blob: 93932247cdd9f2e9dda4139bfe5f4d07f7d36d87 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkLinearBitmapPipeline_sampler_DEFINED
#define SkLinearBitmapPipeline_sampler_DEFINED
#include "SkFixed.h"
#include "SkLinearBitmapPipeline_core.h"
#include <array>
#include <tuple>
namespace {
// Explaination of the math:
// 1 - x x
// +--------+--------+
// | | |
// 1 - y | px00 | px10 |
// | | |
// +--------+--------+
// | | |
// y | px01 | px11 |
// | | |
// +--------+--------+
//
//
// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
// and y:
// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
// * px10 -> x(1 - y) = x - xy
// * px01 -> (1 - x)y = y - xy
// * px11 -> xy
// So x * y is calculated first and then used to calculate all the other factors.
static Sk4s VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
Sk4f px01, Sk4f px11) {
// Calculate fractional xs and ys.
Sk4s fxs = xs - xs.floor();
Sk4s fys = ys - ys.floor();
Sk4s fxys{fxs * fys};
Sk4f sum = px11 * fxys;
sum = sum + px01 * (fys - fxys);
sum = sum + px10 * (fxs - fxys);
sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
return sum;
}
// The GeneralSampler class
template<typename SourceStrategy, typename Next>
class GeneralSampler {
public:
template<typename... Args>
GeneralSampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&& ... args)
: fNext{next}, fStrategy{std::forward<Args>(args)...} { }
void VECTORCALL nearestListFew(int n, Sk4s xs, Sk4s ys) {
SkASSERT(0 < n && n < 4);
Sk4f px0, px1, px2;
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
if (n >= 1) fNext->placePixel(px0);
if (n >= 2) fNext->placePixel(px1);
if (n >= 3) fNext->placePixel(px2);
}
void VECTORCALL nearestList4(Sk4s xs, Sk4s ys) {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
fNext->place4Pixels(px0, px1, px2, px3);
}
void nearestSpan(Span span) {
SkASSERT(!span.isEmpty());
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
SkScalar absLength = SkScalarAbs(length);
if (absLength < (count - 1)) {
this->nearestSpanSlowRate(span);
} else if (absLength == (count - 1)) {
this->nearestSpanUnitRate(span);
} else {
this->nearestSpanFastRate(span);
}
}
Sk4f bilerNonEdgePixel(SkScalar x, SkScalar y) {
Sk4f px00, px10, px01, px11;
Sk4f xs = Sk4f{x};
Sk4f ys = Sk4f{y};
Sk4f sampleXs = xs + Sk4f{-0.5f, 0.5f, -0.5f, 0.5f};
Sk4f sampleYs = ys + Sk4f{-0.5f, -0.5f, 0.5f, 0.5f};
fStrategy.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11);
return bilerp4(xs, ys, px00, px10, px01, px11);
}
void VECTORCALL bilerpListFew(int n, Sk4s xs, Sk4s ys) {
SkASSERT(0 < n && n < 4);
auto bilerpPixel = [&](int index) {
return this->bilerNonEdgePixel(xs[index], ys[index]);
};
if (n >= 1) fNext->placePixel(bilerpPixel(0));
if (n >= 2) fNext->placePixel(bilerpPixel(1));
if (n >= 3) fNext->placePixel(bilerpPixel(2));
}
void VECTORCALL bilerpList4(Sk4s xs, Sk4s ys) {
auto bilerpPixel = [&](int index) {
return this->bilerNonEdgePixel(xs[index], ys[index]);
};
fNext->place4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3));
}
void VECTORCALL bilerpEdge(Sk4s sampleXs, Sk4s sampleYs) {
Sk4f px00, px10, px01, px11;
Sk4f xs = Sk4f{sampleXs[0]};
Sk4f ys = Sk4f{sampleYs[0]};
fStrategy.get4Pixels(sampleXs, sampleYs, &px00, &px10, &px01, &px11);
Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
fNext->placePixel(pixel);
}
void bilerpSpan(Span span) {
this->bilerpSpanWithY(span, span.startY());
}
void bilerpSpanWithY(Span span, SkScalar y) {
SkASSERT(!span.isEmpty());
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
SkScalar absLength = SkScalarAbs(length);
if (absLength == 0.0f) {
this->bilerpSpanZeroRate(span, y);
} else if (absLength < (count - 1)) {
this->bilerpSpanSlowRate(span, y);
} else if (absLength == (count - 1)) {
if (std::fmod(span.startX() - 0.5f, 1.0f) == 0.0f) {
if (std::fmod(span.startY() - 0.5f, 1.0f) == 0.0f) {
this->nearestSpanUnitRate(span);
} else {
this->bilerpSpanUnitRateAlignedX(span, y);
}
} else {
this->bilerpSpanUnitRate(span, y);
}
} else {
this->bilerpSpanFastRate(span, y);
}
}
private:
// When moving through source space more slowly than dst space (zoomed in),
// we'll be sampling from the same source pixel more than once.
void nearestSpanSlowRate(Span span) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
SkScalar x = X(start);
SkFixed fx = SkScalarToFixed(x);
SkScalar dx = length / (count - 1);
SkFixed fdx = SkScalarToFixed(dx);
const void* row = fStrategy.row((int)std::floor(Y(start)));
Next* next = fNext;
int ix = SkFixedFloorToInt(fx);
int prevIX = ix;
Sk4f fpixel = fStrategy.getPixelAt(row, ix);
// When dx is less than one, each pixel is used more than once. Using the fixed point fx
// allows the code to quickly check that the same pixel is being used. The code uses this
// same pixel check to do the sRGB and normalization only once.
auto getNextPixel = [&]() {
if (ix != prevIX) {
fpixel = fStrategy.getPixelAt(row, ix);
prevIX = ix;
}
fx += fdx;
ix = SkFixedFloorToInt(fx);
return fpixel;
};
while (count >= 4) {
Sk4f px0 = getNextPixel();
Sk4f px1 = getNextPixel();
Sk4f px2 = getNextPixel();
Sk4f px3 = getNextPixel();
next->place4Pixels(px0, px1, px2, px3);
count -= 4;
}
while (count > 0) {
next->placePixel(getNextPixel());
count -= 1;
}
}
// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
// We'll never re-use pixels, but we can at least load contiguous pixels.
void nearestSpanUnitRate(Span span) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
int ix = SkScalarFloorToInt(X(start));
const void* row = fStrategy.row((int)std::floor(Y(start)));
Next* next = fNext;
if (length > 0) {
while (count >= 4) {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(row, ix, &px0, &px1, &px2, &px3);
next->place4Pixels(px0, px1, px2, px3);
ix += 4;
count -= 4;
}
while (count > 0) {
next->placePixel(fStrategy.getPixelAt(row, ix));
ix += 1;
count -= 1;
}
} else {
while (count >= 4) {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0);
next->place4Pixels(px0, px1, px2, px3);
ix -= 4;
count -= 4;
}
while (count > 0) {
next->placePixel(fStrategy.getPixelAt(row, ix));
ix -= 1;
count -= 1;
}
}
}
// We're moving through source space faster than dst (zoomed out),
// so we'll never reuse a source pixel or be able to do contiguous loads.
void nearestSpanFastRate(Span span) {
struct NearestWrapper {
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) {
fSampler.nearestListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4s xs, Sk4s ys) {
fSampler.nearestList4(xs, ys);
}
GeneralSampler& fSampler;
};
NearestWrapper wrapper{*this};
span_fallback(span, &wrapper);
}
void bilerpSpanZeroRate(Span span, SkScalar y1) {
SkScalar y0 = span.startY() - 0.5f;
y1 += 0.5f;
int iy0 = SkScalarFloorToInt(y0);
SkScalar filterY1 = y0 - iy0;
SkScalar filterY0 = 1.0f - filterY1;
int iy1 = SkScalarFloorToInt(y1);
int ix = SkScalarFloorToInt(span.startX());
Sk4f pixelY0 = fStrategy.getPixelAt(fStrategy.row(iy0), ix);
Sk4f pixelY1 = fStrategy.getPixelAt(fStrategy.row(iy1), ix);
Sk4f filterPixel = pixelY0 * filterY0 + pixelY1 * filterY1;
int count = span.count();
while (count >= 4) {
fNext->place4Pixels(filterPixel, filterPixel, filterPixel, filterPixel);
count -= 4;
}
while (count > 0) {
fNext->placePixel(filterPixel);
count -= 1;
}
}
// When moving through source space more slowly than dst space (zoomed in),
// we'll be sampling from the same source pixel more than once.
void bilerpSpanSlowRate(Span span, SkScalar ry1) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
SkFixed fx = SkScalarToFixed(X(start)
-0.5f);
SkFixed fdx = SkScalarToFixed(length / (count - 1));
//start = start + SkPoint{-0.5f, -0.5f};
Sk4f xAdjust;
if (fdx >= 0) {
xAdjust = Sk4f{-1.0f};
} else {
xAdjust = Sk4f{1.0f};
}
int ix = SkFixedFloorToInt(fx);
int ioldx = ix;
Sk4f x{SkFixedToScalar(fx) - ix};
Sk4f dx{SkFixedToScalar(fdx)};
SkScalar ry0 = Y(start) - 0.5f;
ry1 += 0.5f;
SkScalar yFloor = std::floor(ry0);
Sk4f y1 = Sk4f{ry0 - yFloor};
Sk4f y0 = Sk4f{1.0f} - y1;
const void* const row0 = fStrategy.row(SkScalarFloorToInt(ry0));
const void* const row1 = fStrategy.row(SkScalarFloorToInt(ry1));
Sk4f fpixel00 = y0 * fStrategy.getPixelAt(row0, ix);
Sk4f fpixel01 = y1 * fStrategy.getPixelAt(row1, ix);
Sk4f fpixel10 = y0 * fStrategy.getPixelAt(row0, ix + 1);
Sk4f fpixel11 = y1 * fStrategy.getPixelAt(row1, ix + 1);
auto getNextPixel = [&]() {
if (ix != ioldx) {
fpixel00 = fpixel10;
fpixel01 = fpixel11;
fpixel10 = y0 * fStrategy.getPixelAt(row0, ix + 1);
fpixel11 = y1 * fStrategy.getPixelAt(row1, ix + 1);
ioldx = ix;
x = x + xAdjust;
}
Sk4f x0, x1;
x0 = Sk4f{1.0f} - x;
x1 = x;
Sk4f fpixel = x0 * (fpixel00 + fpixel01) + x1 * (fpixel10 + fpixel11);
fx += fdx;
ix = SkFixedFloorToInt(fx);
x = x + dx;
return fpixel;
};
while (count >= 4) {
Sk4f fpixel0 = getNextPixel();
Sk4f fpixel1 = getNextPixel();
Sk4f fpixel2 = getNextPixel();
Sk4f fpixel3 = getNextPixel();
fNext->place4Pixels(fpixel0, fpixel1, fpixel2, fpixel3);
count -= 4;
}
while (count > 0) {
fNext->placePixel(getNextPixel());
count -= 1;
}
}
// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
// We'll never re-use pixels, but we can at least load contiguous pixels.
void bilerpSpanUnitRate(Span span, SkScalar y1) {
y1 += 0.5f;
SkScalar y0 = span.startY() - 0.5f;
int iy0 = SkScalarFloorToInt(y0);
SkScalar filterY1 = y0 - iy0;
SkScalar filterY0 = 1.0f - filterY1;
int iy1 = SkScalarFloorToInt(y1);
const void* rowY0 = fStrategy.row(iy0);
const void* rowY1 = fStrategy.row(iy1);
SkScalar x0 = span.startX() - 0.5f;
int ix0 = SkScalarFloorToInt(x0);
SkScalar filterX1 = x0 - ix0;
SkScalar filterX0 = 1.0f - filterX1;
auto getPixelY0 = [&]() {
Sk4f px = fStrategy.getPixelAt(rowY0, ix0);
return px * filterY0;
};
auto getPixelY1 = [&]() {
Sk4f px = fStrategy.getPixelAt(rowY1, ix0);
return px * filterY1;
};
auto get4PixelsY0 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
fStrategy.get4Pixels(rowY0, ix, px0, px1, px2, px3);
*px0 = *px0 * filterY0;
*px1 = *px1 * filterY0;
*px2 = *px2 * filterY0;
*px3 = *px3 * filterY0;
};
auto get4PixelsY1 = [&](int ix, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
fStrategy.get4Pixels(rowY1, ix, px0, px1, px2, px3);
*px0 = *px0 * filterY1;
*px1 = *px1 * filterY1;
*px2 = *px2 * filterY1;
*px3 = *px3 * filterY1;
};
auto lerp = [&](Sk4f& pixelX0, Sk4f& pixelX1) {
return pixelX0 * filterX0 + pixelX1 * filterX1;
};
// Mid making 4 unit rate.
Sk4f pxB = getPixelY0() + getPixelY1();
if (span.length() > 0) {
int count = span.count();
while (count >= 4) {
Sk4f px00, px10, px20, px30;
get4PixelsY0(ix0, &px00, &px10, &px20, &px30);
Sk4f px01, px11, px21, px31;
get4PixelsY1(ix0, &px01, &px11, &px21, &px31);
Sk4f pxS0 = px00 + px01;
Sk4f px0 = lerp(pxB, pxS0);
Sk4f pxS1 = px10 + px11;
Sk4f px1 = lerp(pxS0, pxS1);
Sk4f pxS2 = px20 + px21;
Sk4f px2 = lerp(pxS1, pxS2);
Sk4f pxS3 = px30 + px31;
Sk4f px3 = lerp(pxS2, pxS3);
pxB = pxS3;
fNext->place4Pixels(
px0,
px1,
px2,
px3);
ix0 += 4;
count -= 4;
}
while (count > 0) {
Sk4f pixelY0 = fStrategy.getPixelAt(rowY0, ix0);
Sk4f pixelY1 = fStrategy.getPixelAt(rowY1, ix0);
fNext->placePixel(lerp(pixelY0, pixelY1));
ix0 += 1;
count -= 1;
}
} else {
int count = span.count();
while (count >= 4) {
Sk4f px00, px10, px20, px30;
get4PixelsY0(ix0 - 3, &px00, &px10, &px20, &px30);
Sk4f px01, px11, px21, px31;
get4PixelsY1(ix0 - 3, &px01, &px11, &px21, &px31);
Sk4f pxS3 = px30 + px31;
Sk4f px0 = lerp(pxS3, pxB);
Sk4f pxS2 = px20 + px21;
Sk4f px1 = lerp(pxS2, pxS3);
Sk4f pxS1 = px10 + px11;
Sk4f px2 = lerp(pxS1, pxS2);
Sk4f pxS0 = px00 + px01;
Sk4f px3 = lerp(pxS0, pxS1);
pxB = pxS0;
fNext->place4Pixels(
px0,
px1,
px2,
px3);
ix0 -= 4;
count -= 4;
}
while (count > 0) {
Sk4f pixelY0 = fStrategy.getPixelAt(rowY0, ix0);
Sk4f pixelY1 = fStrategy.getPixelAt(rowY1, ix0);
fNext->placePixel(lerp(pixelY0, pixelY1));
ix0 -= 1;
count -= 1;
}
}
}
void bilerpSpanUnitRateAlignedX(Span span, SkScalar y1) {
SkScalar y0 = span.startY() - 0.5f;
y1 += 0.5f;
int iy0 = SkScalarFloorToInt(y0);
SkScalar filterY1 = y0 - iy0;
SkScalar filterY0 = 1.0f - filterY1;
int iy1 = SkScalarFloorToInt(y1);
int ix = SkScalarFloorToInt(span.startX());
const void* rowY0 = fStrategy.row(iy0);
const void* rowY1 = fStrategy.row(iy1);
auto lerp = [&](Sk4f* pixelY0, Sk4f* pixelY1) {
return *pixelY0 * filterY0 + *pixelY1 * filterY1;
};
if (span.length() > 0) {
int count = span.count();
while (count >= 4) {
Sk4f px00, px10, px20, px30;
fStrategy.get4Pixels(rowY0, ix, &px00, &px10, &px20, &px30);
Sk4f px01, px11, px21, px31;
fStrategy.get4Pixels(rowY1, ix, &px01, &px11, &px21, &px31);
fNext->place4Pixels(
lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31));
ix += 4;
count -= 4;
}
while (count > 0) {
Sk4f pixelY0 = fStrategy.getPixelAt(rowY0, ix);
Sk4f pixelY1 = fStrategy.getPixelAt(rowY1, ix);
fNext->placePixel(lerp(&pixelY0, &pixelY1));
ix += 1;
count -= 1;
}
} else {
int count = span.count();
while (count >= 4) {
Sk4f px00, px10, px20, px30;
fStrategy.get4Pixels(rowY0, ix - 3, &px30, &px20, &px10, &px00);
Sk4f px01, px11, px21, px31;
fStrategy.get4Pixels(rowY1, ix - 3, &px31, &px21, &px11, &px01);
fNext->place4Pixels(
lerp(&px00, &px01), lerp(&px10, &px11), lerp(&px20, &px21), lerp(&px30, &px31));
ix -= 4;
count -= 4;
}
while (count > 0) {
Sk4f pixelY0 = fStrategy.getPixelAt(rowY0, ix);
Sk4f pixelY1 = fStrategy.getPixelAt(rowY1, ix);
fNext->placePixel(lerp(&pixelY0, &pixelY1));
ix -= 1;
count -= 1;
}
}
}
// We're moving through source space faster than dst (zoomed out),
// so we'll never reuse a source pixel or be able to do contiguous loads.
void bilerpSpanFastRate(Span span, SkScalar y1) {
SkPoint start;
SkScalar length;
int count;
std::tie(start, length, count) = span;
SkScalar x = X(start);
SkScalar y = Y(start);
if (false && y == y1) {
struct BilerpWrapper {
void VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) {
fSampler.bilerpListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4s xs, Sk4s ys) {
fSampler.bilerpList4(xs, ys);
}
GeneralSampler& fSampler;
};
BilerpWrapper wrapper{*this};
span_fallback(span, &wrapper);
} else {
SkScalar dx = length / (count - 1);
Sk4f ys = {y - 0.5f, y - 0.5f, y1 + 0.5f, y1 + 0.5f};
while (count > 0) {
Sk4f xs = Sk4f{-0.5f, 0.5f, -0.5f, 0.5f} + Sk4f{x};
this->bilerpEdge(xs, ys);
x += dx;
count -= 1;
}
}
}
Next* const fNext;
SourceStrategy fStrategy;
};
class sRGBFast {
public:
static Sk4s VECTORCALL sRGBToLinear(Sk4s pixel) {
Sk4s l = pixel * pixel;
return Sk4s{l[0], l[1], l[2], pixel[3]};
}
};
enum class ColorOrder {
kRGBA = false,
kBGRA = true,
};
template <SkColorProfileType colorProfile, ColorOrder colorOrder>
class Pixel8888 {
public:
Pixel8888(int width, const uint32_t* src) : fSrc{src}, fWidth{width}{ }
Pixel8888(const SkPixmap& srcPixmap)
: fSrc{srcPixmap.addr32()}
, fWidth{static_cast<int>(srcPixmap.rowBytes() / 4)} { }
void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
switch (n) {
case 3:
*px2 = this->getPixelAt(fSrc, bufferLoc[2]);
case 2:
*px1 = this->getPixelAt(fSrc, bufferLoc[1]);
case 1:
*px0 = this->getPixelAt(fSrc, bufferLoc[0]);
default:
break;
}
}
void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
*px0 = this->getPixelAt(fSrc, bufferLoc[0]);
*px1 = this->getPixelAt(fSrc, bufferLoc[1]);
*px2 = this->getPixelAt(fSrc, bufferLoc[2]);
*px3 = this->getPixelAt(fSrc, bufferLoc[3]);
}
void get4Pixels(const void* vsrc, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
const uint32_t* src = static_cast<const uint32_t*>(vsrc);
*px0 = this->getPixelAt(src, index + 0);
*px1 = this->getPixelAt(src, index + 1);
*px2 = this->getPixelAt(src, index + 2);
*px3 = this->getPixelAt(src, index + 3);
}
Sk4f getPixelAt(const void* vsrc, int index) {
const uint32_t* src = static_cast<const uint32_t*>(vsrc);
Sk4b bytePixel = Sk4b::Load((uint8_t *)(&src[index]));
Sk4f pixel = SkNx_cast<float, uint8_t>(bytePixel);
if (colorOrder == ColorOrder::kBGRA) {
pixel = SkNx_shuffle<2, 1, 0, 3>(pixel);
}
pixel = pixel * Sk4f{1.0f/255.0f};
if (colorProfile == kSRGB_SkColorProfileType) {
pixel = sRGBFast::sRGBToLinear(pixel);
}
return pixel;
}
const void* row(int y) { return fSrc + y * fWidth[0]; }
private:
const uint32_t* const fSrc;
const Sk4i fWidth;
};
using Pixel8888SRGB = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888LRGB = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kRGBA>;
using Pixel8888SBGR = Pixel8888<kSRGB_SkColorProfileType, ColorOrder::kBGRA>;
using Pixel8888LBGR = Pixel8888<kLinear_SkColorProfileType, ColorOrder::kBGRA>;
template <SkColorProfileType colorProfile>
class PixelIndex8 {
public:
PixelIndex8(const SkPixmap& srcPixmap)
: fSrc{srcPixmap.addr8()}, fWidth{static_cast<int>(srcPixmap.rowBytes())} {
SkASSERT(srcPixmap.colorType() == kIndex_8_SkColorType);
SkColorTable* skColorTable = srcPixmap.ctable();
SkASSERT(skColorTable != nullptr);
fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
for (int i = 0; i < skColorTable->count(); i++) {
fColorTable[i] = this->convertPixel((*skColorTable)[i]);
}
}
void VECTORCALL getFewPixels(int n, Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
switch (n) {
case 3:
*px2 = this->getPixelAt(fSrc, bufferLoc[2]);
case 2:
*px1 = this->getPixelAt(fSrc, bufferLoc[1]);
case 1:
*px0 = this->getPixelAt(fSrc, bufferLoc[0]);
default:
break;
}
}
void VECTORCALL get4Pixels(Sk4s xs, Sk4s ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, SkScalar>(xs);
Sk4i YIs = SkNx_cast<int, SkScalar>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
*px0 = this->getPixelAt(fSrc, bufferLoc[0]);
*px1 = this->getPixelAt(fSrc, bufferLoc[1]);
*px2 = this->getPixelAt(fSrc, bufferLoc[2]);
*px3 = this->getPixelAt(fSrc, bufferLoc[3]);
}
void get4Pixels(const void* vsrc, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
*px0 = this->getPixelAt(vsrc, index + 0);
*px1 = this->getPixelAt(vsrc, index + 1);
*px2 = this->getPixelAt(vsrc, index + 2);
*px3 = this->getPixelAt(vsrc, index + 3);
}
Sk4f getPixelAt(const void* vsrc, int index) {
const uint8_t* src = static_cast<const uint8_t*>(vsrc);
return getPixel(src + index);
}
Sk4f getPixel(const uint8_t* src) {
Sk4f pixel = fColorTable[*src];
return pixel;
}
const void* row(int y) { return fSrc + y * fWidth[0]; }
private:
static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12;
Sk4f convertPixel(SkPMColor pmColor) {
Sk4b bPixel = Sk4b::Load(&pmColor);
Sk4f pixel = SkNx_cast<float, uint8_t>(bPixel);
float alpha = pixel[3];
if (alpha != 0.0f) {
float invAlpha = 1.0f / pixel[3];
Sk4f normalize = {invAlpha, invAlpha, invAlpha, 1.0f / 255.0f};
pixel = pixel * normalize;
if (colorProfile == kSRGB_SkColorProfileType) {
pixel = sRGBFast::sRGBToLinear(pixel);
}
return pixel;
} else {
return Sk4f{0.0f};
}
}
const uint8_t* const fSrc;
const Sk4i fWidth;
SkAutoMalloc fColorTableStorage{kColorTableSize};
Sk4f* fColorTable;
};
using PixelIndex8SRGB = PixelIndex8<kSRGB_SkColorProfileType>;
using PixelIndex8LRGB = PixelIndex8<kLinear_SkColorProfileType>;
} // namespace
#endif // SkLinearBitmapPipeline_sampler_DEFINED