blob: 9826f978224d74dfc5f543164fc84bb0121f7a02 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "DMSrcSink.h"
#include "SamplePipeControllers.h"
#include "SkCodec.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDeferredCanvas.h"
#include "SkDocument.h"
#include "SkError.h"
#include "SkFunction.h"
#include "SkImageGenerator.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkSVGCanvas.h"
#include "SkScanlineDecoder.h"
#include "SkStream.h"
#include "SkXMLWriter.h"
#include "SkScaledCodec.h"
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
" into multiple pages");
static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) {
SkAutoTUnref<SkData> encoded(SkData::NewWithCopy(src, size));
return encoded && SkInstallDiscardablePixelRef(encoded, dst);
}
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
return gm->getName();
}
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(NULL));
gm->modifyGrContextOptions(options);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fScale(scale)
{}
bool CodecSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
// TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to
// let the GPU handle it.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error CodecSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkScaledCodec::NewFromData(encoded));
if (NULL == codec.get()) {
// scaledCodec not supported, try normal codec
codec.reset(SkCodec::NewFromData(encoded));
if (NULL == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
}
// Choose the color type to decode to
SkImageInfo decodeInfo = codec->getInfo();
SkColorType canvasColorType = canvas->imageInfo().colorType();
switch (fDstColorType) {
case kIndex8_Always_DstColorType:
decodeInfo = codec->getInfo().makeColorType(kIndex_8_SkColorType);
if (kRGB_565_SkColorType == canvasColorType) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
break;
case kGrayscale_Always_DstColorType:
decodeInfo = codec->getInfo().makeColorType(kGray_8_SkColorType);
if (kRGB_565_SkColorType == canvasColorType) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
break;
default:
decodeInfo = decodeInfo.makeColorType(canvasColorType);
break;
}
// Try to scale the image if it is desired
SkISize size = codec->getScaledDimensions(fScale);
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
return Error::Nonfatal("Test without scaling is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
// Construct a color table for the decode if necessary
SkAutoTUnref<SkColorTable> colorTable(NULL);
SkPMColor* colorPtr = NULL;
int* colorCountPtr = NULL;
int maxColors = 256;
if (kIndex_8_SkColorType == decodeInfo.colorType()) {
SkPMColor colors[256];
colorTable.reset(SkNEW_ARGS(SkColorTable, (colors, maxColors)));
colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
colorCountPtr = &maxColors;
}
// FIXME: Currently we cannot draw unpremultiplied sources.
if (decodeInfo.alphaType() == kUnpremul_SkAlphaType) {
decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
}
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(decodeInfo, NULL, colorTable.get())) {
return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
decodeInfo.width(), decodeInfo.height());
}
switch (fMode) {
case kNormal_Mode: {
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), NULL,
colorPtr, colorCountPtr)) {
case SkCodec::kSuccess:
// We consider incomplete to be valid, since we should still decode what is
// available.
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
return Error::Nonfatal("Incompatible colortype conversion");
default:
// Everything else is considered a failure.
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kScanline_Mode: {
SkAutoTDelete<SkScanlineDecoder> scanlineDecoder(
SkScanlineDecoder::NewFromData(encoded));
if (NULL == scanlineDecoder || SkCodec::kSuccess !=
scanlineDecoder->start(decodeInfo, NULL, colorPtr, colorCountPtr)) {
return Error::Nonfatal("Cannot use scanline decoder for all images");
}
const SkCodec::Result result = scanlineDecoder->getScanlines(
bitmap.getAddr(0, 0), decodeInfo.height(), bitmap.rowBytes());
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("%s failed with error message %d",
fPath.c_str(), (int) result);
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kScanline_Subset_Mode: {
//this mode decodes the image in divisor*divisor subsets, using a scanline decoder
const int divisor = 2;
const int w = decodeInfo.width();
const int h = decodeInfo.height();
if (divisor > w || divisor > h) {
return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big"
"for %s with dimensions (%d x %d)", divisor, fPath.c_str(), w, h));
}
const int subsetWidth = w/divisor;
const int subsetHeight = h/divisor;
// One of our subsets will be larger to contain any pixels that do not divide evenly.
const int extraX = w % divisor;
const int extraY = h % divisor;
/*
* if w or h are not evenly divided by divisor need to adjust width and height of end
* subsets to cover entire image.
* Add extraX and extraY to largestSubsetBm's width and height to adjust width
* and height of end subsets.
* subsetBm is extracted from largestSubsetBm.
* subsetBm's size is determined based on the current subset and may be larger for end
* subsets.
*/
SkImageInfo largestSubsetDecodeInfo =
decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY);
SkBitmap largestSubsetBm;
if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, NULL, colorTable.get())) {
return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(),
largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height());
}
const size_t rowBytes = decodeInfo.minRowBytes();
char* buffer = SkNEW_ARRAY(char, largestSubsetDecodeInfo.height() * rowBytes);
SkAutoTDeleteArray<char> lineDeleter(buffer);
for (int col = 0; col < divisor; col++) {
//currentSubsetWidth may be larger than subsetWidth for rightmost subsets
const int currentSubsetWidth = (col + 1 == divisor) ?
subsetWidth + extraX : subsetWidth;
const int x = col * subsetWidth;
for (int row = 0; row < divisor; row++) {
//currentSubsetHeight may be larger than subsetHeight for bottom subsets
const int currentSubsetHeight = (row + 1 == divisor) ?
subsetHeight + extraY : subsetHeight;
const int y = row * subsetHeight;
//create scanline decoder for each subset
SkAutoTDelete<SkScanlineDecoder> subsetScanlineDecoder(
SkScanlineDecoder::NewFromData(encoded));
if (NULL == subsetScanlineDecoder || SkCodec::kSuccess !=
subsetScanlineDecoder->start(
decodeInfo, NULL, colorPtr, colorCountPtr))
{
if (x == 0 && y == 0) {
//first try, image may not be compatible
return Error::Nonfatal("Cannot use scanline decoder for all images");
} else {
return "Error scanline decoder is NULL";
}
}
//skip to first line of subset
const SkCodec::Result skipResult =
subsetScanlineDecoder->skipScanlines(y);
switch (skipResult) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("%s failed after attempting to skip %d scanlines"
"with error message %d", fPath.c_str(), y, (int) skipResult);
}
//create and set size of subsetBm
SkBitmap subsetBm;
SkIRect bounds = SkIRect::MakeWH(subsetWidth, subsetHeight);
bounds.setXYWH(0, 0, currentSubsetWidth, currentSubsetHeight);
SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds));
SkAutoLockPixels autlockSubsetBm(subsetBm, true);
const SkCodec::Result subsetResult =
subsetScanlineDecoder->getScanlines(buffer, currentSubsetHeight, rowBytes);
switch (subsetResult) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("%s failed with error message %d",
fPath.c_str(), (int) subsetResult);
}
const size_t bpp = decodeInfo.bytesPerPixel();
/*
* we copy all the lines at once becuase when calling getScanlines for
* interlaced pngs the entire image must be read regardless of the number
* of lines requested. Reading an interlaced png in a loop, line-by-line, would
* decode the entire image height times, which is very slow
* it is aknowledged that copying each line as you read it in a loop
* may be faster for other types of images. Since this is a correctness test
* that's okay.
*/
char* bufferRow = buffer;
for (int subsetY = 0; subsetY < currentSubsetHeight; ++subsetY) {
memcpy(subsetBm.getAddr(0, subsetY), bufferRow + x*bpp,
currentSubsetWidth*bpp);
bufferRow += rowBytes;
}
subsetBm.notifyPixelsChanged();
canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y));
}
}
break;
}
case kStripe_Mode: {
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
// Decode odd stripes
SkAutoTDelete<SkScanlineDecoder> decoder(SkScanlineDecoder::NewFromData(encoded));
if (NULL == decoder || SkCodec::kSuccess !=
decoder->start(decodeInfo, NULL, colorPtr, colorCountPtr)) {
return Error::Nonfatal("Cannot use scanline decoder for all images");
}
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
SkCodec::Result result = decoder->skipScanlines(linesToSkip);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str());
}
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
if (linesToRead > 0) {
result = decoder->getScanlines(bitmap.getAddr(0, startY),
linesToRead, bitmap.rowBytes());
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str());
}
}
}
// Decode even stripes
const SkCodec::Result startResult = decoder->start(decodeInfo, NULL, colorPtr,
colorCountPtr);
if (SkCodec::kSuccess != startResult) {
return "Failed to restart scanline decoder with same parameters.";
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
SkCodec::Result result = decoder->getScanlines(bitmap.getAddr(0, startY),
linesToRead, bitmap.rowBytes());
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str());
}
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
result = decoder->skipScanlines(linesToSkip);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str());
}
}
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
case kSubset_Mode: {
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
"for %s with dimensions (%d x %d)", divisor,
fPath.c_str(), W, H));
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* pixels = bitmap.getPixels();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fScale * x and fScale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = SkTMin(w, W - x);
const int preScaleH = SkTMin(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And scale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
decodeInfo = decodeInfo.makeWH(SkScalarRoundToInt(preScaleW * fScale),
SkScalarRoundToInt(preScaleH * fScale));
size_t rowBytes = decodeInfo.minRowBytes();
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(),
NULL, NULL)) {
return SkStringPrintf("could not install pixels for %s.", fPath.c_str());
}
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
&opts, colorPtr, colorCountPtr);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
case SkCodec::kInvalidConversion:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
return Error::Nonfatal("Incompatible colortype conversion");
}
// If the first subset succeeded, a later one should not fail.
// fall through to failure
case SkCodec::kUnimplemented:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
return Error::Nonfatal("subset codec not supported");
}
// If the first subset succeeded, why would a later one fail?
// fall through to failure
default:
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
"from %s with dimensions (%d x %d)\t error %d",
x, y, decodeInfo.width(), decodeInfo.height(),
fPath.c_str(), W, H, result);
}
canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top));
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
return "";
}
}
return "";
}
SkISize CodecSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkScaledCodec::NewFromData(encoded));
if (NULL == codec) {
// scaledCodec not supported, try regular codec
codec.reset(SkCodec::NewFromData(encoded));
if (NULL == codec) {
return SkISize::Make(0, 0);
}
}
SkISize size = codec->getScaledDimensions(fScale);
return size;
}
Name CodecSrc::name() const {
if (1.0f == fScale) {
return SkOSPath::Basename(fPath.c_str());
} else {
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(fPath.c_str()).c_str(), fScale);
}
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {}
bool ImageSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
// TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error ImageSrc::draw(SkCanvas* canvas) const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
const SkColorType dstColorType = canvas->imageInfo().colorType();
if (fDivisor == 0) {
// Decode the full image.
SkBitmap bitmap;
if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap,
dstColorType, SkImageDecoder::kDecodePixels_Mode)) {
return SkStringPrintf("Couldn't decode %s.", fPath.c_str());
}
if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) {
// Do not draw a bitmap with alpha to a destination without alpha.
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
}
encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it.
canvas->drawBitmap(bitmap, 0,0);
return "";
}
// Decode subsets. This is a little involved.
SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded));
SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get()));
if (!decoder) {
return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str());
}
stream->rewind();
int w,h;
if (!decoder->buildTileIndex(stream.detach(), &w, &h)) {
return Error::Nonfatal("Subset decoding not supported.");
}
// Divide the image into subsets that cover the entire image.
if (fDivisor > w || fDivisor > h) {
return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big"
"for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h));
}
const int subsetWidth = w / fDivisor,
subsetHeight = h / fDivisor;
for (int y = 0; y < h; y += subsetHeight) {
for (int x = 0; x < w; x += subsetWidth) {
SkBitmap subset;
SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight);
if (!decoder->decodeSubset(&subset, rect, dstColorType)) {
return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).",
x, y, x+subsetWidth, y+subsetHeight);
}
if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) {
// Do not draw a bitmap with alpha to a destination without alpha.
// This is not an error, but there is nothing interesting to show.
// This should only happen on the first iteration through the loop.
SkASSERT(0 == x && 0 == y);
return Error::Nonfatal("Uninteresting to decode image with alpha into 565.");
}
canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y));
}
}
return "";
}
SkISize ImageSrc::size() const {
SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str()));
SkBitmap bitmap;
if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(),
encoded->size(),
&bitmap,
kUnknown_SkColorType,
SkImageDecoder::kDecodeBounds_Mode)) {
return SkISize::Make(0,0);
}
return bitmap.dimensions();
}
Name ImageSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(Path path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkISize::Make(0,0);
}
SkPictInfo info;
if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
return SkISize::Make(0,0);
}
SkRect viewport = kSKPViewport;
if (!viewport.intersect(info.fCullRect)) {
return SkISize::Make(0,0);
}
return viewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
GPUSink::GPUSink(GrContextFactory::GLContextType ct,
GrGLStandard api,
int samples,
bool dfText,
bool threaded)
: fContextType(ct)
, fGpuAPI(api)
, fSampleCount(samples)
, fUseDFText(dfText)
, fThreaded(threaded) {}
int GPUSink::enclave() const {
return fThreaded ? kAnyThread_Enclave : kGPU_Enclave;
}
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
GrContextOptions options;
src.modifyGrContextOptions(&options);
GrContextFactory factory(options);
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType);
SkAutoTUnref<SkSurface> surface(
NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText));
if (!surface) {
return "Could not create a surface.";
}
if (FLAGS_preAbandonGpuContext) {
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, NULL);
factory.abandonContexts();
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
if (FLAGS_gpuStats) {
canvas->getGrContext()->dumpCacheStats(log);
canvas->getGrContext()->dumpGpuStats(log);
}
dst->allocPixels(info);
canvas->readPixels(dst, 0, 0);
if (FLAGS_abandonGpuContext) {
factory.abandonContexts();
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
// Print the given DM:Src to a document, breaking on 8.5x11 pages.
SkASSERT(doc);
int width = src.size().width(),
height = src.size().height();
if (FLAGS_multiPage) {
const int kLetterWidth = 612, // 8.5 * 72
kLetterHeight = 792; // 11 * 72
const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth),
SkIntToScalar(kLetterHeight));
int xPages = ((width - 1) / kLetterWidth) + 1;
int yPages = ((height - 1) / kLetterHeight) + 1;
for (int y = 0; y < yPages; ++y) {
for (int x = 0; x < xPages; ++x) {
int w = SkTMin(kLetterWidth, width - (x * kLetterWidth));
int h = SkTMin(kLetterHeight, height - (y * kLetterHeight));
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(w), SkIntToScalar(h));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned NULL";
}
canvas->clipRect(letter);
canvas->translate(-letter.width() * x, -letter.height() * y);
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
}
} else {
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned NULL";
}
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
if (!doc->close()) {
return "SkDocument::close() returned false";
}
dst->flush();
return "";
}
PDFSink::PDFSink() {}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst));
if (!doc) {
return "SkDocument::CreatePDF() returned NULL";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
XPSSink::XPSSink() {}
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst));
if (!doc) {
return "SkDocument::CreateXPS() returned NULL";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SKPSink::SKPSink() {}
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
pic->serialize(dst);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SVGSink::SVGSink() {}
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkAutoTDelete<SkXMLWriter> xmlWriter(SkNEW_ARGS(SkXMLStreamWriter, (dst)));
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
xmlWriter));
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType));
dst->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
SkISize size, SkFunction<Error(SkCanvas*)> draw) {
class ProxySrc : public Src {
public:
ProxySrc(SkISize size, SkFunction<Error(SkCanvas*)> draw) : fSize(size), fDraw(draw) {}
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
Name name() const override { sk_throw(); return ""; } // Won't be called.
SkISize size() const override { return fSize; }
private:
SkISize fSize;
SkFunction<Error(SkCanvas*)> fDraw;
};
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
matrix->mapRect(&bounds);
matrix->postTranslate(-bounds.x(), -bounds.y());
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
SkMatrix matrix = fMatrix;
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->concat(matrix);
return src.draw(canvas);
});
}
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
Error err = fSink->draw(src, bitmap, stream, log);
if (!err.isEmpty()) {
return err;
}
SkMatrix inverse;
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
return "Cannot upright --matrix.";
}
SkMatrix upright = SkMatrix::I();
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
SkBitmap uprighted;
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
SkCanvas canvas(uprighted);
canvas.concat(upright);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas.drawBitmap(*bitmap, 0, 0, &paint);
*bitmap = uprighted;
bitmap->lockPixels();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
PipeController controller(canvas, &SkImageDecoder::DecodeMemory);
SkGPipeWriter pipe;
const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags.
return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height()));
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaDeferred::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// We draw via a deferred canvas into a surface that's compatible with the original canvas,
// then snap that surface as an image and draw it into the original canvas.
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
SkAutoTUnref<SkSurface> surface(canvas->newSurface(canvas->imageInfo()));
if (!surface.get()) {
return "can't make surface for deferred canvas";
}
SkAutoTDelete<SkDeferredCanvas> defcan(SkDeferredCanvas::Create(surface));
Error err = src.draw(defcan);
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkImage> image(defcan->newImageSnapshot());
if (!image) {
return "failed to create deferred image snapshot";
}
canvas->drawImage(image, 0, 0, NULL);
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaSerialization::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// Record our Src into a picture.
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecording());
// Serialize it and then deserialize it.
SkDynamicMemoryWStream wStream;
pic->serialize(&wStream);
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap));
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->drawPicture(deserialized);
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: Via(sink)
, fW(w)
, fH(h)
, fFactory(factory) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()),
fFactory.get()));
if (!err.isEmpty()) {
return err;
}
SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture());
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
const int xTiles = (size.width() + fW - 1) / fW,
yTiles = (size.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTDArray<SkSurface*> surfaces;
surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
SkSurface* s = canvas->newSurface(info);
if (!s) {
s = SkSurface::NewRaster(info); // Some canvases can't create surfaces.
}
surfaces.push(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, pic);
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
surfaces.unrefAll();
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
SkAutoTUnref<SkPicture> pic;
for (int i = 0; i < 2; i++) {
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic.reset(recorder.endRecordingAsPicture());
}
canvas->drawPicture(pic);
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src twice. This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
for (int i = 0; i < 2; i++) {
SkAutoCanvasRestore acr(canvas, true/*save now*/);
canvas->clear(SK_ColorTRANSPARENT);
Error err = src.draw(canvas);
if (err.isEmpty()) {
return err;
}
}
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
SkCanvas* fCanvas;
const SkDrawableList& fDrawables;
SK_CREATE_MEMBER_DETECTOR(paint);
template <typename T>
void draw(const T& op, SkCanvas* canvas) {
// We must pass SkMatrix::I() as our initial matrix.
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
// which would have the funky effect of applying transforms over and over.
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
d(op);
}
// Most things that have paints are Draw-type ops. Create sub-pictures for each.
template <typename T>
SK_WHEN(HasMember_paint<T>, void) operator()(const T& op) {
SkPictureRecorder rec;
this->draw(op, rec.beginRecording(SkRect::MakeLargest()));
SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture());
fCanvas->drawPicture(pic);
}
// If you don't have a paint or are a SaveLayer, you're not a Draw-type op.
// We cannot make subpictures out of these because they affect state. Draw them directly.
template <typename T>
SK_WHEN(!HasMember_paint<T>, void) operator()(const T& op) { this->draw(op, fCanvas); }
void operator()(const SkRecords::SaveLayer& op) { this->draw(op, fCanvas); }
};
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
SkRecord skr;
SkRecorder recorder(&skr, size.width(), size.height());
Error err = src.draw(&recorder);
if (!err.isEmpty()) {
return err;
}
// Record our macro-picture, with each draw op as its own sub-picture.
SkPictureRecorder macroRec;
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()));
SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList());
const SkDrawableList empty;
DrawsAsSingletonPictures drawsAsSingletonPictures = {
macroCanvas,
drawables ? *drawables : empty,
};
for (unsigned i = 0; i < skr.count(); i++) {
skr.visit<void>(i, drawsAsSingletonPictures);
}
SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture());
canvas->drawPicture(macroPic);
return "";
});
}
} // namespace DM