| |
| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTwoPointRadialGradient.h" |
| |
| /* Two-point radial gradients are specified by two circles, each with a center |
| point and radius. The gradient can be considered to be a series of |
| concentric circles, with the color interpolated from the start circle |
| (at t=0) to the end circle (at t=1). |
| |
| For each point (x, y) in the span, we want to find the |
| interpolated circle that intersects that point. The center |
| of the desired circle (Cx, Cy) falls at some distance t |
| along the line segment between the start point (Sx, Sy) and |
| end point (Ex, Ey): |
| |
| Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1) |
| Cy = (1 - t) * Sy + t * Ey |
| |
| The radius of the desired circle (r) is also a linear interpolation t |
| between the start and end radii (Sr and Er): |
| |
| r = (1 - t) * Sr + t * Er |
| |
| But |
| |
| (x - Cx)^2 + (y - Cy)^2 = r^2 |
| |
| so |
| |
| (x - ((1 - t) * Sx + t * Ex))^2 |
| + (y - ((1 - t) * Sy + t * Ey))^2 |
| = ((1 - t) * Sr + t * Er)^2 |
| |
| Solving for t yields |
| |
| [(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2 |
| + [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t |
| + [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0 |
| |
| To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy |
| |
| [Dx^2 + Dy^2 - Dr^2)] * t^2 |
| + 2 * [Dx * dx + Dy * dy - Dr * Sr] * t |
| + [dx^2 + dy^2 - Sr^2] = 0 |
| |
| A quadratic in t. The two roots of the quadratic reflect the two |
| possible circles on which the point may fall. Solving for t yields |
| the gradient value to use. |
| |
| If a<0, the start circle is entirely contained in the |
| end circle, and one of the roots will be <0 or >1 (off the line |
| segment). If a>0, the start circle falls at least partially |
| outside the end circle (or vice versa), and the gradient |
| defines a "tube" where a point may be on one circle (on the |
| inside of the tube) or the other (outside of the tube). We choose |
| one arbitrarily. |
| |
| In order to keep the math to within the limits of fixed point, |
| we divide the entire quadratic by Dr^2, and replace |
| (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving |
| |
| [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2 |
| + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t |
| + [x'^2 + y'^2 - Sr^2/Dr^2] = 0 |
| |
| (x' and y' are computed by appending the subtract and scale to the |
| fDstToIndex matrix in the constructor). |
| |
| Since the 'A' component of the quadratic is independent of x' and y', it |
| is precomputed in the constructor. Since the 'B' component is linear in |
| x' and y', if x and y are linear in the span, 'B' can be computed |
| incrementally with a simple delta (db below). If it is not (e.g., |
| a perspective projection), it must be computed in the loop. |
| |
| */ |
| |
| namespace { |
| |
| inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy, |
| SkScalar sr2d2, SkScalar foura, |
| SkScalar oneOverTwoA, bool posRoot) { |
| SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2; |
| if (0 == foura) { |
| return SkScalarToFixed(SkScalarDiv(-c, b)); |
| } |
| |
| SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c); |
| if (discrim < 0) { |
| discrim = -discrim; |
| } |
| SkScalar rootDiscrim = SkScalarSqrt(discrim); |
| SkScalar result; |
| if (posRoot) { |
| result = SkScalarMul(-b + rootDiscrim, oneOverTwoA); |
| } else { |
| result = SkScalarMul(-b - rootDiscrim, oneOverTwoA); |
| } |
| return SkScalarToFixed(result); |
| } |
| |
| typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx, |
| SkScalar fy, SkScalar dy, |
| SkScalar b, SkScalar db, |
| SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
| SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
| int count); |
| |
| void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx, |
| SkScalar fy, SkScalar dy, |
| SkScalar b, SkScalar db, |
| SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
| SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
| int count) { |
| for (; count > 0; --count) { |
| SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
| fOneOverTwoA, posRoot); |
| SkFixed index = SkClampMax(t, 0xFFFF); |
| SkASSERT(index <= 0xFFFF); |
| *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
| fx += dx; |
| fy += dy; |
| b += db; |
| } |
| } |
| void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx, |
| SkScalar fy, SkScalar dy, |
| SkScalar b, SkScalar db, |
| SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
| SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
| int count) { |
| for (; count > 0; --count) { |
| SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
| fOneOverTwoA, posRoot); |
| SkFixed index = mirror_tileproc(t); |
| SkASSERT(index <= 0xFFFF); |
| *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
| fx += dx; |
| fy += dy; |
| b += db; |
| } |
| } |
| |
| void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx, |
| SkScalar fy, SkScalar dy, |
| SkScalar b, SkScalar db, |
| SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
| SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
| int count) { |
| for (; count > 0; --count) { |
| SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
| fOneOverTwoA, posRoot); |
| SkFixed index = repeat_tileproc(t); |
| SkASSERT(index <= 0xFFFF); |
| *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
| fx += dx; |
| fy += dy; |
| b += db; |
| } |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| static SkMatrix pts_to_unit(const SkPoint& start, SkScalar diffRadius) { |
| SkScalar inv = diffRadius ? SkScalarInvert(diffRadius) : 0; |
| SkMatrix matrix; |
| matrix.setTranslate(-start.fX, -start.fY); |
| matrix.postScale(inv, inv); |
| return matrix; |
| } |
| |
| SkTwoPointRadialGradient::SkTwoPointRadialGradient(const SkPoint& start, SkScalar startRadius, |
| const SkPoint& end, SkScalar endRadius, |
| const Descriptor& desc) |
| : SkGradientShaderBase(desc, pts_to_unit(start, endRadius - startRadius)) |
| , fCenter1(start) |
| , fCenter2(end) |
| , fRadius1(startRadius) |
| , fRadius2(endRadius) |
| { |
| fDiff = fCenter1 - fCenter2; |
| fDiffRadius = fRadius2 - fRadius1; |
| // hack to avoid zero-divide for now |
| SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0; |
| fDiff.fX = SkScalarMul(fDiff.fX, inv); |
| fDiff.fY = SkScalarMul(fDiff.fY, inv); |
| fStartRadius = SkScalarMul(fRadius1, inv); |
| fSr2D2 = SkScalarSquare(fStartRadius); |
| fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1; |
| fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0; |
| } |
| |
| SkShader::BitmapType SkTwoPointRadialGradient::asABitmap( |
| SkBitmap* bitmap, |
| SkMatrix* matrix, |
| SkShader::TileMode* xy) const { |
| if (bitmap) { |
| this->getGradientTableBitmap(bitmap); |
| } |
| SkScalar diffL = 0; // just to avoid gcc warning |
| if (matrix) { |
| diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) + |
| SkScalarSquare(fDiff.fY)); |
| } |
| if (matrix) { |
| if (diffL) { |
| SkScalar invDiffL = SkScalarInvert(diffL); |
| matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY), |
| SkScalarMul(invDiffL, fDiff.fX)); |
| } else { |
| matrix->reset(); |
| } |
| matrix->preConcat(fPtsToUnit); |
| } |
| if (xy) { |
| xy[0] = fTileMode; |
| xy[1] = kClamp_TileMode; |
| } |
| return kTwoPointRadial_BitmapType; |
| } |
| |
| SkShader::GradientType SkTwoPointRadialGradient::asAGradient( |
| SkShader::GradientInfo* info) const { |
| if (info) { |
| commonAsAGradient(info); |
| info->fPoint[0] = fCenter1; |
| info->fPoint[1] = fCenter2; |
| info->fRadius[0] = fRadius1; |
| info->fRadius[1] = fRadius2; |
| } |
| return kRadial2_GradientType; |
| } |
| |
| size_t SkTwoPointRadialGradient::contextSize() const { |
| return sizeof(TwoPointRadialGradientContext); |
| } |
| |
| SkShader::Context* SkTwoPointRadialGradient::onCreateContext(const ContextRec& rec, |
| void* storage) const { |
| // For now, we might have divided by zero, so detect that. |
| if (0 == fDiffRadius) { |
| return NULL; |
| } |
| return SkNEW_PLACEMENT_ARGS(storage, TwoPointRadialGradientContext, (*this, rec)); |
| } |
| |
| SkTwoPointRadialGradient::TwoPointRadialGradientContext::TwoPointRadialGradientContext( |
| const SkTwoPointRadialGradient& shader, const ContextRec& rec) |
| : INHERITED(shader, rec) |
| { |
| // we don't have a span16 proc |
| fFlags &= ~kHasSpan16_Flag; |
| } |
| |
| void SkTwoPointRadialGradient::TwoPointRadialGradientContext::shadeSpan( |
| int x, int y, SkPMColor* dstCParam, int count) { |
| SkASSERT(count > 0); |
| |
| const SkTwoPointRadialGradient& twoPointRadialGradient = |
| static_cast<const SkTwoPointRadialGradient&>(fShader); |
| |
| SkPMColor* SK_RESTRICT dstC = dstCParam; |
| |
| // Zero difference between radii: fill with transparent black. |
| if (twoPointRadialGradient.fDiffRadius == 0) { |
| sk_bzero(dstC, count * sizeof(*dstC)); |
| return; |
| } |
| SkMatrix::MapXYProc dstProc = fDstToIndexProc; |
| TileProc proc = twoPointRadialGradient.fTileProc; |
| const SkPMColor* SK_RESTRICT cache = fCache->getCache32(); |
| |
| SkScalar foura = twoPointRadialGradient.fA * 4; |
| bool posRoot = twoPointRadialGradient.fDiffRadius < 0; |
| if (fDstToIndexClass != kPerspective_MatrixClass) { |
| SkPoint srcPt; |
| dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, |
| SkIntToScalar(y) + SK_ScalarHalf, &srcPt); |
| SkScalar dx, fx = srcPt.fX; |
| SkScalar dy, fy = srcPt.fY; |
| |
| if (fDstToIndexClass == kFixedStepInX_MatrixClass) { |
| SkFixed fixedX, fixedY; |
| (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY); |
| dx = SkFixedToScalar(fixedX); |
| dy = SkFixedToScalar(fixedY); |
| } else { |
| SkASSERT(fDstToIndexClass == kLinear_MatrixClass); |
| dx = fDstToIndex.getScaleX(); |
| dy = fDstToIndex.getSkewY(); |
| } |
| SkScalar b = (SkScalarMul(twoPointRadialGradient.fDiff.fX, fx) + |
| SkScalarMul(twoPointRadialGradient.fDiff.fY, fy) - |
| twoPointRadialGradient.fStartRadius) * 2; |
| SkScalar db = (SkScalarMul(twoPointRadialGradient.fDiff.fX, dx) + |
| SkScalarMul(twoPointRadialGradient.fDiff.fY, dy)) * 2; |
| |
| TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat; |
| if (SkShader::kClamp_TileMode == twoPointRadialGradient.fTileMode) { |
| shadeProc = shadeSpan_twopoint_clamp; |
| } else if (SkShader::kMirror_TileMode == twoPointRadialGradient.fTileMode) { |
| shadeProc = shadeSpan_twopoint_mirror; |
| } else { |
| SkASSERT(SkShader::kRepeat_TileMode == twoPointRadialGradient.fTileMode); |
| } |
| (*shadeProc)(fx, dx, fy, dy, b, db, |
| twoPointRadialGradient.fSr2D2, foura, |
| twoPointRadialGradient.fOneOverTwoA, posRoot, |
| dstC, cache, count); |
| } else { // perspective case |
| SkScalar dstX = SkIntToScalar(x); |
| SkScalar dstY = SkIntToScalar(y); |
| for (; count > 0; --count) { |
| SkPoint srcPt; |
| dstProc(fDstToIndex, dstX, dstY, &srcPt); |
| SkScalar fx = srcPt.fX; |
| SkScalar fy = srcPt.fY; |
| SkScalar b = (SkScalarMul(twoPointRadialGradient.fDiff.fX, fx) + |
| SkScalarMul(twoPointRadialGradient.fDiff.fY, fy) - |
| twoPointRadialGradient.fStartRadius) * 2; |
| SkFixed t = two_point_radial(b, fx, fy, twoPointRadialGradient.fSr2D2, foura, |
| twoPointRadialGradient.fOneOverTwoA, posRoot); |
| SkFixed index = proc(t); |
| SkASSERT(index <= 0xFFFF); |
| *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
| dstX += SK_Scalar1; |
| } |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkTwoPointRadialGradient::toString(SkString* str) const { |
| str->append("SkTwoPointRadialGradient: ("); |
| |
| str->append("center1: ("); |
| str->appendScalar(fCenter1.fX); |
| str->append(", "); |
| str->appendScalar(fCenter1.fY); |
| str->append(") radius1: "); |
| str->appendScalar(fRadius1); |
| str->append(" "); |
| |
| str->append("center2: ("); |
| str->appendScalar(fCenter2.fX); |
| str->append(", "); |
| str->appendScalar(fCenter2.fY); |
| str->append(") radius2: "); |
| str->appendScalar(fRadius2); |
| str->append(" "); |
| |
| this->INHERITED::toString(str); |
| |
| str->append(")"); |
| } |
| #endif |
| |
| SkFlattenable* SkTwoPointRadialGradient::CreateProc(SkReadBuffer& buffer) { |
| DescriptorScope desc; |
| if (!desc.unflatten(buffer)) { |
| return NULL; |
| } |
| const SkPoint c1 = buffer.readPoint(); |
| const SkPoint c2 = buffer.readPoint(); |
| const SkScalar r1 = buffer.readScalar(); |
| const SkScalar r2 = buffer.readScalar(); |
| return SkGradientShader::CreateTwoPointRadial(c1, r1, c2, r2, desc.fColors, desc.fPos, |
| desc.fCount, desc.fTileMode, desc.fGradFlags, |
| desc.fLocalMatrix); |
| } |
| |
| void SkTwoPointRadialGradient::flatten( |
| SkWriteBuffer& buffer) const { |
| this->INHERITED::flatten(buffer); |
| buffer.writePoint(fCenter1); |
| buffer.writePoint(fCenter2); |
| buffer.writeScalar(fRadius1); |
| buffer.writeScalar(fRadius2); |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "SkGr.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| |
| // For brevity |
| typedef GrGLProgramDataManager::UniformHandle UniformHandle; |
| |
| class GrGLRadial2Gradient : public GrGLGradientEffect { |
| |
| public: |
| |
| GrGLRadial2Gradient(const GrProcessor&); |
| virtual ~GrGLRadial2Gradient() { } |
| |
| virtual void emitCode(GrGLFPBuilder*, |
| const GrFragmentProcessor&, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray&) SK_OVERRIDE; |
| void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE; |
| |
| static void GenKey(const GrProcessor&, const GrGLCaps& caps, GrProcessorKeyBuilder* b); |
| |
| protected: |
| |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| bool fIsDegenerate; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedCenter; |
| SkScalar fCachedRadius; |
| bool fCachedPosRoot; |
| |
| // @} |
| |
| private: |
| |
| typedef GrGLGradientEffect INHERITED; |
| |
| }; |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| class GrRadial2Gradient : public GrGradientEffect { |
| public: |
| static GrFragmentProcessor* Create(GrContext* ctx, |
| const SkTwoPointRadialGradient& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tm) { |
| return SkNEW_ARGS(GrRadial2Gradient, (ctx, shader, matrix, tm)); |
| } |
| |
| virtual ~GrRadial2Gradient() { } |
| |
| const char* name() const SK_OVERRIDE { return "Two-Point Radial Gradient"; } |
| |
| virtual void getGLProcessorKey(const GrGLCaps& caps, |
| GrProcessorKeyBuilder* b) const SK_OVERRIDE { |
| GrGLRadial2Gradient::GenKey(*this, caps, b); |
| } |
| |
| GrGLFragmentProcessor* createGLInstance() const SK_OVERRIDE { |
| return SkNEW_ARGS(GrGLRadial2Gradient, (*this)); |
| } |
| |
| // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. |
| bool isDegenerate() const { return SK_Scalar1 == fCenterX1; } |
| SkScalar center() const { return fCenterX1; } |
| SkScalar radius() const { return fRadius0; } |
| bool isPosRoot() const { return SkToBool(fPosRoot); } |
| |
| private: |
| bool onIsEqual(const GrFragmentProcessor& sBase) const SK_OVERRIDE { |
| const GrRadial2Gradient& s = sBase.cast<GrRadial2Gradient>(); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fCenterX1 == s.fCenterX1 && |
| this->fRadius0 == s.fRadius0 && |
| this->fPosRoot == s.fPosRoot); |
| } |
| |
| GrRadial2Gradient(GrContext* ctx, |
| const SkTwoPointRadialGradient& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tm) |
| : INHERITED(ctx, shader, matrix, tm) |
| , fCenterX1(shader.getCenterX1()) |
| , fRadius0(shader.getStartRadius()) |
| , fPosRoot(shader.getDiffRadius() < 0) { |
| this->initClassID<GrRadial2Gradient>(); |
| // We pass the linear part of the quadratic as a varying. |
| // float b = 2.0 * (fCenterX1 * x - fRadius0 * z) |
| fBTransform = this->getCoordTransform(); |
| SkMatrix& bMatrix = *fBTransform.accessMatrix(); |
| bMatrix[SkMatrix::kMScaleX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) - |
| SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp0])); |
| bMatrix[SkMatrix::kMSkewX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) - |
| SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp1])); |
| bMatrix[SkMatrix::kMTransX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) - |
| SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp2])); |
| this->addCoordTransform(&fBTransform); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| // @{ |
| // Cache of values - these can change arbitrarily, EXCEPT |
| // we shouldn't change between degenerate and non-degenerate?! |
| |
| GrCoordTransform fBTransform; |
| SkScalar fCenterX1; |
| SkScalar fRadius0; |
| SkBool8 fPosRoot; |
| |
| // @} |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRadial2Gradient); |
| |
| GrFragmentProcessor* GrRadial2Gradient::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture**) { |
| SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; |
| SkScalar radius1 = random->nextUScalar1(); |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(random->nextUScalar1(), random->nextUScalar1()); |
| radius2 = random->nextUScalar1 (); |
| // There is a bug in two point radial gradients with identical radii |
| } while (radius1 == radius2); |
| |
| SkColor colors[kMaxRandomGradientColors]; |
| SkScalar stopsArray[kMaxRandomGradientColors]; |
| SkScalar* stops = stopsArray; |
| SkShader::TileMode tm; |
| int colorCount = RandomGradientParams(random, colors, &stops, &tm); |
| SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointRadial(center1, radius1, |
| center2, radius2, |
| colors, stops, colorCount, |
| tm)); |
| SkPaint paint; |
| GrFragmentProcessor* fp; |
| GrColor paintColor; |
| SkAssertResult(shader->asFragmentProcessor(context, paint, |
| GrProcessorUnitTest::TestMatrix(random), NULL, |
| &paintColor, &fp)); |
| return fp; |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| GrGLRadial2Gradient::GrGLRadial2Gradient(const GrProcessor& processor) |
| : fVSVaryingName(NULL) |
| , fFSVaryingName(NULL) |
| , fCachedCenter(SK_ScalarMax) |
| , fCachedRadius(-SK_ScalarMax) |
| , fCachedPosRoot(0) { |
| |
| const GrRadial2Gradient& data = processor.cast<GrRadial2Gradient>(); |
| fIsDegenerate = data.isDegenerate(); |
| } |
| |
| void GrGLRadial2Gradient::emitCode(GrGLFPBuilder* builder, |
| const GrFragmentProcessor& fp, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray& coords, |
| const TextureSamplerArray& samplers) { |
| const GrRadial2Gradient& ge = fp.cast<GrRadial2Gradient>(); |
| this->emitUniforms(builder, ge); |
| fParamUni = builder->addUniformArray(GrGLProgramBuilder::kFragment_Visibility, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| "Radial2FSParams", 6); |
| |
| SkString cName("c"); |
| SkString ac4Name("ac4"); |
| SkString rootName("root"); |
| SkString t; |
| SkString p0; |
| SkString p1; |
| SkString p2; |
| SkString p3; |
| SkString p4; |
| SkString p5; |
| builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5); |
| |
| GrGLFPFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); |
| // We interpolate the linear component in coords[1]. |
| SkASSERT(coords[0].getType() == coords[1].getType()); |
| const char* coords2D; |
| SkString bVar; |
| if (kVec3f_GrSLType == coords[0].getType()) { |
| fsBuilder->codeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n", |
| coords[0].c_str(), coords[1].c_str(), coords[0].c_str()); |
| coords2D = "interpolants.xy"; |
| bVar = "interpolants.z"; |
| } else { |
| coords2D = coords[0].c_str(); |
| bVar.printf("%s.x", coords[1].c_str()); |
| } |
| |
| // c = (x^2)+(y^2) - params[4] |
| fsBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", |
| cName.c_str(), coords2D, coords2D, p4.c_str()); |
| |
| // If we aren't degenerate, emit some extra code, and accept a slightly |
| // more complex coord. |
| if (!fIsDegenerate) { |
| |
| // ac4 = 4.0 * params[0] * c |
| fsBuilder->codeAppendf("\tfloat %s = %s * 4.0 * %s;\n", |
| ac4Name.c_str(), p0.c_str(), |
| cName.c_str()); |
| |
| // root = sqrt(b^2-4ac) |
| // (abs to avoid exception due to fp precision) |
| fsBuilder->codeAppendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", |
| rootName.c_str(), bVar.c_str(), bVar.c_str(), |
| ac4Name.c_str()); |
| |
| // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] |
| t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(), |
| rootName.c_str(), p1.c_str()); |
| } else { |
| // t is: -c/b |
| t.printf("-%s / %s", cName.c_str(), bVar.c_str()); |
| } |
| |
| this->emitColor(builder, ge, t.c_str(), outputColor, inputColor, samplers); |
| } |
| |
| void GrGLRadial2Gradient::setData(const GrGLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| INHERITED::setData(pdman, processor); |
| const GrRadial2Gradient& data = processor.cast<GrRadial2Gradient>(); |
| SkASSERT(data.isDegenerate() == fIsDegenerate); |
| SkScalar centerX1 = data.center(); |
| SkScalar radius0 = data.radius(); |
| if (fCachedCenter != centerX1 || |
| fCachedRadius != radius0 || |
| fCachedPosRoot != data.isPosRoot()) { |
| |
| SkScalar a = SkScalarMul(centerX1, centerX1) - SK_Scalar1; |
| |
| // When we're in the degenerate (linear) case, the second |
| // value will be INF but the program doesn't read it. (We |
| // use the same 6 uniforms even though we don't need them |
| // all in the linear case just to keep the code complexity |
| // down). |
| float values[6] = { |
| SkScalarToFloat(a), |
| 1 / (2.f * SkScalarToFloat(a)), |
| SkScalarToFloat(centerX1), |
| SkScalarToFloat(radius0), |
| SkScalarToFloat(SkScalarMul(radius0, radius0)), |
| data.isPosRoot() ? 1.f : -1.f |
| }; |
| |
| pdman.set1fv(fParamUni, 6, values); |
| fCachedCenter = centerX1; |
| fCachedRadius = radius0; |
| fCachedPosRoot = data.isPosRoot(); |
| } |
| } |
| |
| void GrGLRadial2Gradient::GenKey(const GrProcessor& processor, |
| const GrGLCaps&, GrProcessorKeyBuilder* b) { |
| uint32_t* key = b->add32n(2); |
| key[0] = GenBaseGradientKey(processor); |
| key[1] = processor.cast<GrRadial2Gradient>().isDegenerate(); |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| bool SkTwoPointRadialGradient::asFragmentProcessor(GrContext* context, const SkPaint& paint, |
| const SkMatrix&, |
| const SkMatrix* localMatrix, GrColor* paintColor, |
| GrFragmentProcessor** fp) const { |
| SkASSERT(context); |
| |
| // invert the localM, translate to center1 (fPtsToUni), rotate so center2 is on x axis. |
| SkMatrix matrix; |
| if (!this->getLocalMatrix().invert(&matrix)) { |
| return false; |
| } |
| if (localMatrix) { |
| SkMatrix inv; |
| if (!localMatrix->invert(&inv)) { |
| return false; |
| } |
| matrix.postConcat(inv); |
| } |
| matrix.postConcat(fPtsToUnit); |
| |
| SkScalar diffLen = fDiff.length(); |
| if (0 != diffLen) { |
| SkScalar invDiffLen = SkScalarInvert(diffLen); |
| SkMatrix rot; |
| rot.setSinCos(-SkScalarMul(invDiffLen, fDiff.fY), |
| SkScalarMul(invDiffLen, fDiff.fX)); |
| matrix.postConcat(rot); |
| } |
| |
| *paintColor = SkColor2GrColorJustAlpha(paint.getColor()); |
| *fp = GrRadial2Gradient::Create(context, *this, matrix, fTileMode); |
| |
| return true; |
| } |
| |
| #else |
| |
| bool SkTwoPointRadialGradient::asFragmentProcessor(GrContext*, const SkPaint&, const SkMatrix&, |
| const SkMatrix*, |
| GrColor*, GrFragmentProcessor**) const { |
| SkDEBUGFAIL("Should not call in GPU-less build"); |
| return false; |
| } |
| |
| #endif |