| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkCubicInterval.h" |
| |
| static SkScalar eval_cubic(SkScalar c1, SkScalar c2, SkScalar c3, |
| SkScalar t) { |
| return SkScalarMul(SkScalarMul(SkScalarMul(c3, t) + c2, t) + c1, t); |
| } |
| |
| static SkScalar find_cubic_t(SkScalar c1, SkScalar c2, SkScalar c3, |
| SkScalar targetX) { |
| SkScalar minT = 0; |
| SkScalar maxT = SK_Scalar1; |
| SkScalar t; |
| |
| for (;;) { |
| t = SkScalarAve(minT, maxT); |
| SkScalar x = eval_cubic(c1, c2, c3, t); |
| if (SkScalarNearlyZero(x - targetX)) { |
| break; |
| } |
| // subdivide the range and try again |
| if (x < targetX) { |
| minT = t; |
| } else { |
| maxT = t; |
| } |
| } |
| return t; |
| } |
| |
| /* |
| a(1-t)^3 + 3bt(1-t)^2 + 3ct^2(1-t) + dt^3 |
| a: [0, 0] |
| d: [1, 1] |
| |
| 3bt - 6bt^2 + 3bt^3 + 3ct^2 - 3ct^3 + t^3 |
| C1 = t^1: 3b |
| C2 = t^2: 3c - 6b |
| C3 = t^3: 3b - 3c + 1 |
| |
| ((C3*t + C2)*t + C1)*t |
| */ |
| SkScalar SkEvalCubicInterval(SkScalar x1, SkScalar y1, |
| SkScalar x2, SkScalar y2, |
| SkScalar unitX) { |
| x1 = SkScalarPin(x1, 0, SK_Scalar1); |
| x2 = SkScalarPin(x2, 0, SK_Scalar1); |
| unitX = SkScalarPin(unitX, 0, SK_Scalar1); |
| |
| // First compute our coefficients in X |
| x1 *= 3; |
| x2 *= 3; |
| |
| // now search for t given unitX |
| SkScalar t = find_cubic_t(x1, x2 - 2*x1, x1 - x2 + SK_Scalar1, unitX); |
| |
| // now evaluate the cubic in Y |
| y1 *= 3; |
| y2 *= 3; |
| return eval_cubic(y1, y2 - 2*y1, y1 - y2 + SK_Scalar1, t); |
| } |