| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTwoPointConicalGradient_gpu.h" |
| |
| #include "SkTwoPointConicalGradient.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrTBackendEffectFactory.h" |
| // For brevity |
| typedef GrGLUniformManager::UniformHandle UniformHandle; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static void set_matrix_default_conical(const SkTwoPointConicalGradient& shader, |
| SkMatrix* invLMatrix) { |
| // Inverse of the current local matrix is passed in then, |
| // translate to center1, rotate so center2 is on x axis. |
| const SkPoint& center1 = shader.getStartCenter(); |
| const SkPoint& center2 = shader.getEndCenter(); |
| |
| invLMatrix->postTranslate(-center1.fX, -center1.fY); |
| |
| SkPoint diff = center2 - center1; |
| SkScalar diffLen = diff.length(); |
| if (0 != diffLen) { |
| SkScalar invDiffLen = SkScalarInvert(diffLen); |
| SkMatrix rot; |
| rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY), |
| SkScalarMul(invDiffLen, diff.fX)); |
| invLMatrix->postConcat(rot); |
| } |
| } |
| |
| class GLDefault2PtConicalEffect; |
| |
| class Default2PtConicalEffect : public GrGradientEffect { |
| public: |
| |
| static GrEffectRef* Create(GrContext* ctx, |
| const SkTwoPointConicalGradient& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tm) { |
| AutoEffectUnref effect(SkNEW_ARGS(Default2PtConicalEffect, (ctx, shader, matrix, tm))); |
| return CreateEffectRef(effect); |
| } |
| |
| virtual ~Default2PtConicalEffect() { } |
| |
| static const char* Name() { return "Two-Point Conical Gradient"; } |
| virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE; |
| |
| // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. |
| bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); } |
| SkScalar center() const { return fCenterX1; } |
| SkScalar diffRadius() const { return fDiffRadius; } |
| SkScalar radius() const { return fRadius0; } |
| |
| typedef GLDefault2PtConicalEffect GLEffect; |
| |
| private: |
| virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE { |
| const Default2PtConicalEffect& s = CastEffect<Default2PtConicalEffect>(sBase); |
| return (INHERITED::onIsEqual(sBase) && |
| this->fCenterX1 == s.fCenterX1 && |
| this->fRadius0 == s.fRadius0 && |
| this->fDiffRadius == s.fDiffRadius); |
| } |
| |
| Default2PtConicalEffect(GrContext* ctx, |
| const SkTwoPointConicalGradient& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tm) |
| : INHERITED(ctx, shader, matrix, tm), |
| fCenterX1(shader.getCenterX1()), |
| fRadius0(shader.getStartRadius()), |
| fDiffRadius(shader.getDiffRadius()) { |
| // We pass the linear part of the quadratic as a varying. |
| // float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z) |
| fBTransform = this->getCoordTransform(); |
| SkMatrix& bMatrix = *fBTransform.accessMatrix(); |
| SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius); |
| bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) + |
| SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0])); |
| bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) + |
| SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1])); |
| bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) + |
| SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2])); |
| this->addCoordTransform(&fBTransform); |
| } |
| |
| GR_DECLARE_EFFECT_TEST; |
| |
| // @{ |
| // Cache of values - these can change arbitrarily, EXCEPT |
| // we shouldn't change between degenerate and non-degenerate?! |
| |
| GrCoordTransform fBTransform; |
| SkScalar fCenterX1; |
| SkScalar fRadius0; |
| SkScalar fDiffRadius; |
| |
| // @} |
| |
| typedef GrGradientEffect INHERITED; |
| }; |
| |
| class GLDefault2PtConicalEffect : public GrGLGradientEffect { |
| public: |
| GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&); |
| virtual ~GLDefault2PtConicalEffect() { } |
| |
| virtual void emitCode(GrGLShaderBuilder*, |
| const GrDrawEffect&, |
| EffectKey, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray&, |
| const TextureSamplerArray&) SK_OVERRIDE; |
| virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; |
| |
| static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps); |
| |
| protected: |
| UniformHandle fParamUni; |
| |
| const char* fVSVaryingName; |
| const char* fFSVaryingName; |
| |
| bool fIsDegenerate; |
| |
| // @{ |
| /// Values last uploaded as uniforms |
| |
| SkScalar fCachedCenter; |
| SkScalar fCachedRadius; |
| SkScalar fCachedDiffRadius; |
| |
| // @} |
| |
| private: |
| typedef GrGLGradientEffect INHERITED; |
| |
| }; |
| |
| const GrBackendEffectFactory& Default2PtConicalEffect::getFactory() const { |
| return GrTBackendEffectFactory<Default2PtConicalEffect>::getInstance(); |
| } |
| |
| GR_DEFINE_EFFECT_TEST(Default2PtConicalEffect); |
| |
| GrEffectRef* Default2PtConicalEffect::TestCreate(SkRandom* random, |
| GrContext* context, |
| const GrDrawTargetCaps&, |
| GrTexture**) { |
| SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; |
| SkScalar radius1 = random->nextUScalar1(); |
| SkPoint center2; |
| SkScalar radius2; |
| do { |
| center2.set(random->nextUScalar1(), random->nextUScalar1()); |
| radius2 = random->nextUScalar1 (); |
| // If the circles are identical the factory will give us an empty shader. |
| } while (radius1 == radius2 && center1 == center2); |
| |
| SkColor colors[kMaxRandomGradientColors]; |
| SkScalar stopsArray[kMaxRandomGradientColors]; |
| SkScalar* stops = stopsArray; |
| SkShader::TileMode tm; |
| int colorCount = RandomGradientParams(random, colors, &stops, &tm); |
| SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1, |
| center2, radius2, |
| colors, stops, colorCount, |
| tm)); |
| SkPaint paint; |
| return shader->asNewEffect(context, paint); |
| } |
| |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| GLDefault2PtConicalEffect::GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory, |
| const GrDrawEffect& drawEffect) |
| : INHERITED(factory) |
| , fVSVaryingName(NULL) |
| , fFSVaryingName(NULL) |
| , fCachedCenter(SK_ScalarMax) |
| , fCachedRadius(-SK_ScalarMax) |
| , fCachedDiffRadius(-SK_ScalarMax) { |
| |
| const Default2PtConicalEffect& data = drawEffect.castEffect<Default2PtConicalEffect>(); |
| fIsDegenerate = data.isDegenerate(); |
| } |
| |
| void GLDefault2PtConicalEffect::emitCode(GrGLShaderBuilder* builder, |
| const GrDrawEffect&, |
| EffectKey key, |
| const char* outputColor, |
| const char* inputColor, |
| const TransformedCoordsArray& coords, |
| const TextureSamplerArray& samplers) { |
| this->emitUniforms(builder, key); |
| fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility, |
| kFloat_GrSLType, "Conical2FSParams", 6); |
| |
| SkString cName("c"); |
| SkString ac4Name("ac4"); |
| SkString dName("d"); |
| SkString qName("q"); |
| SkString r0Name("r0"); |
| SkString r1Name("r1"); |
| SkString tName("t"); |
| SkString p0; // 4a |
| SkString p1; // 1/a |
| SkString p2; // distance between centers |
| SkString p3; // start radius |
| SkString p4; // start radius squared |
| SkString p5; // difference in radii (r1 - r0) |
| |
| builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4); |
| builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5); |
| |
| // We interpolate the linear component in coords[1]. |
| SkASSERT(coords[0].type() == coords[1].type()); |
| const char* coords2D; |
| SkString bVar; |
| if (kVec3f_GrSLType == coords[0].type()) { |
| builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n", |
| coords[0].c_str(), coords[1].c_str(), coords[0].c_str()); |
| coords2D = "interpolants.xy"; |
| bVar = "interpolants.z"; |
| } else { |
| coords2D = coords[0].c_str(); |
| bVar.printf("%s.x", coords[1].c_str()); |
| } |
| |
| // output will default to transparent black (we simply won't write anything |
| // else to it if invalid, instead of discarding or returning prematurely) |
| builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor); |
| |
| // c = (x^2)+(y^2) - params[4] |
| builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", |
| cName.c_str(), coords2D, coords2D, p4.c_str()); |
| |
| // Non-degenerate case (quadratic) |
| if (!fIsDegenerate) { |
| |
| // ac4 = params[0] * c |
| builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(), |
| cName.c_str()); |
| |
| // d = b^2 - ac4 |
| builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(), |
| bVar.c_str(), bVar.c_str(), ac4Name.c_str()); |
| |
| // only proceed if discriminant is >= 0 |
| builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str()); |
| |
| // intermediate value we'll use to compute the roots |
| // q = -0.5 * (b +/- sqrt(d)) |
| builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)" |
| " * sqrt(%s));\n", qName.c_str(), bVar.c_str(), |
| bVar.c_str(), dName.c_str()); |
| |
| // compute both roots |
| // r0 = q * params[1] |
| builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(), |
| qName.c_str(), p1.c_str()); |
| // r1 = c / q |
| builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(), |
| cName.c_str(), qName.c_str()); |
| |
| // Note: If there are two roots that both generate radius(t) > 0, the |
| // Canvas spec says to choose the larger t. |
| |
| // so we'll look at the larger one first: |
| builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(), |
| r0Name.c_str(), r1Name.c_str()); |
| |
| // if r(t) > 0, then we're done; t will be our x coordinate |
| builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), |
| p5.c_str(), p3.c_str()); |
| |
| builder->fsCodeAppend("\t\t"); |
| this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); |
| |
| // otherwise, if r(t) for the larger root was <= 0, try the other root |
| builder->fsCodeAppend("\t\t} else {\n"); |
| builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(), |
| r0Name.c_str(), r1Name.c_str()); |
| |
| // if r(t) > 0 for the smaller root, then t will be our x coordinate |
| builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n", |
| tName.c_str(), p5.c_str(), p3.c_str()); |
| |
| builder->fsCodeAppend("\t\t\t"); |
| this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); |
| |
| // end if (r(t) > 0) for smaller root |
| builder->fsCodeAppend("\t\t\t}\n"); |
| // end if (r(t) > 0), else, for larger root |
| builder->fsCodeAppend("\t\t}\n"); |
| // end if (discriminant >= 0) |
| builder->fsCodeAppend("\t}\n"); |
| } else { |
| |
| // linear case: t = -c/b |
| builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(), |
| cName.c_str(), bVar.c_str()); |
| |
| // if r(t) > 0, then t will be the x coordinate |
| builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), |
| p5.c_str(), p3.c_str()); |
| builder->fsCodeAppend("\t"); |
| this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers); |
| builder->fsCodeAppend("\t}\n"); |
| } |
| } |
| |
| void GLDefault2PtConicalEffect::setData(const GrGLUniformManager& uman, |
| const GrDrawEffect& drawEffect) { |
| INHERITED::setData(uman, drawEffect); |
| const Default2PtConicalEffect& data = drawEffect.castEffect<Default2PtConicalEffect>(); |
| SkASSERT(data.isDegenerate() == fIsDegenerate); |
| SkScalar centerX1 = data.center(); |
| SkScalar radius0 = data.radius(); |
| SkScalar diffRadius = data.diffRadius(); |
| |
| if (fCachedCenter != centerX1 || |
| fCachedRadius != radius0 || |
| fCachedDiffRadius != diffRadius) { |
| |
| SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius; |
| |
| // When we're in the degenerate (linear) case, the second |
| // value will be INF but the program doesn't read it. (We |
| // use the same 6 uniforms even though we don't need them |
| // all in the linear case just to keep the code complexity |
| // down). |
| float values[6] = { |
| SkScalarToFloat(a * 4), |
| 1.f / (SkScalarToFloat(a)), |
| SkScalarToFloat(centerX1), |
| SkScalarToFloat(radius0), |
| SkScalarToFloat(SkScalarMul(radius0, radius0)), |
| SkScalarToFloat(diffRadius) |
| }; |
| |
| uman.set1fv(fParamUni, 6, values); |
| fCachedCenter = centerX1; |
| fCachedRadius = radius0; |
| fCachedDiffRadius = diffRadius; |
| } |
| } |
| |
| GrGLEffect::EffectKey GLDefault2PtConicalEffect::GenKey(const GrDrawEffect& drawEffect, |
| const GrGLCaps&) { |
| enum { |
| kIsDegenerate = 1 << kBaseKeyBitCnt, |
| }; |
| |
| EffectKey key = GenBaseGradientKey(drawEffect); |
| if (drawEffect.castEffect<Default2PtConicalEffect>().isDegenerate()) { |
| key |= kIsDegenerate; |
| } |
| return key; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| GrEffectRef* Gr2PtConicalGradientEffect::Create(GrContext* ctx, |
| const SkTwoPointConicalGradient& shader, |
| SkShader::TileMode tm) { |
| |
| SkMatrix matrix; |
| if (!shader.getLocalMatrix().invert(&matrix)) { |
| return NULL; |
| } |
| |
| set_matrix_default_conical(shader, &matrix); |
| return Default2PtConicalEffect::Create(ctx, shader, matrix, tm); |
| } |
| |
| #endif |