelete<SkPDFShader::State> opaqueState(state.CreateOpaqueState()); |
| |
| SkAutoTUnref<SkPDFObject> colorShader( |
| get_pdf_shader_by_state(canon, dpi, &opaqueState)); |
| if (!colorShader) { |
| return NULL; |
| } |
| |
| // Create resource dict with alpha graphics state as G0 and |
| // pattern shader as P0, then write content stream. |
| SkAutoTUnref<SkPDFObject> alphaGs( |
| create_smask_graphic_state(canon, dpi, state)); |
| |
| SkPDFAlphaFunctionShader* alphaFunctionShader = |
| SkNEW_ARGS(SkPDFAlphaFunctionShader, (autoState->detach())); |
| |
| SkAutoTUnref<SkPDFResourceDict> resourceDict( |
| get_gradient_resource_dict(colorShader.get(), alphaGs.get())); |
| |
| SkAutoTDelete<SkStream> colorStream( |
| create_pattern_fill_content(0, bbox)); |
| alphaFunctionShader->setData(colorStream.get()); |
| |
| populate_tiling_pattern_dict(alphaFunctionShader, bbox, resourceDict.get(), |
| SkMatrix::I()); |
| canon->addAlphaShader(alphaFunctionShader); |
| return alphaFunctionShader; |
| } |
| |
| // Finds affine and persp such that in = affine * persp. |
| // but it returns the inverse of perspective matrix. |
| static bool split_perspective(const SkMatrix in, SkMatrix* affine, |
| SkMatrix* perspectiveInverse) { |
| const SkScalar p2 = in[SkMatrix::kMPersp2]; |
| |
| if (SkScalarNearlyZero(p2)) { |
| return false; |
| } |
| |
| const SkScalar zero = SkIntToScalar(0); |
| const SkScalar one = SkIntToScalar(1); |
| |
| const SkScalar sx = in[SkMatrix::kMScaleX]; |
| const SkScalar kx = in[SkMatrix::kMSkewX]; |
| const SkScalar tx = in[SkMatrix::kMTransX]; |
| const SkScalar ky = in[SkMatrix::kMSkewY]; |
| const SkScalar sy = in[SkMatrix::kMScaleY]; |
| const SkScalar ty = in[SkMatrix::kMTransY]; |
| const SkScalar p0 = in[SkMatrix::kMPersp0]; |
| const SkScalar p1 = in[SkMatrix::kMPersp1]; |
| |
| // Perspective matrix would be: |
| // 1 0 0 |
| // 0 1 0 |
| // p0 p1 p2 |
| // But we need the inverse of persp. |
| perspectiveInverse->setAll(one, zero, zero, |
| zero, one, zero, |
| -p0/p2, -p1/p2, 1/p2); |
| |
| affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2, |
| ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2, |
| zero, zero, one); |
| |
| return true; |
| } |
| |
| namespace { |
| SkPDFObject* create_range_object() { |
| SkPDFArray* range = SkNEW(SkPDFArray); |
| range->reserve(6); |
| range->appendInt(0); |
| range->appendInt(1); |
| range->appendInt(0); |
| range->appendInt(1); |
| range->appendInt(0); |
| range->appendInt(1); |
| return range; |
| } |
| |
| template <typename T> void unref(T* ptr) { ptr->unref();} |
| } // namespace |
| |
| SK_DECLARE_STATIC_LAZY_PTR(SkPDFObject, rangeObject, |
| create_range_object, unref<SkPDFObject>); |
| |
| static SkPDFStream* make_ps_function(const SkString& psCode, |
| SkPDFArray* domain) { |
| SkAutoDataUnref funcData( |
| SkData::NewWithCopy(psCode.c_str(), psCode.size())); |
| SkPDFStream* result = SkNEW_ARGS(SkPDFStream, (funcData.get())); |
| result->insertInt("FunctionType", 4); |
| result->insert("Domain", domain); |
| result->insert("Range", rangeObject.get()); |
| return result; |
| } |
| |
| SkPDFFunctionShader* SkPDFFunctionShader::Create( |
| SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) { |
| const SkPDFShader::State& state = **autoState; |
| |
| SkString (*codeFunction)(const SkShader::GradientInfo& info, |
| const SkMatrix& perspectiveRemover) = NULL; |
| SkPoint transformPoints[2]; |
| |
| // Depending on the type of the gradient, we want to transform the |
| // coordinate space in different ways. |
| const SkShader::GradientInfo* info = &state.fInfo; |
| transformPoints[0] = info->fPoint[0]; |
| transformPoints[1] = info->fPoint[1]; |
| switch (state.fType) { |
| case SkShader::kLinear_GradientType: |
| codeFunction = &linearCode; |
| break; |
| case SkShader::kRadial_GradientType: |
| transformPoints[1] = transformPoints[0]; |
| transformPoints[1].fX += info->fRadius[0]; |
| codeFunction = &radialCode; |
| break; |
| case SkShader::kRadial2_GradientType: { |
| // Bail out if the radii are the same. |
| if (info->fRadius[0] == info->fRadius[1]) { |
| return NULL; |
| } |
| transformPoints[1] = transformPoints[0]; |
| SkScalar dr = info->fRadius[1] - info->fRadius[0]; |
| transformPoints[1].fX += dr; |
| codeFunction = &twoPointRadialCode; |
| break; |
| } |
| case SkShader::kConical_GradientType: { |
| transformPoints[1] = transformPoints[0]; |
| transformPoints[1].fX += SK_Scalar1; |
| codeFunction = &twoPointConicalCode; |
| break; |
| } |
| case SkShader::kSweep_GradientType: |
| transformPoints[1] = transformPoints[0]; |
| transformPoints[1].fX += SK_Scalar1; |
| codeFunction = &sweepCode; |
| break; |
| case SkShader::kColor_GradientType: |
| case SkShader::kNone_GradientType: |
| default: |
| return NULL; |
| } |
| |
| // Move any scaling (assuming a unit gradient) or translation |
| // (and rotation for linear gradient), of the final gradient from |
| // info->fPoints to the matrix (updating bbox appropriately). Now |
| // the gradient can be drawn on on the unit segment. |
| SkMatrix mapperMatrix; |
| unitToPointsMatrix(transformPoints, &mapperMatrix); |
| |
| SkMatrix finalMatrix = state.fCanvasTransform; |
| finalMatrix.preConcat(state.fShaderTransform); |
| finalMatrix.preConcat(mapperMatrix); |
| |
| // Preserves as much as posible in the final matrix, and only removes |
| // the perspective. The inverse of the perspective is stored in |
| // perspectiveInverseOnly matrix and has 3 useful numbers |
| // (p0, p1, p2), while everything else is either 0 or 1. |
| // In this way the shader will handle it eficiently, with minimal code. |
| SkMatrix perspectiveInverseOnly = SkMatrix::I(); |
| if (finalMatrix.hasPerspective()) { |
| if (!split_perspective(finalMatrix, |
| &finalMatrix, &perspectiveInverseOnly)) { |
| return NULL; |
| } |
| } |
| |
| SkRect bbox; |
| bbox.set(state.fBBox); |
| if (!inverse_transform_bbox(finalMatrix, &bbox)) { |
| return NULL; |
| } |
| |
| SkAutoTUnref<SkPDFArray> domain(new SkPDFArray); |
| domain->reserve(4); |
| domain->appendScalar(bbox.fLeft); |
| domain->appendScalar(bbox.fRight); |
| domain->appendScalar(bbox.fTop); |
| domain->appendScalar(bbox.fBottom); |
| |
| SkString functionCode; |
| // The two point radial gradient further references |
| // state.fInfo |
| // in translating from x, y coordinates to the t parameter. So, we have |
| // to transform the points and radii according to the calculated matrix. |
| if (state.fType == SkShader::kRadial2_GradientType) { |
| SkShader::GradientInfo twoPointRadialInfo = *info; |
| SkMatrix inverseMapperMatrix; |
| if (!mapperMatrix.invert(&inverseMapperMatrix)) { |
| return NULL; |
| } |
| inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2); |
| twoPointRadialInfo.fRadius[0] = |
| inverseMapperMatrix.mapRadius(info->fRadius[0]); |
| twoPointRadialInfo.fRadius[1] = |
| inverseMapperMatrix.mapRadius(info->fRadius[1]); |
| functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly); |
| } else { |
| functionCode = codeFunction(*info, perspectiveInverseOnly); |
| } |
| |
| SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict); |
| pdfShader->insertInt("ShadingType", 1); |
| pdfShader->insertName("ColorSpace", "DeviceRGB"); |
| pdfShader->insert("Domain", domain.get()); |
| |
| SkAutoTUnref<SkPDFStream> function( |
| make_ps_function(functionCode, domain.get())); |
| pdfShader->insert("Function", new SkPDFObjRef(function))->unref(); |
| |
| SkAutoTUnref<SkPDFArray> matrixArray( |
| SkPDFUtils::MatrixToArray(finalMatrix)); |
| |
| SkPDFFunctionShader* pdfFunctionShader = |
| SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach())); |
| |
| pdfFunctionShader->insertInt("PatternType", 2); |
| pdfFunctionShader->insert("Matrix", matrixArray.get()); |
| pdfFunctionShader->insert("Shading", pdfShader.get()); |
| |
| canon->addFunctionShader(pdfFunctionShader); |
| return pdfFunctionShader; |
| } |
| |
| SkPDFImageShader* SkPDFImageShader::Create( |
| SkPDFCanon* canon, |
| SkScalar dpi, |
| SkAutoTDelete<SkPDFShader::State>* autoState) { |
| const SkPDFShader::State& state = **autoState; |
| |
| state.fImage.lockPixels(); |
| |
| // The image shader pattern cell will be drawn into a separate device |
| // in pattern cell space (no scaling on the bitmap, though there may be |
| // translations so that all content is in the device, coordinates > 0). |
| |
| // Map clip bounds to shader space to ensure the device is large enough |
| // to handle fake clamping. |
| SkMatrix finalMatrix = state.fCanvasTransform; |
| finalMatrix.preConcat(state.fShaderTransform); |
| SkRect deviceBounds; |
| deviceBounds.set(state.fBBox); |
| if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) { |
| return NULL; |
| } |
| |
| const SkBitmap* image = &state.fImage; |
| SkRect bitmapBounds; |
| image->getBounds(&bitmapBounds); |
| |
| // For tiling modes, the bounds should be extended to include the bitmap, |
| // otherwise the bitmap gets clipped out and the shader is empty and awful. |
| // For clamp modes, we're only interested in the clip region, whether |
| // or not the main bitmap is in it. |
| SkShader::TileMode tileModes[2]; |
| tileModes[0] = state.fImageTileModes[0]; |
| tileModes[1] = state.fImageTileModes[1]; |
| if (tileModes[0] != SkShader::kClamp_TileMode || |
| tileModes[1] != SkShader::kClamp_TileMode) { |
| deviceBounds.join(bitmapBounds); |
| } |
| |
| SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()), |
| SkScalarRoundToInt(deviceBounds.height())); |
| SkAutoTUnref<SkPDFDevice> patternDevice( |
| SkPDFDevice::CreateUnflipped(size, dpi, canon)); |
| SkCanvas canvas(patternDevice.get()); |
| |
| SkRect patternBBox; |
| image->getBounds(&patternBBox); |
| |
| // Translate the canvas so that the bitmap origin is at (0, 0). |
| canvas.translate(-deviceBounds.left(), -deviceBounds.top()); |
| patternBBox.offset(-deviceBounds.left(), -deviceBounds.top()); |
| // Undo the translation in the final matrix |
| finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top()); |
| |
| // If the bitmap is out of bounds (i.e. clamp mode where we only see the |
| // stretched sides), canvas will clip this out and the extraneous data |
| // won't be saved to the PDF. |
| canvas.drawBitmap(*image, 0, 0); |
| |
| SkScalar width = SkIntToScalar(image->width()); |
| SkScalar height = SkIntToScalar(image->height()); |
| |
| // Tiling is implied. First we handle mirroring. |
| if (tileModes[0] == SkShader::kMirror_TileMode) { |
| SkMatrix xMirror; |
| xMirror.setScale(-1, 1); |
| xMirror.postTranslate(2 * width, 0); |
| drawBitmapMatrix(&canvas, *image, xMirror); |
| patternBBox.fRight += width; |
| } |
| if (tileModes[1] == SkShader::kMirror_TileMode) { |
| SkMatrix yMirror; |
| yMirror.setScale(SK_Scalar1, -SK_Scalar1); |
| yMirror.postTranslate(0, 2 * height); |
| drawBitmapMatrix(&canvas, *image, yMirror); |
| patternBBox.fBottom += height; |
| } |
| if (tileModes[0] == SkShader::kMirror_TileMode && |
| tileModes[1] == SkShader::kMirror_TileMode) { |
| SkMatrix mirror; |
| mirror.setScale(-1, -1); |
| mirror.postTranslate(2 * width, 2 * height); |
| drawBitmapMatrix(&canvas, *image, mirror); |
| } |
| |
| // Then handle Clamping, which requires expanding the pattern canvas to |
| // cover the entire surfaceBBox. |
| |
| // If both x and y are in clamp mode, we start by filling in the corners. |
| // (Which are just a rectangles of the corner colors.) |
| if (tileModes[0] == SkShader::kClamp_TileMode && |
| tileModes[1] == SkShader::kClamp_TileMode) { |
| SkPaint paint; |
| SkRect rect; |
| rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0); |
| if (!rect.isEmpty()) { |
| paint.setColor(image->getColor(0, 0)); |
| canvas.drawRect(rect, paint); |
| } |
| |
| rect = SkRect::MakeLTRB(width, deviceBounds.top(), |
| deviceBounds.right(), 0); |
| if (!rect.isEmpty()) { |
| paint.setColor(image->getColor(image->width() - 1, 0)); |
| canvas.drawRect(rect, paint); |
| } |
| |
| rect = SkRect::MakeLTRB(width, height, |
| deviceBounds.right(), deviceBounds.bottom()); |
| if (!rect.isEmpty()) { |
| paint.setColor(image->getColor(image->width() - 1, |
| image->height() - 1)); |
| canvas.drawRect(rect, paint); |
| } |
| |
| rect = SkRect::MakeLTRB(deviceBounds.left(), height, |
| 0, deviceBounds.bottom()); |
| if (!rect.isEmpty()) { |
| paint.setColor(image->getColor(0, image->height() - 1)); |
| canvas.drawRect(rect, paint); |
| } |
| } |
| |
| // Then expand the left, right, top, then bottom. |
| if (tileModes[0] == SkShader::kClamp_TileMode) { |
| SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height()); |
| if (deviceBounds.left() < 0) { |
| SkBitmap left; |
| SkAssertResult(image->extractSubset(&left, subset)); |
| |
| SkMatrix leftMatrix; |
| leftMatrix.setScale(-deviceBounds.left(), 1); |
| leftMatrix.postTranslate(deviceBounds.left(), 0); |
| drawBitmapMatrix(&canvas, left, leftMatrix); |
| |
| if (tileModes[1] == SkShader::kMirror_TileMode) { |
| leftMatrix.postScale(SK_Scalar1, -SK_Scalar1); |
| leftMatrix.postTranslate(0, 2 * height); |
| drawBitmapMatrix(&canvas, left, leftMatrix); |
| } |
| patternBBox.fLeft = 0; |
| } |
| |
| if (deviceBounds.right() > width) { |
| SkBitmap right; |
| subset.offset(image->width() - 1, 0); |
| SkAssertResult(image->extractSubset(&right, subset)); |
| |
| SkMatrix rightMatrix; |
| rightMatrix.setScale(deviceBounds.right() - width, 1); |
| rightMatrix.postTranslate(width, 0); |
| drawBitmapMatrix(&canvas, right, rightMatrix); |
| |
| if (tileModes[1] == SkShader::kMirror_TileMode) { |
| rightMatrix.postScale(SK_Scalar1, -SK_Scalar1); |
| rightMatrix.postTranslate(0, 2 * height); |
| drawBitmapMatrix(&canvas, right, rightMatrix); |
| } |
| patternBBox.fRight = deviceBounds.width(); |
| } |
| } |
| |
| if (tileModes[1] == SkShader::kClamp_TileMode) { |
| SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1); |
| if (deviceBounds.top() < 0) { |
| SkBitmap top; |
| SkAssertResult(image->extractSubset(&top, subset)); |
| |
| SkMatrix topMatrix; |
| topMatrix.setScale(SK_Scalar1, -deviceBounds.top()); |
| topMatrix.postTranslate(0, deviceBounds.top()); |
| drawBitmapMatrix(&canvas, top, topMatrix); |
| |
| if (tileModes[0] == SkShader::kMirror_TileMode) { |
| topMatrix.postScale(-1, 1); |
| topMatrix.postTranslate(2 * width, 0); |
| drawBitmapMatrix(&canvas, top, topMatrix); |
| } |
| patternBBox.fTop = 0; |
| } |
| |
| if (deviceBounds.bottom() > height) { |
| SkBitmap bottom; |
| subset.offset(0, image->height() - 1); |
| SkAssertResult(image->extractSubset(&bottom, subset)); |
| |
| SkMatrix bottomMatrix; |
| bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height); |
| bottomMatrix.postTranslate(0, height); |
| drawBitmapMatrix(&canvas, bottom, bottomMatrix); |
| |
| if (tileModes[0] == SkShader::kMirror_TileMode) { |
| bottomMatrix.postScale(-1, 1); |
| bottomMatrix.postTranslate(2 * width, 0); |
| drawBitmapMatrix(&canvas, bottom, bottomMatrix); |
| } |
| patternBBox.fBottom = deviceBounds.height(); |
| } |
| } |
| |
| // Put the canvas into the pattern stream (fContent). |
| SkAutoTDelete<SkStreamAsset> content(patternDevice->content()); |
| |
| SkPDFImageShader* imageShader = |
| SkNEW_ARGS(SkPDFImageShader, (autoState->detach())); |
| imageShader->setData(content.get()); |
| |
| SkAutoTUnref<SkPDFResourceDict> resourceDict( |
| patternDevice->createResourceDict()); |
| populate_tiling_pattern_dict(imageShader, patternBBox, |
| resourceDict.get(), finalMatrix); |
| |
| imageShader->fShaderState->fImage.unlockPixels(); |
| |
| canon->addImageShader(imageShader); |
| return imageShader; |
| } |
| |
| bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const { |
| if (fType != b.fType || |
| fCanvasTransform != b.fCanvasTransform || |
| fShaderTransform != b.fShaderTransform || |
| fBBox != b.fBBox) { |
| return false; |
| } |
| |
| if (fType == SkShader::kNone_GradientType) { |
| if (fPixelGeneration != b.fPixelGeneration || |
| fPixelGeneration == 0 || |
| fImageTileModes[0] != b.fImageTileModes[0] || |
| fImageTileModes[1] != b.fImageTileModes[1]) { |
| return false; |
| } |
| } else { |
| if (fInfo.fColorCount != b.fInfo.fColorCount || |
| memcmp(fInfo.fColors, b.fInfo.fColors, |
| sizeof(SkColor) * fInfo.fColorCount) != 0 || |
| memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets, |
| sizeof(SkScalar) * fInfo.fColorCount) != 0 || |
| fInfo.fPoint[0] != b.fInfo.fPoint[0] || |
| fInfo.fTileMode != b.fInfo.fTileMode) { |
| return false; |
| } |
| |
| switch (fType) { |
| case SkShader::kLinear_GradientType: |
| if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) { |
| return false; |
| } |
| break; |
| case SkShader::kRadial_GradientType: |
| if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) { |
| return false; |
| } |
| break; |
| case SkShader::kRadial2_GradientType: |
| case SkShader::kConical_GradientType: |
| if (fInfo.fPoint[1] != b.fInfo.fPoint[1] || |
| fInfo.fRadius[0] != b.fInfo.fRadius[0] || |
| fInfo.fRadius[1] != b.fInfo.fRadius[1]) { |
| return false; |
| } |
| break; |
| case SkShader::kSweep_GradientType: |
| case SkShader::kNone_GradientType: |
| case SkShader::kColor_GradientType: |
| break; |
| } |
| } |
| return true; |
| } |
| |
| SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform, |
| const SkIRect& bbox, SkScalar rasterScale) |
| : fCanvasTransform(canvasTransform), |
| fBBox(bbox), |
| fPixelGeneration(0) { |
| fInfo.fColorCount = 0; |
| fInfo.fColors = NULL; |
| fInfo.fColorOffsets = NULL; |
| fShaderTransform = shader.getLocalMatrix(); |
| fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; |
| |
| fType = shader.asAGradient(&fInfo); |
| |
| if (fType == SkShader::kNone_GradientType) { |
| SkShader::BitmapType bitmapType; |
| SkMatrix matrix; |
| bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes); |
| if (bitmapType != SkShader::kDefault_BitmapType) { |
| // Generic fallback for unsupported shaders: |
| // * allocate a bbox-sized bitmap |
| // * shade the whole area |
| // * use the result as a bitmap shader |
| |
| // bbox is in device space. While that's exactly what we want for sizing our bitmap, |
| // we need to map it into shader space for adjustments (to match |
| // SkPDFImageShader::Create's behavior). |
| SkRect shaderRect = SkRect::Make(bbox); |
| if (!inverse_transform_bbox(canvasTransform, &shaderRect)) { |
| fImage.reset(); |
| return; |
| } |
| |
| // Clamp the bitmap size to about 1M pixels |
| static const SkScalar kMaxBitmapArea = 1024 * 1024; |
| SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height(); |
| if (bitmapArea > kMaxBitmapArea) { |
| rasterScale *= SkScalarSqrt(SkScalarDiv(kMaxBitmapArea, bitmapArea)); |
| } |
| |
| SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()), |
| SkScalarRoundToInt(rasterScale * bbox.height())); |
| SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(), |
| SkIntToScalar(size.height()) / shaderRect.height()); |
| |
| fImage.allocN32Pixels(size.width(), size.height()); |
| fImage.eraseColor(SK_ColorTRANSPARENT); |
| |
| SkPaint p; |
| p.setShader(const_cast<SkShader*>(&shader)); |
| |
| SkCanvas canvas(fImage); |
| canvas.scale(scale.width(), scale.height()); |
| canvas.translate(-shaderRect.x(), -shaderRect.y()); |
| canvas.drawPaint(p); |
| |
| fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y()); |
| fShaderTransform.preScale(1 / scale.width(), 1 / scale.height()); |
| } else { |
| SkASSERT(matrix.isIdentity()); |
| } |
| fPixelGeneration = fImage.getGenerationID(); |
| } else { |
| AllocateGradientInfoStorage(); |
| shader.asAGradient(&fInfo); |
| } |
| } |
| |
| SkPDFShader::State::State(const SkPDFShader::State& other) |
| : fType(other.fType), |
| fCanvasTransform(other.fCanvasTransform), |
| fShaderTransform(other.fShaderTransform), |
| fBBox(other.fBBox) |
| { |
| // Only gradients supported for now, since that is all that is used. |
| // If needed, image state copy constructor can be added here later. |
| SkASSERT(fType != SkShader::kNone_GradientType); |
| |
| if (fType != SkShader::kNone_GradientType) { |
| fInfo = other.fInfo; |
| |
| AllocateGradientInfoStorage(); |
| for (int i = 0; i < fInfo.fColorCount; i++) { |
| fInfo.fColors[i] = other.fInfo.fColors[i]; |
| fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i]; |
| } |
| } |
| } |
| |
| /** |
| * Create a copy of this gradient state with alpha assigned to RGB luminousity. |
| * Only valid for gradient states. |
| */ |
| SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const { |
| SkASSERT(fType != SkShader::kNone_GradientType); |
| |
| SkPDFShader::State* newState = new SkPDFShader::State(*this); |
| |
| for (int i = 0; i < fInfo.fColorCount; i++) { |
| SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); |
| newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha); |
| } |
| |
| return newState; |
| } |
| |
| /** |
| * Create a copy of this gradient state with alpha set to fully opaque |
| * Only valid for gradient states. |
| */ |
| SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const { |
| SkASSERT(fType != SkShader::kNone_GradientType); |
| |
| SkPDFShader::State* newState = new SkPDFShader::State(*this); |
| for (int i = 0; i < fInfo.fColorCount; i++) { |
| newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i], |
| SK_AlphaOPAQUE); |
| } |
| |
| return newState; |
| } |
| |
| /** |
| * Returns true if state is a gradient and the gradient has alpha. |
| */ |
| bool SkPDFShader::State::GradientHasAlpha() const { |
| if (fType == SkShader::kNone_GradientType) { |
| return false; |
| } |
| |
| for (int i = 0; i < fInfo.fColorCount; i++) { |
| SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); |
| if (alpha != SK_AlphaOPAQUE) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void SkPDFShader::State::AllocateGradientInfoStorage() { |
| fColorData.set(sk_malloc_throw( |
| fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar)))); |
| fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get()); |
| fInfo.fColorOffsets = |
| reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount); |
| } |