blob: 72a418620380fe0f313fec5853afd94be13110a6 [file] [log] [blame]
// Another approach is to start with the implicit form of one curve and solve
// (seek implicit coefficients in QuadraticParameter.cpp
// by substituting in the parametric form of the other.
// The downside of this approach is that early rejects are difficult to come by.
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
#include "CubicUtilities.h"
#include "CurveIntersection.h"
#include "Intersections.h"
#include "QuadraticParameterization.h"
#include "QuarticRoot.h"
#include "QuadraticUtilities.h"
#include "TSearch.h"
#include <algorithm> // for std::min, max
/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
* and given x = at^2 + bt + c (the parameterized form)
* y = dt^2 + et + f
* then
* 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
*/
#if SK_DEBUG
#define QUARTIC_DEBUG 1
#else
#define QUARTIC_DEBUG 0
#endif
static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4],
bool useCubic, bool& disregardCount) {
double a, b, c;
set_abc(&q2[0].x, a, b, c);
double d, e, f;
set_abc(&q2[0].y, d, e, f);
const double t4 = i.x2() * a * a
+ i.xy() * a * d
+ i.y2() * d * d;
const double t3 = 2 * i.x2() * a * b
+ i.xy() * (a * e + b * d)
+ 2 * i.y2() * d * e;
const double t2 = i.x2() * (b * b + 2 * a * c)
+ i.xy() * (c * d + b * e + a * f)
+ i.y2() * (e * e + 2 * d * f)
+ i.x() * a
+ i.y() * d;
const double t1 = 2 * i.x2() * b * c
+ i.xy() * (c * e + b * f)
+ 2 * i.y2() * e * f
+ i.x() * b
+ i.y() * e;
const double t0 = i.x2() * c * c
+ i.xy() * c * f
+ i.y2() * f * f
+ i.x() * c
+ i.y() * f
+ i.c();
#if QUARTIC_DEBUG
// create a string mathematica understands
char str[1024];
bzero(str, sizeof(str));
sprintf(str, "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
t4, t3, t2, t1, t0);
#endif
if (approximately_zero(t4)) {
disregardCount = true;
if (approximately_zero(t3)) {
return quadraticRootsX(t2, t1, t0, roots);
}
return cubicRootsX(t3, t2, t1, t0, roots);
}
if (approximately_zero(t0)) { // 0 is one root
disregardCount = true;
int num = cubicRootsX(t4, t3, t2, t1, roots);
for (int i = 0; i < num; ++i) {
if (approximately_zero(roots[i])) {
return num;
}
}
roots[num++] = 0;
return num;
}
if (useCubic) {
assert(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
int num = cubicRootsX(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E
for (int i = 0; i < num; ++i) {
if (approximately_equal(roots[i], 1)) {
return num;
}
}
roots[num++] = 1;
return num;
}
return quarticRoots(t4, t3, t2, t1, t0, roots);
}
static void addValidRoots(const double roots[4], const int count, const int side, Intersections& i) {
int index;
for (index = 0; index < count; ++index) {
if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
continue;
}
double t = 1 - roots[index];
if (approximately_less_than_zero(t)) {
t = 0;
} else if (approximately_greater_than_one(t)) {
t = 1;
}
i.insertOne(t, side);
}
}
static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
// the idea here is to see at minimum do a quick reject by rotating all points
// to either side of the line formed by connecting the endpoints
// if the opposite curves points are on the line or on the other side, the
// curves at most intersect at the endpoints
for (int oddMan = 0; oddMan < 3; ++oddMan) {
const _Point* endPt[2];
for (int opp = 1; opp < 3; ++opp) {
int end = oddMan ^ opp;
if (end == 3) {
end = opp;
}
endPt[opp - 1] = &q1[end];
}
double origX = endPt[0]->x;
double origY = endPt[0]->y;
double adj = endPt[1]->x - origX;
double opp = endPt[1]->y - origY;
double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
if (approximately_zero(sign)) {
goto tryNextHalfPlane;
}
for (int n = 0; n < 3; ++n) {
double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
if (test * sign > 0) {
goto tryNextHalfPlane;
}
}
for (int i1 = 0; i1 < 3; i1 += 2) {
for (int i2 = 0; i2 < 3; i2 += 2) {
if (q1[i1] == q2[i2]) {
i.insert(i1 >> 1, i2 >> 1);
}
}
}
assert(i.fUsed < 3);
return true;
tryNextHalfPlane:
;
}
return false;
}
// http://www.blackpawn.com/texts/pointinpoly/default.html
static bool pointInTriangle(const _Point& pt, const _Line* testLines[]) {
const _Point& A = (*testLines[0])[0];
const _Point& B = (*testLines[1])[0];
const _Point& C = (*testLines[2])[0];
// Compute vectors
_Point v0 = C - A;
_Point v1 = B - A;
_Point v2 = pt - A;
// Compute dot products
double dot00 = v0.dot(v0);
double dot01 = v0.dot(v1);
double dot02 = v0.dot(v2);
double dot11 = v1.dot(v1);
double dot12 = v1.dot(v2);
// Compute barycentric coordinates
double invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
double u = (dot11 * dot02 - dot01 * dot12) * invDenom;
double v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// Check if point is in triangle
return (u >= 0) && (v >= 0) && (u + v < 1);
}
static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
Intersections& i) {
double tMid = (tMin + tMax) / 2;
_Point mid;
xy_at_t(q2, tMid, mid.x, mid.y);
_Line line;
line[0] = line[1] = mid;
double dx, dy;
dxdy_at_t(q2, tMid, dx, dy);
line[0].x -= dx;
line[0].y -= dy;
line[1].x += dx;
line[1].y += dy;
Intersections rootTs;
int roots = intersect(q1, line, rootTs);
assert(roots == 1);
_Point pt2;
xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
if (!pt2.approximatelyEqual(mid)) {
return false;
}
i.add(rootTs.fT[0][0], tMid);
return true;
}
static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
double t2s, double t2e, Intersections& i) {
Quadratic hull;
sub_divide(q1, t1s, t1e, hull);
_Line line = {hull[2], hull[0]};
const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
SkTDArray<double> tsFound;
for (size_t index = 0; index < testCount; ++index) {
Intersections rootTs;
int roots = intersect(q2, *testLines[index], rootTs);
for (int idx2 = 0; idx2 < roots; ++idx2) {
double t = rootTs.fT[0][idx2];
if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
continue;
}
*tsFound.append() = rootTs.fT[0][idx2];
}
}
int tCount = tsFound.count();
if (!tCount) {
return true;
}
double tMin, tMax;
_Point dxy1, dxy2;
if (tCount == 1) {
tMin = tMax = tsFound[0];
} else if (tCount > 1) {
QSort<double>(tsFound.begin(), tsFound.end() - 1);
tMin = tsFound[0];
tMax = tsFound[1];
}
_Point end;
xy_at_t(q2, t2s, end.x, end.y);
bool startInTriangle = pointInTriangle(end, testLines);
if (startInTriangle) {
tMin = t2s;
}
xy_at_t(q2, t2e, end.x, end.y);
bool endInTriangle = pointInTriangle(end, testLines);
if (endInTriangle) {
tMax = t2e;
}
int split = 0;
if (tMin != tMax || tCount > 2) {
dxdy_at_t(q2, tMin, dxy2.x, dxy2.y);
for (int index = 1; index < tCount; ++index) {
dxy1 = dxy2;
dxdy_at_t(q2, tsFound[index], dxy2.x, dxy2.y);
double dot = dxy1.dot(dxy2);
if (dot < 0) {
split = index - 1;
break;
}
}
}
if (split == 0) { // there's one point
if (addIntercept(q1, q2, tMin, tMax, i)) {
return true;
}
i.swap();
return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i);
}
// At this point, we have two ranges of t values -- treat each separately at the split
bool result;
if (addIntercept(q1, q2, tMin, tsFound[split - 1], i)) {
result = true;
} else {
i.swap();
result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i);
}
if (addIntercept(q1, q2, tsFound[split], tMax, i)) {
result = true;
} else {
i.swap();
result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i);
}
return result;
}
static double flatMeasure(const Quadratic& q) {
_Point mid;
xy_at_t(q, 0.5, mid.x, mid.y);
double dx = q[2].x - q[0].x;
double dy = q[2].y - q[0].y;
double length = sqrt(dx * dx + dy * dy); // OPTIMIZE: get rid of sqrt
return ((mid.x - q[0].x) * dy - (mid.y - q[0].y) * dx) / length;
}
// FIXME ? should this measure both and then use the quad that is the flattest as the line?
static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
double measure = flatMeasure(q1);
// OPTIMIZE: (get rid of sqrt) use approximately_zero
if (!approximately_zero_sqrt(measure)) {
return false;
}
return isLinearInner(q1, 0, 1, q2, 0, 1, i);
}
static bool relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
double m1 = flatMeasure(q1);
double m2 = flatMeasure(q2);
if (fabs(m1) < fabs(m2)) {
isLinearInner(q1, 0, 1, q2, 0, 1, i);
return false;
} else {
isLinearInner(q2, 0, 1, q1, 0, 1, i);
return true;
}
}
#if 0
static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
const Quadratic* qs[2] = { &q1, &q2 };
// need t values for start and end of unsortable expanse on both curves
// try projecting lines parallel to the end points
i.fT[0][0] = 0;
i.fT[0][1] = 1;
int flip = -1; // undecided
for (int qIdx = 0; qIdx < 2; qIdx++) {
for (int t = 0; t < 2; t++) {
_Point dxdy;
dxdy_at_t(*qs[qIdx], t, dxdy.x, dxdy.y);
_Line perp;
perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
perp[0].x += dxdy.y;
perp[0].y -= dxdy.x;
perp[1].x -= dxdy.y;
perp[1].y += dxdy.x;
Intersections hitData;
int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
assert(hits <= 1);
if (hits) {
if (flip < 0) {
_Point dxdy2;
dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2.x, dxdy2.y);
double dot = dxdy.dot(dxdy2);
flip = dot < 0;
i.fT[1][0] = flip;
i.fT[1][1] = !flip;
}
i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
}
}
}
i.fUnsortable = true; // failed, probably coincident or near-coincident
i.fUsed = 2;
}
#endif
bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
// if the quads share an end point, check to see if they overlap
if (onlyEndPtsInCommon(q1, q2, i)) {
return i.intersected();
}
if (onlyEndPtsInCommon(q2, q1, i)) {
i.swapPts();
return i.intersected();
}
// see if either quad is really a line
if (isLinear(q1, q2, i)) {
return i.intersected();
}
if (isLinear(q2, q1, i)) {
i.swapPts();
return i.intersected();
}
QuadImplicitForm i1(q1);
QuadImplicitForm i2(q2);
if (i1.implicit_match(i2)) {
// FIXME: compute T values
// compute the intersections of the ends to find the coincident span
bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
double t;
if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
i.addCoincident(t, 0);
}
if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
i.addCoincident(t, 1);
}
useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
i.addCoincident(0, t);
}
if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
i.addCoincident(1, t);
}
assert(i.fCoincidentUsed <= 2);
return i.fCoincidentUsed > 0;
}
double roots1[4], roots2[4];
bool disregardCount1 = false;
bool disregardCount2 = false;
bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
int rootCount = findRoots(i2, q1, roots1, useCubic, disregardCount1);
// OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
int rootCount2 = findRoots(i1, q2, roots2, useCubic, disregardCount2);
#if 0
if (rootCount != rootCount2 && !disregardCount1 && !disregardCount2) {
unsortableExpanse(q1, q2, i);
return false;
}
#endif
addValidRoots(roots1, rootCount, 0, i);
addValidRoots(roots2, rootCount2, 1, i);
if (i.insertBalanced() && i.fUsed <= 1) {
if (i.fUsed == 1) {
_Point xy1, xy2;
xy_at_t(q1, i.fT[0][0], xy1.x, xy1.y);
xy_at_t(q2, i.fT[1][0], xy2.x, xy2.y);
if (!xy1.approximatelyEqual(xy2)) {
--i.fUsed;
--i.fUsed2;
}
}
return i.intersected();
}
_Point pts[4];
int closest[4];
double dist[4];
int index, ndex2;
for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
xy_at_t(q2, i.fT[1][ndex2], pts[ndex2].x, pts[ndex2].y);
}
bool foundSomething = false;
for (index = 0; index < i.fUsed; ++index) {
_Point xy;
xy_at_t(q1, i.fT[0][index], xy.x, xy.y);
dist[index] = DBL_MAX;
closest[index] = -1;
for (ndex2 = 0; ndex2 < i.fUsed2; ++ndex2) {
if (!pts[ndex2].approximatelyEqual(xy)) {
continue;
}
double dx = pts[ndex2].x - xy.x;
double dy = pts[ndex2].y - xy.y;
double distance = dx * dx + dy * dy;
if (dist[index] <= distance) {
continue;
}
for (int outer = 0; outer < index; ++outer) {
if (closest[outer] != ndex2) {
continue;
}
if (dist[outer] < distance) {
goto next;
}
closest[outer] = -1;
}
dist[index] = distance;
closest[index] = ndex2;
foundSomething = true;
next:
;
}
}
if (i.fUsed && i.fUsed2 && !foundSomething) {
if (relaxedIsLinear(q1, q2, i)) {
i.swapPts();
}
return i.intersected();
}
double roots1Copy[4], roots2Copy[4];
memcpy(roots1Copy, i.fT[0], i.fUsed * sizeof(double));
memcpy(roots2Copy, i.fT[1], i.fUsed2 * sizeof(double));
int used = 0;
do {
double lowest = DBL_MAX;
int lowestIndex = -1;
for (index = 0; index < i.fUsed; ++index) {
if (closest[index] < 0) {
continue;
}
if (roots1Copy[index] < lowest) {
lowestIndex = index;
lowest = roots1Copy[index];
}
}
if (lowestIndex < 0) {
break;
}
i.fT[0][used] = roots1Copy[lowestIndex];
i.fT[1][used] = roots2Copy[closest[lowestIndex]];
closest[lowestIndex] = -1;
} while (++used < i.fUsed);
i.fUsed = i.fUsed2 = used;
i.fFlip = false;
return i.intersected();
}