blob: b79d4a7eb798d3a1e05a88c3286c3ecad9158fd2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrYUVProvider.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
#include "GrRenderTargetContext.h"
#include "GrTextureProxy.h"
#include "SkAutoMalloc.h"
#include "SkCachedData.h"
#include "SkRefCnt.h"
#include "SkResourceCache.h"
#include "SkYUVPlanesCache.h"
#include "effects/GrNonlinearColorSpaceXformEffect.h"
#include "effects/GrSRGBEffect.h"
#include "effects/GrYUVtoRGBEffect.h"
sk_sp<SkCachedData> init_provider(GrYUVProvider* provider, SkYUVPlanesCache::Info* yuvInfo,
void* planes[3]) {
sk_sp<SkCachedData> data;
data.reset(SkYUVPlanesCache::FindAndRef(provider->onGetID(), yuvInfo));
if (data.get()) {
planes[0] = (void*)data->data();
planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight);
} else {
// Fetch yuv plane sizes for memory allocation.
if (!provider->onQueryYUV8(&yuvInfo->fSizeInfo, &yuvInfo->fColorSpace)) {
return nullptr;
}
// Allocate the memory for YUV
size_t totalSize(0);
for (int i = 0; i < 3; i++) {
totalSize += yuvInfo->fSizeInfo.fWidthBytes[i] * yuvInfo->fSizeInfo.fSizes[i].fHeight;
}
data.reset(SkResourceCache::NewCachedData(totalSize));
planes[0] = data->writable_data();
planes[1] = (uint8_t*)planes[0] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kY] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
planes[2] = (uint8_t*)planes[1] + (yuvInfo->fSizeInfo.fWidthBytes[SkYUVSizeInfo::kU] *
yuvInfo->fSizeInfo.fSizes[SkYUVSizeInfo::kU].fHeight);
// Get the YUV planes.
if (!provider->onGetYUV8Planes(yuvInfo->fSizeInfo, planes)) {
return nullptr;
}
// Decoding is done, cache the resulting YUV planes
SkYUVPlanesCache::Add(provider->onGetID(), data.get(), yuvInfo);
}
return data;
}
void GrYUVProvider::YUVGen_DataReleaseProc(const void*, void* data) {
SkCachedData* cachedData = static_cast<SkCachedData*>(data);
SkASSERT(cachedData);
cachedData->unref();
}
sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc,
const SkColorSpace* srcColorSpace,
const SkColorSpace* dstColorSpace) {
SkYUVPlanesCache::Info yuvInfo;
void* planes[3];
sk_sp<SkCachedData> dataStorage = init_provider(this, &yuvInfo, planes);
if (!dataStorage) {
return nullptr;
}
sk_sp<GrTextureProxy> yuvTextureProxies[3];
for (int i = 0; i < 3; i++) {
int componentWidth = yuvInfo.fSizeInfo.fSizes[i].fWidth;
int componentHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
// If the sizes of the components are not all the same we choose to create exact-match
// textures for the smaller onces rather than add a texture domain to the draw.
// TODO: revisit this decision to imporve texture reuse?
SkBackingFit fit =
(componentWidth != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
(componentHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight)
? SkBackingFit::kExact : SkBackingFit::kApprox;
SkImageInfo imageInfo = SkImageInfo::MakeA8(componentWidth, componentHeight);
SkPixmap pixmap(imageInfo, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i]);
SkCachedData* dataStoragePtr = dataStorage.get();
// We grab a ref to cached yuv data. When the SkImage we create below goes away it will call
// the YUVGen_DataReleaseProc which will release this ref.
// DDL TODO: Currently we end up creating a lazy proxy that will hold onto a ref to the
// SkImage in its lambda. This means that we'll keep the ref on the YUV data around for the
// life time of the proxy and not just upload. For non-DDL draws we should look into
// releasing this SkImage after uploads (by deleting the lambda after instantiation).
dataStoragePtr->ref();
sk_sp<SkImage> yuvImage = SkImage::MakeFromRaster(pixmap, YUVGen_DataReleaseProc,
dataStoragePtr);
auto proxyProvider = ctx->contextPriv().proxyProvider();
yuvTextureProxies[i] = proxyProvider->createTextureProxy(yuvImage, kNone_GrSurfaceFlags,
1, SkBudgeted::kYes, fit);
}
// We never want to perform color-space conversion during the decode. However, if the proxy
// config is sRGB then we must use a sRGB color space.
sk_sp<SkColorSpace> colorSpace;
if (GrPixelConfigIsSRGB(desc.fConfig)) {
colorSpace = SkColorSpace::MakeSRGB();
}
// TODO: investigate preallocating mip maps here
sk_sp<GrRenderTargetContext> renderTargetContext(
ctx->contextPriv().makeDeferredRenderTargetContext(
SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, std::move(colorSpace),
desc.fSampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin));
if (!renderTargetContext) {
return nullptr;
}
GrPaint paint;
auto yuvToRgbProcessor =
GrYUVtoRGBEffect::Make(std::move(yuvTextureProxies[0]),
std::move(yuvTextureProxies[1]),
std::move(yuvTextureProxies[2]),
yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false);
paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));
// If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
// in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
// to output the results of that math directly to the buffer that we will then consider sRGB.
// If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
// Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
// then let the HW convert Linear -> sRGB.
if (GrPixelConfigIsSRGB(desc.fConfig)) {
if (ctx->caps()->srgbWriteControl()) {
paint.setDisableOutputConversionToSRGB(true);
} else {
paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear,
GrSRGBEffect::Alpha::kOpaque));
}
}
// If the caller expects the pixels in a different color space than the one from the image,
// apply a color conversion to do this.
std::unique_ptr<GrFragmentProcessor> colorConversionProcessor =
GrNonlinearColorSpaceXformEffect::Make(srcColorSpace, dstColorSpace);
if (colorConversionProcessor) {
paint.addColorFragmentProcessor(std::move(colorConversionProcessor));
}
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);
return renderTargetContext->asTextureProxyRef();
}