| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkSLIRGenerator.h" |
| |
| #include "limits.h" |
| #include <unordered_set> |
| |
| #include "SkSLCompiler.h" |
| #include "ast/SkSLASTBoolLiteral.h" |
| #include "ast/SkSLASTFieldSuffix.h" |
| #include "ast/SkSLASTFloatLiteral.h" |
| #include "ast/SkSLASTIndexSuffix.h" |
| #include "ast/SkSLASTIntLiteral.h" |
| #include "ir/SkSLBinaryExpression.h" |
| #include "ir/SkSLBoolLiteral.h" |
| #include "ir/SkSLBreakStatement.h" |
| #include "ir/SkSLConstructor.h" |
| #include "ir/SkSLContinueStatement.h" |
| #include "ir/SkSLDiscardStatement.h" |
| #include "ir/SkSLDoStatement.h" |
| #include "ir/SkSLExpressionStatement.h" |
| #include "ir/SkSLField.h" |
| #include "ir/SkSLFieldAccess.h" |
| #include "ir/SkSLFloatLiteral.h" |
| #include "ir/SkSLForStatement.h" |
| #include "ir/SkSLFunctionCall.h" |
| #include "ir/SkSLFunctionDeclaration.h" |
| #include "ir/SkSLFunctionDefinition.h" |
| #include "ir/SkSLFunctionReference.h" |
| #include "ir/SkSLIfStatement.h" |
| #include "ir/SkSLIndexExpression.h" |
| #include "ir/SkSLInterfaceBlock.h" |
| #include "ir/SkSLIntLiteral.h" |
| #include "ir/SkSLLayout.h" |
| #include "ir/SkSLPostfixExpression.h" |
| #include "ir/SkSLPrefixExpression.h" |
| #include "ir/SkSLReturnStatement.h" |
| #include "ir/SkSLSwitchCase.h" |
| #include "ir/SkSLSwitchStatement.h" |
| #include "ir/SkSLSwizzle.h" |
| #include "ir/SkSLTernaryExpression.h" |
| #include "ir/SkSLUnresolvedFunction.h" |
| #include "ir/SkSLVariable.h" |
| #include "ir/SkSLVarDeclarations.h" |
| #include "ir/SkSLVarDeclarationsStatement.h" |
| #include "ir/SkSLVariableReference.h" |
| #include "ir/SkSLWhileStatement.h" |
| |
| namespace SkSL { |
| |
| class AutoSymbolTable { |
| public: |
| AutoSymbolTable(IRGenerator* ir) |
| : fIR(ir) |
| , fPrevious(fIR->fSymbolTable) { |
| fIR->pushSymbolTable(); |
| } |
| |
| ~AutoSymbolTable() { |
| fIR->popSymbolTable(); |
| ASSERT(fPrevious == fIR->fSymbolTable); |
| } |
| |
| IRGenerator* fIR; |
| std::shared_ptr<SymbolTable> fPrevious; |
| }; |
| |
| class AutoLoopLevel { |
| public: |
| AutoLoopLevel(IRGenerator* ir) |
| : fIR(ir) { |
| fIR->fLoopLevel++; |
| } |
| |
| ~AutoLoopLevel() { |
| fIR->fLoopLevel--; |
| } |
| |
| IRGenerator* fIR; |
| }; |
| |
| class AutoSwitchLevel { |
| public: |
| AutoSwitchLevel(IRGenerator* ir) |
| : fIR(ir) { |
| fIR->fSwitchLevel++; |
| } |
| |
| ~AutoSwitchLevel() { |
| fIR->fSwitchLevel--; |
| } |
| |
| IRGenerator* fIR; |
| }; |
| |
| IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable, |
| ErrorReporter& errorReporter) |
| : fContext(*context) |
| , fCurrentFunction(nullptr) |
| , fSymbolTable(std::move(symbolTable)) |
| , fLoopLevel(0) |
| , fSwitchLevel(0) |
| , fErrors(errorReporter) {} |
| |
| void IRGenerator::pushSymbolTable() { |
| fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors)); |
| } |
| |
| void IRGenerator::popSymbolTable() { |
| fSymbolTable = fSymbolTable->fParent; |
| } |
| |
| static void fill_caps(const SKSL_CAPS_CLASS& caps, std::unordered_map<String, CapValue>* capsMap) { |
| #define CAP(name) capsMap->insert(std::make_pair(String(#name), CapValue(caps.name()))); |
| CAP(fbFetchSupport); |
| CAP(fbFetchNeedsCustomOutput); |
| CAP(bindlessTextureSupport); |
| CAP(dropsTileOnZeroDivide); |
| CAP(flatInterpolationSupport); |
| CAP(noperspectiveInterpolationSupport); |
| CAP(multisampleInterpolationSupport); |
| CAP(sampleVariablesSupport); |
| CAP(sampleMaskOverrideCoverageSupport); |
| CAP(externalTextureSupport); |
| CAP(texelFetchSupport); |
| CAP(imageLoadStoreSupport); |
| CAP(mustEnableAdvBlendEqs); |
| CAP(mustEnableSpecificAdvBlendEqs); |
| CAP(mustDeclareFragmentShaderOutput); |
| CAP(canUseAnyFunctionInShader); |
| #undef CAP |
| } |
| |
| void IRGenerator::start(const Program::Settings* settings) { |
| fSettings = settings; |
| fCapsMap.clear(); |
| if (settings->fCaps) { |
| fill_caps(*settings->fCaps, &fCapsMap); |
| } |
| this->pushSymbolTable(); |
| fInputs.reset(); |
| } |
| |
| void IRGenerator::finish() { |
| this->popSymbolTable(); |
| fSettings = nullptr; |
| } |
| |
| std::unique_ptr<Extension> IRGenerator::convertExtension(const ASTExtension& extension) { |
| return std::unique_ptr<Extension>(new Extension(extension.fPosition, extension.fName)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTStatement& statement) { |
| switch (statement.fKind) { |
| case ASTStatement::kBlock_Kind: |
| return this->convertBlock((ASTBlock&) statement); |
| case ASTStatement::kVarDeclaration_Kind: |
| return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement); |
| case ASTStatement::kExpression_Kind: |
| return this->convertExpressionStatement((ASTExpressionStatement&) statement); |
| case ASTStatement::kIf_Kind: |
| return this->convertIf((ASTIfStatement&) statement); |
| case ASTStatement::kFor_Kind: |
| return this->convertFor((ASTForStatement&) statement); |
| case ASTStatement::kWhile_Kind: |
| return this->convertWhile((ASTWhileStatement&) statement); |
| case ASTStatement::kDo_Kind: |
| return this->convertDo((ASTDoStatement&) statement); |
| case ASTStatement::kSwitch_Kind: |
| return this->convertSwitch((ASTSwitchStatement&) statement); |
| case ASTStatement::kReturn_Kind: |
| return this->convertReturn((ASTReturnStatement&) statement); |
| case ASTStatement::kBreak_Kind: |
| return this->convertBreak((ASTBreakStatement&) statement); |
| case ASTStatement::kContinue_Kind: |
| return this->convertContinue((ASTContinueStatement&) statement); |
| case ASTStatement::kDiscard_Kind: |
| return this->convertDiscard((ASTDiscardStatement&) statement); |
| default: |
| ABORT("unsupported statement type: %d\n", statement.fKind); |
| } |
| } |
| |
| std::unique_ptr<Block> IRGenerator::convertBlock(const ASTBlock& block) { |
| AutoSymbolTable table(this); |
| std::vector<std::unique_ptr<Statement>> statements; |
| for (size_t i = 0; i < block.fStatements.size(); i++) { |
| std::unique_ptr<Statement> statement = this->convertStatement(*block.fStatements[i]); |
| if (!statement) { |
| return nullptr; |
| } |
| statements.push_back(std::move(statement)); |
| } |
| return std::unique_ptr<Block>(new Block(block.fPosition, std::move(statements), fSymbolTable)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement( |
| const ASTVarDeclarationStatement& s) { |
| auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage); |
| if (!decl) { |
| return nullptr; |
| } |
| return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl))); |
| } |
| |
| std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl, |
| Variable::Storage storage) { |
| std::vector<VarDeclaration> variables; |
| const Type* baseType = this->convertType(*decl.fType); |
| if (!baseType) { |
| return nullptr; |
| } |
| for (const auto& varDecl : decl.fVars) { |
| const Type* type = baseType; |
| std::vector<std::unique_ptr<Expression>> sizes; |
| for (const auto& rawSize : varDecl.fSizes) { |
| if (rawSize) { |
| auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type); |
| if (!size) { |
| return nullptr; |
| } |
| String name = type->fName; |
| int64_t count; |
| if (size->fKind == Expression::kIntLiteral_Kind) { |
| count = ((IntLiteral&) *size).fValue; |
| if (count <= 0) { |
| fErrors.error(size->fPosition, "array size must be positive"); |
| } |
| name += "[" + to_string(count) + "]"; |
| } else { |
| count = -1; |
| name += "[]"; |
| } |
| type = new Type(name, Type::kArray_Kind, *type, (int) count); |
| fSymbolTable->takeOwnership((Type*) type); |
| sizes.push_back(std::move(size)); |
| } else { |
| type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); |
| fSymbolTable->takeOwnership((Type*) type); |
| sizes.push_back(nullptr); |
| } |
| } |
| auto var = std::unique_ptr<Variable>(new Variable(decl.fPosition, decl.fModifiers, |
| varDecl.fName, *type, storage)); |
| std::unique_ptr<Expression> value; |
| if (varDecl.fValue) { |
| value = this->convertExpression(*varDecl.fValue); |
| if (!value) { |
| return nullptr; |
| } |
| value = this->coerce(std::move(value), *type); |
| } |
| if (storage == Variable::kGlobal_Storage && varDecl.fName == String("sk_FragColor") && |
| (*fSymbolTable)[varDecl.fName]) { |
| // already defined, ignore |
| } else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] && |
| (*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind && |
| ((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) { |
| // already defined, just update the modifiers |
| Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName]; |
| old->fModifiers = var->fModifiers; |
| } else { |
| variables.emplace_back(var.get(), std::move(sizes), std::move(value)); |
| fSymbolTable->add(varDecl.fName, std::move(var)); |
| } |
| } |
| return std::unique_ptr<VarDeclarations>(new VarDeclarations(decl.fPosition, |
| baseType, |
| std::move(variables))); |
| } |
| |
| std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration( |
| const ASTModifiersDeclaration& m) { |
| return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(m.fModifiers)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertIf(const ASTIfStatement& s) { |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*s.fTest), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifTrue = this->convertStatement(*s.fIfTrue); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifFalse; |
| if (s.fIfFalse) { |
| ifFalse = this->convertStatement(*s.fIfFalse); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| } |
| if (test->fKind == Expression::kBoolLiteral_Kind) { |
| // static boolean value, fold down to a single branch |
| if (((BoolLiteral&) *test).fValue) { |
| return ifTrue; |
| } else if (s.fIfFalse) { |
| return ifFalse; |
| } else { |
| // False & no else clause. Not an error, so don't return null! |
| std::vector<std::unique_ptr<Statement>> empty; |
| return std::unique_ptr<Statement>(new Block(s.fPosition, std::move(empty), |
| fSymbolTable)); |
| } |
| } |
| return std::unique_ptr<Statement>(new IfStatement(s.fPosition, std::move(test), |
| std::move(ifTrue), std::move(ifFalse))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertFor(const ASTForStatement& f) { |
| AutoLoopLevel level(this); |
| AutoSymbolTable table(this); |
| std::unique_ptr<Statement> initializer; |
| if (f.fInitializer) { |
| initializer = this->convertStatement(*f.fInitializer); |
| if (!initializer) { |
| return nullptr; |
| } |
| } |
| std::unique_ptr<Expression> test; |
| if (f.fTest) { |
| test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| } |
| std::unique_ptr<Expression> next; |
| if (f.fNext) { |
| next = this->convertExpression(*f.fNext); |
| if (!next) { |
| return nullptr; |
| } |
| this->checkValid(*next); |
| } |
| std::unique_ptr<Statement> statement = this->convertStatement(*f.fStatement); |
| if (!statement) { |
| return nullptr; |
| } |
| return std::unique_ptr<Statement>(new ForStatement(f.fPosition, std::move(initializer), |
| std::move(test), std::move(next), |
| std::move(statement), fSymbolTable)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTWhileStatement& w) { |
| AutoLoopLevel level(this); |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*w.fTest), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> statement = this->convertStatement(*w.fStatement); |
| if (!statement) { |
| return nullptr; |
| } |
| return std::unique_ptr<Statement>(new WhileStatement(w.fPosition, std::move(test), |
| std::move(statement))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDo(const ASTDoStatement& d) { |
| AutoLoopLevel level(this); |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*d.fTest), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> statement = this->convertStatement(*d.fStatement); |
| if (!statement) { |
| return nullptr; |
| } |
| return std::unique_ptr<Statement>(new DoStatement(d.fPosition, std::move(statement), |
| std::move(test))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTSwitchStatement& s) { |
| AutoSwitchLevel level(this); |
| std::unique_ptr<Expression> value = this->convertExpression(*s.fValue); |
| if (!value) { |
| return nullptr; |
| } |
| if (value->fType != *fContext.fUInt_Type) { |
| value = this->coerce(std::move(value), *fContext.fInt_Type); |
| if (!value) { |
| return nullptr; |
| } |
| } |
| AutoSymbolTable table(this); |
| std::unordered_set<int> caseValues; |
| std::vector<std::unique_ptr<SwitchCase>> cases; |
| for (const auto& c : s.fCases) { |
| std::unique_ptr<Expression> caseValue; |
| if (c->fValue) { |
| caseValue = this->convertExpression(*c->fValue); |
| if (!caseValue) { |
| return nullptr; |
| } |
| if (caseValue->fType != *fContext.fUInt_Type) { |
| caseValue = this->coerce(std::move(caseValue), *fContext.fInt_Type); |
| if (!caseValue) { |
| return nullptr; |
| } |
| } |
| if (!caseValue->isConstant()) { |
| fErrors.error(caseValue->fPosition, "case value must be a constant"); |
| return nullptr; |
| } |
| ASSERT(caseValue->fKind == Expression::kIntLiteral_Kind); |
| int64_t v = ((IntLiteral&) *caseValue).fValue; |
| if (caseValues.find(v) != caseValues.end()) { |
| fErrors.error(caseValue->fPosition, "duplicate case value"); |
| } |
| caseValues.insert(v); |
| } |
| std::vector<std::unique_ptr<Statement>> statements; |
| for (const auto& s : c->fStatements) { |
| std::unique_ptr<Statement> converted = this->convertStatement(*s); |
| if (!converted) { |
| return nullptr; |
| } |
| statements.push_back(std::move(converted)); |
| } |
| cases.emplace_back(new SwitchCase(c->fPosition, std::move(caseValue), |
| std::move(statements))); |
| } |
| return std::unique_ptr<Statement>(new SwitchStatement(s.fPosition, std::move(value), |
| std::move(cases))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertExpressionStatement( |
| const ASTExpressionStatement& s) { |
| std::unique_ptr<Expression> e = this->convertExpression(*s.fExpression); |
| if (!e) { |
| return nullptr; |
| } |
| this->checkValid(*e); |
| return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTReturnStatement& r) { |
| ASSERT(fCurrentFunction); |
| if (r.fExpression) { |
| std::unique_ptr<Expression> result = this->convertExpression(*r.fExpression); |
| if (!result) { |
| return nullptr; |
| } |
| if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) { |
| fErrors.error(result->fPosition, "may not return a value from a void function"); |
| } else { |
| result = this->coerce(std::move(result), fCurrentFunction->fReturnType); |
| if (!result) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Statement>(new ReturnStatement(std::move(result))); |
| } else { |
| if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) { |
| fErrors.error(r.fPosition, "expected function to return '" + |
| fCurrentFunction->fReturnType.description() + "'"); |
| } |
| return std::unique_ptr<Statement>(new ReturnStatement(r.fPosition)); |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTBreakStatement& b) { |
| if (fLoopLevel > 0 || fSwitchLevel > 0) { |
| return std::unique_ptr<Statement>(new BreakStatement(b.fPosition)); |
| } else { |
| fErrors.error(b.fPosition, "break statement must be inside a loop or switch"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTContinueStatement& c) { |
| if (fLoopLevel > 0) { |
| return std::unique_ptr<Statement>(new ContinueStatement(c.fPosition)); |
| } else { |
| fErrors.error(c.fPosition, "continue statement must be inside a loop"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTDiscardStatement& d) { |
| return std::unique_ptr<Statement>(new DiscardStatement(d.fPosition)); |
| } |
| |
| std::unique_ptr<FunctionDefinition> IRGenerator::convertFunction(const ASTFunction& f) { |
| const Type* returnType = this->convertType(*f.fReturnType); |
| if (!returnType) { |
| return nullptr; |
| } |
| std::vector<const Variable*> parameters; |
| for (const auto& param : f.fParameters) { |
| const Type* type = this->convertType(*param->fType); |
| if (!type) { |
| return nullptr; |
| } |
| for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) { |
| int size = param->fSizes[j]; |
| String name = type->name() + "[" + to_string(size) + "]"; |
| Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size); |
| fSymbolTable->takeOwnership(newType); |
| type = newType; |
| } |
| String name = param->fName; |
| Position pos = param->fPosition; |
| Variable* var = new Variable(pos, param->fModifiers, std::move(name), *type, |
| Variable::kParameter_Storage); |
| fSymbolTable->takeOwnership(var); |
| parameters.push_back(var); |
| } |
| |
| // find existing declaration |
| const FunctionDeclaration* decl = nullptr; |
| auto entry = (*fSymbolTable)[f.fName]; |
| if (entry) { |
| std::vector<const FunctionDeclaration*> functions; |
| switch (entry->fKind) { |
| case Symbol::kUnresolvedFunction_Kind: |
| functions = ((UnresolvedFunction*) entry)->fFunctions; |
| break; |
| case Symbol::kFunctionDeclaration_Kind: |
| functions.push_back((FunctionDeclaration*) entry); |
| break; |
| default: |
| fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined"); |
| return nullptr; |
| } |
| for (const auto& other : functions) { |
| ASSERT(other->fName == f.fName); |
| if (parameters.size() == other->fParameters.size()) { |
| bool match = true; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->fType != other->fParameters[i]->fType) { |
| match = false; |
| break; |
| } |
| } |
| if (match) { |
| if (*returnType != other->fReturnType) { |
| FunctionDeclaration newDecl(f.fPosition, f.fName, parameters, *returnType); |
| fErrors.error(f.fPosition, "functions '" + newDecl.description() + |
| "' and '" + other->description() + |
| "' differ only in return type"); |
| return nullptr; |
| } |
| decl = other; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) { |
| fErrors.error(f.fPosition, "modifiers on parameter " + |
| to_string((uint64_t) i + 1) + |
| " differ between declaration and " |
| "definition"); |
| return nullptr; |
| } |
| } |
| if (other->fDefined) { |
| fErrors.error(f.fPosition, "duplicate definition of " + |
| other->description()); |
| } |
| break; |
| } |
| } |
| } |
| } |
| if (!decl) { |
| // couldn't find an existing declaration |
| auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fPosition, |
| f.fName, |
| parameters, |
| *returnType)); |
| decl = newDecl.get(); |
| fSymbolTable->add(decl->fName, std::move(newDecl)); |
| } |
| if (f.fBody) { |
| ASSERT(!fCurrentFunction); |
| fCurrentFunction = decl; |
| decl->fDefined = true; |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| AutoSymbolTable table(this); |
| for (size_t i = 0; i < parameters.size(); i++) { |
| fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]); |
| } |
| std::unique_ptr<Block> body = this->convertBlock(*f.fBody); |
| fCurrentFunction = nullptr; |
| if (!body) { |
| return nullptr; |
| } |
| return std::unique_ptr<FunctionDefinition>(new FunctionDefinition(f.fPosition, *decl, |
| std::move(body))); |
| } |
| return nullptr; |
| } |
| |
| std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) { |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| AutoSymbolTable table(this); |
| std::vector<Type::Field> fields; |
| for (size_t i = 0; i < intf.fDeclarations.size(); i++) { |
| std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations( |
| *intf.fDeclarations[i], |
| Variable::kGlobal_Storage); |
| if (!decl) { |
| return nullptr; |
| } |
| for (const auto& var : decl->fVars) { |
| fields.push_back(Type::Field(var.fVar->fModifiers, var.fVar->fName, |
| &var.fVar->fType)); |
| if (var.fValue) { |
| fErrors.error(decl->fPosition, |
| "initializers are not permitted on interface block fields"); |
| } |
| if (var.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag | |
| Modifiers::kOut_Flag | |
| Modifiers::kUniform_Flag | |
| Modifiers::kConst_Flag)) { |
| fErrors.error(decl->fPosition, |
| "interface block fields may not have storage qualifiers"); |
| } |
| } |
| } |
| Type* type = new Type(intf.fPosition, intf.fTypeName, fields); |
| old->takeOwnership(type); |
| std::vector<std::unique_ptr<Expression>> sizes; |
| for (const auto& size : intf.fSizes) { |
| if (size) { |
| std::unique_ptr<Expression> converted = this->convertExpression(*size); |
| if (!converted) { |
| return nullptr; |
| } |
| String name = type->fName; |
| int64_t count; |
| if (converted->fKind == Expression::kIntLiteral_Kind) { |
| count = ((IntLiteral&) *converted).fValue; |
| if (count <= 0) { |
| fErrors.error(converted->fPosition, "array size must be positive"); |
| } |
| name += "[" + to_string(count) + "]"; |
| } else { |
| count = -1; |
| name += "[]"; |
| } |
| type = new Type(name, Type::kArray_Kind, *type, (int) count); |
| fSymbolTable->takeOwnership((Type*) type); |
| sizes.push_back(std::move(converted)); |
| } else { |
| type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); |
| fSymbolTable->takeOwnership((Type*) type); |
| sizes.push_back(nullptr); |
| } |
| } |
| Variable* var = new Variable(intf.fPosition, intf.fModifiers, |
| intf.fInstanceName.size() ? intf.fInstanceName : intf.fTypeName, |
| *type, Variable::kGlobal_Storage); |
| old->takeOwnership(var); |
| if (intf.fInstanceName.size()) { |
| old->addWithoutOwnership(intf.fInstanceName, var); |
| } else { |
| for (size_t i = 0; i < fields.size(); i++) { |
| old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fPosition, *var, |
| (int) i))); |
| } |
| } |
| return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fPosition, |
| var, |
| intf.fTypeName, |
| intf.fInstanceName, |
| std::move(sizes), |
| fSymbolTable)); |
| } |
| |
| const Type* IRGenerator::convertType(const ASTType& type) { |
| const Symbol* result = (*fSymbolTable)[type.fName]; |
| if (result && result->fKind == Symbol::kType_Kind) { |
| for (int size : type.fSizes) { |
| String name = result->fName + "["; |
| if (size != -1) { |
| name += to_string(size); |
| } |
| name += "]"; |
| result = new Type(name, Type::kArray_Kind, (const Type&) *result, size); |
| fSymbolTable->takeOwnership((Type*) result); |
| } |
| return (const Type*) result; |
| } |
| fErrors.error(type.fPosition, "unknown type '" + type.fName + "'"); |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTExpression& expr) { |
| switch (expr.fKind) { |
| case ASTExpression::kIdentifier_Kind: |
| return this->convertIdentifier((ASTIdentifier&) expr); |
| case ASTExpression::kBool_Kind: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fPosition, |
| ((ASTBoolLiteral&) expr).fValue)); |
| case ASTExpression::kInt_Kind: |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fPosition, |
| ((ASTIntLiteral&) expr).fValue)); |
| case ASTExpression::kFloat_Kind: |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fPosition, |
| ((ASTFloatLiteral&) expr).fValue)); |
| case ASTExpression::kBinary_Kind: |
| return this->convertBinaryExpression((ASTBinaryExpression&) expr); |
| case ASTExpression::kPrefix_Kind: |
| return this->convertPrefixExpression((ASTPrefixExpression&) expr); |
| case ASTExpression::kSuffix_Kind: |
| return this->convertSuffixExpression((ASTSuffixExpression&) expr); |
| case ASTExpression::kTernary_Kind: |
| return this->convertTernaryExpression((ASTTernaryExpression&) expr); |
| default: |
| ABORT("unsupported expression type: %d\n", expr.fKind); |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTIdentifier& identifier) { |
| const Symbol* result = (*fSymbolTable)[identifier.fText]; |
| if (!result) { |
| fErrors.error(identifier.fPosition, "unknown identifier '" + identifier.fText + "'"); |
| return nullptr; |
| } |
| switch (result->fKind) { |
| case Symbol::kFunctionDeclaration_Kind: { |
| std::vector<const FunctionDeclaration*> f = { |
| (const FunctionDeclaration*) result |
| }; |
| return std::unique_ptr<FunctionReference>(new FunctionReference(fContext, |
| identifier.fPosition, |
| f)); |
| } |
| case Symbol::kUnresolvedFunction_Kind: { |
| const UnresolvedFunction* f = (const UnresolvedFunction*) result; |
| return std::unique_ptr<FunctionReference>(new FunctionReference(fContext, |
| identifier.fPosition, |
| f->fFunctions)); |
| } |
| case Symbol::kVariable_Kind: { |
| const Variable* var = (const Variable*) result; |
| if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { |
| fInputs.fFlipY = true; |
| if (fSettings->fFlipY && |
| (!fSettings->fCaps || |
| !fSettings->fCaps->fragCoordConventionsExtensionString())) { |
| fInputs.fRTHeight = true; |
| } |
| } |
| // default to kRead_RefKind; this will be corrected later if the variable is written to |
| return std::unique_ptr<VariableReference>(new VariableReference( |
| identifier.fPosition, |
| *var, |
| VariableReference::kRead_RefKind)); |
| } |
| case Symbol::kField_Kind: { |
| const Field* field = (const Field*) result; |
| VariableReference* base = new VariableReference(identifier.fPosition, field->fOwner, |
| VariableReference::kRead_RefKind); |
| return std::unique_ptr<Expression>(new FieldAccess( |
| std::unique_ptr<Expression>(base), |
| field->fFieldIndex, |
| FieldAccess::kAnonymousInterfaceBlock_OwnerKind)); |
| } |
| case Symbol::kType_Kind: { |
| const Type* t = (const Type*) result; |
| return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fPosition, |
| *t)); |
| } |
| default: |
| ABORT("unsupported symbol type %d\n", result->fKind); |
| } |
| |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr, |
| const Type& type) { |
| if (!expr) { |
| return nullptr; |
| } |
| if (expr->fType == type) { |
| return expr; |
| } |
| this->checkValid(*expr); |
| if (expr->fType == *fContext.fInvalid_Type) { |
| return nullptr; |
| } |
| if (!expr->fType.canCoerceTo(type)) { |
| fErrors.error(expr->fPosition, "expected '" + type.description() + "', but found '" + |
| expr->fType.description() + "'"); |
| return nullptr; |
| } |
| if (type.kind() == Type::kScalar_Kind) { |
| std::vector<std::unique_ptr<Expression>> args; |
| args.push_back(std::move(expr)); |
| ASTIdentifier id(Position(), type.description()); |
| std::unique_ptr<Expression> ctor = this->convertIdentifier(id); |
| ASSERT(ctor); |
| return this->call(Position(), std::move(ctor), std::move(args)); |
| } |
| std::vector<std::unique_ptr<Expression>> args; |
| args.push_back(std::move(expr)); |
| return std::unique_ptr<Expression>(new Constructor(Position(), type, std::move(args))); |
| } |
| |
| static bool is_matrix_multiply(const Type& left, const Type& right) { |
| if (left.kind() == Type::kMatrix_Kind) { |
| return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind; |
| } |
| return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind; |
| } |
| |
| /** |
| * Determines the operand and result types of a binary expression. Returns true if the expression is |
| * legal, false otherwise. If false, the values of the out parameters are undefined. |
| */ |
| static bool determine_binary_type(const Context& context, |
| Token::Kind op, |
| const Type& left, |
| const Type& right, |
| const Type** outLeftType, |
| const Type** outRightType, |
| const Type** outResultType, |
| bool tryFlipped) { |
| bool isLogical; |
| bool validMatrixOrVectorOp; |
| switch (op) { |
| case Token::EQ: |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| return right.canCoerceTo(left); |
| case Token::EQEQ: // fall through |
| case Token::NEQ: |
| isLogical = true; |
| validMatrixOrVectorOp = true; |
| break; |
| case Token::LT: // fall through |
| case Token::GT: // fall through |
| case Token::LTEQ: // fall through |
| case Token::GTEQ: |
| isLogical = true; |
| validMatrixOrVectorOp = false; |
| break; |
| case Token::LOGICALOR: // fall through |
| case Token::LOGICALAND: // fall through |
| case Token::LOGICALXOR: // fall through |
| case Token::LOGICALOREQ: // fall through |
| case Token::LOGICALANDEQ: // fall through |
| case Token::LOGICALXOREQ: |
| *outLeftType = context.fBool_Type.get(); |
| *outRightType = context.fBool_Type.get(); |
| *outResultType = context.fBool_Type.get(); |
| return left.canCoerceTo(*context.fBool_Type) && |
| right.canCoerceTo(*context.fBool_Type); |
| case Token::STAR: // fall through |
| case Token::STAREQ: |
| if (is_matrix_multiply(left, right)) { |
| // determine final component type |
| if (determine_binary_type(context, Token::STAR, left.componentType(), |
| right.componentType(), outLeftType, outRightType, |
| outResultType, false)) { |
| *outLeftType = &(*outResultType)->toCompound(context, left.columns(), |
| left.rows());; |
| *outRightType = &(*outResultType)->toCompound(context, right.columns(), |
| right.rows());; |
| int leftColumns = left.columns(); |
| int leftRows = left.rows(); |
| int rightColumns; |
| int rightRows; |
| if (right.kind() == Type::kVector_Kind) { |
| // matrix * vector treats the vector as a column vector, so we need to |
| // transpose it |
| rightColumns = right.rows(); |
| rightRows = right.columns(); |
| ASSERT(rightColumns == 1); |
| } else { |
| rightColumns = right.columns(); |
| rightRows = right.rows(); |
| } |
| if (rightColumns > 1) { |
| *outResultType = &(*outResultType)->toCompound(context, rightColumns, |
| leftRows); |
| } else { |
| // result was a column vector, transpose it back to a row |
| *outResultType = &(*outResultType)->toCompound(context, leftRows, |
| rightColumns); |
| } |
| return leftColumns == rightRows; |
| } else { |
| return false; |
| } |
| } |
| isLogical = false; |
| validMatrixOrVectorOp = true; |
| break; |
| case Token::PLUS: // fall through |
| case Token::PLUSEQ: // fall through |
| case Token::MINUS: // fall through |
| case Token::MINUSEQ: // fall through |
| case Token::SLASH: // fall through |
| case Token::SLASHEQ: |
| isLogical = false; |
| validMatrixOrVectorOp = true; |
| break; |
| default: |
| isLogical = false; |
| validMatrixOrVectorOp = false; |
| } |
| bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind; |
| // FIXME: incorrect for shift |
| if (right.canCoerceTo(left) && (left.kind() == Type::kScalar_Kind || |
| (isVectorOrMatrix && validMatrixOrVectorOp))) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| if (isLogical) { |
| *outResultType = context.fBool_Type.get(); |
| } else { |
| *outResultType = &left; |
| } |
| return true; |
| } |
| if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) && |
| (right.kind() == Type::kScalar_Kind)) { |
| if (determine_binary_type(context, op, left.componentType(), right, outLeftType, |
| outRightType, outResultType, false)) { |
| *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); |
| if (!isLogical) { |
| *outResultType = &(*outResultType)->toCompound(context, left.columns(), |
| left.rows()); |
| } |
| return true; |
| } |
| return false; |
| } |
| if (tryFlipped) { |
| return determine_binary_type(context, op, right, left, outRightType, outLeftType, |
| outResultType, false); |
| } |
| return false; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left, |
| Token::Kind op, |
| const Expression& right) const { |
| // Note that we expressly do not worry about precision and overflow here -- we use the maximum |
| // precision to calculate the results and hope the result makes sense. The plan is to move the |
| // Skia caps into SkSL, so we have access to all of them including the precisions of the various |
| // types, which will let us be more intelligent about this. |
| if (left.fKind == Expression::kBoolLiteral_Kind && |
| right.fKind == Expression::kBoolLiteral_Kind) { |
| bool leftVal = ((BoolLiteral&) left).fValue; |
| bool rightVal = ((BoolLiteral&) right).fValue; |
| bool result; |
| switch (op) { |
| case Token::LOGICALAND: result = leftVal && rightVal; break; |
| case Token::LOGICALOR: result = leftVal || rightVal; break; |
| case Token::LOGICALXOR: result = leftVal ^ rightVal; break; |
| default: return nullptr; |
| } |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fPosition, result)); |
| } |
| #define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fPosition, \ |
| leftVal op rightVal)) |
| if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) { |
| int64_t leftVal = ((IntLiteral&) left).fValue; |
| int64_t rightVal = ((IntLiteral&) right).fValue; |
| switch (op) { |
| case Token::PLUS: return RESULT(Int, +); |
| case Token::MINUS: return RESULT(Int, -); |
| case Token::STAR: return RESULT(Int, *); |
| case Token::SLASH: |
| if (rightVal) { |
| return RESULT(Int, /); |
| } |
| fErrors.error(right.fPosition, "division by zero"); |
| return nullptr; |
| case Token::PERCENT: |
| if (rightVal) { |
| return RESULT(Int, %); |
| } |
| fErrors.error(right.fPosition, "division by zero"); |
| return nullptr; |
| case Token::BITWISEAND: return RESULT(Int, &); |
| case Token::BITWISEOR: return RESULT(Int, |); |
| case Token::BITWISEXOR: return RESULT(Int, ^); |
| case Token::SHL: return RESULT(Int, <<); |
| case Token::SHR: return RESULT(Int, >>); |
| case Token::EQEQ: return RESULT(Bool, ==); |
| case Token::NEQ: return RESULT(Bool, !=); |
| case Token::GT: return RESULT(Bool, >); |
| case Token::GTEQ: return RESULT(Bool, >=); |
| case Token::LT: return RESULT(Bool, <); |
| case Token::LTEQ: return RESULT(Bool, <=); |
| default: return nullptr; |
| } |
| } |
| if (left.fKind == Expression::kFloatLiteral_Kind && |
| right.fKind == Expression::kFloatLiteral_Kind) { |
| double leftVal = ((FloatLiteral&) left).fValue; |
| double rightVal = ((FloatLiteral&) right).fValue; |
| switch (op) { |
| case Token::PLUS: return RESULT(Float, +); |
| case Token::MINUS: return RESULT(Float, -); |
| case Token::STAR: return RESULT(Float, *); |
| case Token::SLASH: |
| if (rightVal) { |
| return RESULT(Float, /); |
| } |
| fErrors.error(right.fPosition, "division by zero"); |
| return nullptr; |
| case Token::EQEQ: return RESULT(Bool, ==); |
| case Token::NEQ: return RESULT(Bool, !=); |
| case Token::GT: return RESULT(Bool, >); |
| case Token::GTEQ: return RESULT(Bool, >=); |
| case Token::LT: return RESULT(Bool, <); |
| case Token::LTEQ: return RESULT(Bool, <=); |
| default: return nullptr; |
| } |
| } |
| #undef RESULT |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertBinaryExpression( |
| const ASTBinaryExpression& expression) { |
| std::unique_ptr<Expression> left = this->convertExpression(*expression.fLeft); |
| if (!left) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> right = this->convertExpression(*expression.fRight); |
| if (!right) { |
| return nullptr; |
| } |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| if (!determine_binary_type(fContext, expression.fOperator, left->fType, right->fType, &leftType, |
| &rightType, &resultType, |
| !Token::IsAssignment(expression.fOperator))) { |
| fErrors.error(expression.fPosition, "type mismatch: '" + |
| Token::OperatorName(expression.fOperator) + |
| "' cannot operate on '" + left->fType.fName + |
| "', '" + right->fType.fName + "'"); |
| return nullptr; |
| } |
| if (Token::IsAssignment(expression.fOperator)) { |
| this->markWrittenTo(*left, expression.fOperator != Token::EQ); |
| } |
| left = this->coerce(std::move(left), *leftType); |
| right = this->coerce(std::move(right), *rightType); |
| if (!left || !right) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> result = this->constantFold(*left.get(), expression.fOperator, |
| *right.get()); |
| if (!result) { |
| result = std::unique_ptr<Expression>(new BinaryExpression(expression.fPosition, |
| std::move(left), |
| expression.fOperator, |
| std::move(right), |
| *resultType)); |
| } |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTernaryExpression( |
| const ASTTernaryExpression& expression) { |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*expression.fTest), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifTrue = this->convertExpression(*expression.fIfTrue); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifFalse = this->convertExpression(*expression.fIfFalse); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| const Type* trueType; |
| const Type* falseType; |
| const Type* resultType; |
| if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType, |
| &falseType, &resultType, true) || trueType != falseType) { |
| fErrors.error(expression.fPosition, "ternary operator result mismatch: '" + |
| ifTrue->fType.fName + "', '" + |
| ifFalse->fType.fName + "'"); |
| return nullptr; |
| } |
| ifTrue = this->coerce(std::move(ifTrue), *trueType); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| ifFalse = this->coerce(std::move(ifFalse), *falseType); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| if (test->fKind == Expression::kBoolLiteral_Kind) { |
| // static boolean test, just return one of the branches |
| if (((BoolLiteral&) *test).fValue) { |
| return ifTrue; |
| } else { |
| return ifFalse; |
| } |
| } |
| return std::unique_ptr<Expression>(new TernaryExpression(expression.fPosition, |
| std::move(test), |
| std::move(ifTrue), |
| std::move(ifFalse))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(Position position, |
| const FunctionDeclaration& function, |
| std::vector<std::unique_ptr<Expression>> arguments) { |
| if (function.fParameters.size() != arguments.size()) { |
| String msg = "call to '" + function.fName + "' expected " + |
| to_string((uint64_t) function.fParameters.size()) + |
| " argument"; |
| if (function.fParameters.size() != 1) { |
| msg += "s"; |
| } |
| msg += ", but found " + to_string((uint64_t) arguments.size()); |
| fErrors.error(position, msg); |
| return nullptr; |
| } |
| std::vector<const Type*> types; |
| const Type* returnType; |
| if (!function.determineFinalTypes(arguments, &types, &returnType)) { |
| String msg = "no match for " + function.fName + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->fType.description(); |
| } |
| msg += ")"; |
| fErrors.error(position, msg); |
| return nullptr; |
| } |
| for (size_t i = 0; i < arguments.size(); i++) { |
| arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); |
| if (!arguments[i]) { |
| return nullptr; |
| } |
| if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) { |
| this->markWrittenTo(*arguments[i], true); |
| } |
| } |
| return std::unique_ptr<FunctionCall>(new FunctionCall(position, *returnType, function, |
| std::move(arguments))); |
| } |
| |
| /** |
| * Determines the cost of coercing the arguments of a function to the required types. Returns true |
| * if the cost could be computed, false if the call is not valid. Cost has no particular meaning |
| * other than "lower costs are preferred". |
| */ |
| bool IRGenerator::determineCallCost(const FunctionDeclaration& function, |
| const std::vector<std::unique_ptr<Expression>>& arguments, |
| int* outCost) { |
| if (function.fParameters.size() != arguments.size()) { |
| return false; |
| } |
| int total = 0; |
| std::vector<const Type*> types; |
| const Type* ignored; |
| if (!function.determineFinalTypes(arguments, &types, &ignored)) { |
| return false; |
| } |
| for (size_t i = 0; i < arguments.size(); i++) { |
| int cost; |
| if (arguments[i]->fType.determineCoercionCost(*types[i], &cost)) { |
| total += cost; |
| } else { |
| return false; |
| } |
| } |
| *outCost = total; |
| return true; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(Position position, |
| std::unique_ptr<Expression> functionValue, |
| std::vector<std::unique_ptr<Expression>> arguments) { |
| if (functionValue->fKind == Expression::kTypeReference_Kind) { |
| return this->convertConstructor(position, |
| ((TypeReference&) *functionValue).fValue, |
| std::move(arguments)); |
| } |
| if (functionValue->fKind != Expression::kFunctionReference_Kind) { |
| fErrors.error(position, "'" + functionValue->description() + "' is not a function"); |
| return nullptr; |
| } |
| FunctionReference* ref = (FunctionReference*) functionValue.get(); |
| int bestCost = INT_MAX; |
| const FunctionDeclaration* best = nullptr; |
| if (ref->fFunctions.size() > 1) { |
| for (const auto& f : ref->fFunctions) { |
| int cost; |
| if (this->determineCallCost(*f, arguments, &cost) && cost < bestCost) { |
| bestCost = cost; |
| best = f; |
| } |
| } |
| if (best) { |
| return this->call(position, *best, std::move(arguments)); |
| } |
| String msg = "no match for " + ref->fFunctions[0]->fName + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->fType.description(); |
| } |
| msg += ")"; |
| fErrors.error(position, msg); |
| return nullptr; |
| } |
| return this->call(position, *ref->fFunctions[0], std::move(arguments)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertNumberConstructor( |
| Position position, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| ASSERT(type.isNumber()); |
| if (args.size() != 1) { |
| fErrors.error(position, "invalid arguments to '" + type.description() + |
| "' constructor, (expected exactly 1 argument, but found " + |
| to_string((uint64_t) args.size()) + ")"); |
| return nullptr; |
| } |
| if (type == *fContext.fFloat_Type && args.size() == 1 && |
| args[0]->fKind == Expression::kIntLiteral_Kind) { |
| int64_t value = ((IntLiteral&) *args[0]).fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, position, (double) value)); |
| } |
| if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type || |
| type == *fContext.fUInt_Type)) { |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, |
| position, |
| ((IntLiteral&) *args[0]).fValue, |
| &type)); |
| } |
| if (args[0]->fType == *fContext.fBool_Type) { |
| std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, position, 0)); |
| std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, position, 1)); |
| return std::unique_ptr<Expression>( |
| new TernaryExpression(position, std::move(args[0]), |
| this->coerce(std::move(one), type), |
| this->coerce(std::move(zero), |
| type))); |
| } |
| if (!args[0]->fType.isNumber()) { |
| fErrors.error(position, "invalid argument to '" + type.description() + |
| "' constructor (expected a number or bool, but found '" + |
| args[0]->fType.description() + "')"); |
| return nullptr; |
| } |
| return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args))); |
| } |
| |
| int component_count(const Type& type) { |
| switch (type.kind()) { |
| case Type::kVector_Kind: |
| return type.columns(); |
| case Type::kMatrix_Kind: |
| return type.columns() * type.rows(); |
| default: |
| return 1; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor( |
| Position position, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| ASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind); |
| if (type.kind() == Type::kMatrix_Kind && args.size() == 1 && |
| args[0]->fType.kind() == Type::kMatrix_Kind) { |
| // matrix from matrix is always legal |
| return std::unique_ptr<Expression>(new Constructor(position, std::move(type), |
| std::move(args))); |
| } |
| int actual = 0; |
| int expected = type.rows() * type.columns(); |
| if (args.size() != 1 || expected != component_count(args[0]->fType) || |
| type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) { |
| for (size_t i = 0; i < args.size(); i++) { |
| if (args[i]->fType.kind() == Type::kVector_Kind) { |
| if (type.componentType().isNumber() != |
| args[i]->fType.componentType().isNumber()) { |
| fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " |
| "parameter to '" + type.description() + |
| "' constructor"); |
| return nullptr; |
| } |
| actual += args[i]->fType.columns(); |
| } else if (args[i]->fType.kind() == Type::kScalar_Kind) { |
| actual += 1; |
| if (type.kind() != Type::kScalar_Kind) { |
| args[i] = this->coerce(std::move(args[i]), type.componentType()); |
| if (!args[i]) { |
| return nullptr; |
| } |
| } |
| } else { |
| fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " |
| "parameter to '" + type.description() + "' constructor"); |
| return nullptr; |
| } |
| } |
| if (actual != 1 && actual != expected) { |
| fErrors.error(position, "invalid arguments to '" + type.description() + |
| "' constructor (expected " + to_string(expected) + |
| " scalars, but found " + to_string(actual) + ")"); |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new Constructor(position, std::move(type), std::move(args))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertConstructor( |
| Position position, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| // FIXME: add support for structs |
| Type::Kind kind = type.kind(); |
| if (args.size() == 1 && args[0]->fType == type) { |
| // argument is already the right type, just return it |
| return std::move(args[0]); |
| } |
| if (type.isNumber()) { |
| return this->convertNumberConstructor(position, type, std::move(args)); |
| } else if (kind == Type::kArray_Kind) { |
| const Type& base = type.componentType(); |
| for (size_t i = 0; i < args.size(); i++) { |
| args[i] = this->coerce(std::move(args[i]), base); |
| if (!args[i]) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new Constructor(position, std::move(type), |
| std::move(args))); |
| } else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) { |
| return this->convertCompoundConstructor(position, type, std::move(args)); |
| } else { |
| fErrors.error(position, "cannot construct '" + type.description() + "'"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertPrefixExpression( |
| const ASTPrefixExpression& expression) { |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.fOperand); |
| if (!base) { |
| return nullptr; |
| } |
| switch (expression.fOperator) { |
| case Token::PLUS: |
| if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(expression.fPosition, |
| "'+' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| return base; |
| case Token::MINUS: |
| if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(expression.fPosition, |
| "'-' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| if (base->fKind == Expression::kIntLiteral_Kind) { |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fPosition, |
| -((IntLiteral&) *base).fValue)); |
| } |
| if (base->fKind == Expression::kFloatLiteral_Kind) { |
| double value = -((FloatLiteral&) *base).fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fPosition, |
| value)); |
| } |
| return std::unique_ptr<Expression>(new PrefixExpression(Token::MINUS, std::move(base))); |
| case Token::PLUSPLUS: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fPosition, |
| "'" + Token::OperatorName(expression.fOperator) + |
| "' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| this->markWrittenTo(*base, true); |
| break; |
| case Token::MINUSMINUS: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fPosition, |
| "'" + Token::OperatorName(expression.fOperator) + |
| "' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| this->markWrittenTo(*base, true); |
| break; |
| case Token::LOGICALNOT: |
| if (base->fType != *fContext.fBool_Type) { |
| fErrors.error(expression.fPosition, |
| "'" + Token::OperatorName(expression.fOperator) + |
| "' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| if (base->fKind == Expression::kBoolLiteral_Kind) { |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, base->fPosition, |
| !((BoolLiteral&) *base).fValue)); |
| } |
| break; |
| case Token::BITWISENOT: |
| if (base->fType != *fContext.fInt_Type) { |
| fErrors.error(expression.fPosition, |
| "'" + Token::OperatorName(expression.fOperator) + |
| "' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| break; |
| default: |
| ABORT("unsupported prefix operator\n"); |
| } |
| return std::unique_ptr<Expression>(new PrefixExpression(expression.fOperator, |
| std::move(base))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base, |
| const ASTExpression& index) { |
| if (base->fKind == Expression::kTypeReference_Kind) { |
| if (index.fKind == ASTExpression::kInt_Kind) { |
| const Type& oldType = ((TypeReference&) *base).fValue; |
| int64_t size = ((const ASTIntLiteral&) index).fValue; |
| Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]", |
| Type::kArray_Kind, oldType, size); |
| fSymbolTable->takeOwnership(newType); |
| return std::unique_ptr<Expression>(new TypeReference(fContext, base->fPosition, |
| *newType)); |
| |
| } else { |
| fErrors.error(base->fPosition, "array size must be a constant"); |
| return nullptr; |
| } |
| } |
| if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind && |
| base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(base->fPosition, "expected array, but found '" + base->fType.description() + |
| "'"); |
| return nullptr; |
| } |
| std::unique_ptr<Expression> converted = this->convertExpression(index); |
| if (!converted) { |
| return nullptr; |
| } |
| if (converted->fType != *fContext.fUInt_Type) { |
| converted = this->coerce(std::move(converted), *fContext.fInt_Type); |
| if (!converted) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base), |
| std::move(converted))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base, |
| const String& field) { |
| auto fields = base->fType.fields(); |
| for (size_t i = 0; i < fields.size(); i++) { |
| if (fields[i].fName == field) { |
| return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i)); |
| } |
| } |
| fErrors.error(base->fPosition, "type '" + base->fType.description() + "' does not have a " |
| "field named '" + field + ""); |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base, |
| const String& fields) { |
| if (base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| std::vector<int> swizzleComponents; |
| for (size_t i = 0; i < fields.size(); i++) { |
| switch (fields[i]) { |
| case 'x': // fall through |
| case 'r': // fall through |
| case 's': |
| swizzleComponents.push_back(0); |
| break; |
| case 'y': // fall through |
| case 'g': // fall through |
| case 't': |
| if (base->fType.columns() >= 2) { |
| swizzleComponents.push_back(1); |
| break; |
| } |
| // fall through |
| case 'z': // fall through |
| case 'b': // fall through |
| case 'p': |
| if (base->fType.columns() >= 3) { |
| swizzleComponents.push_back(2); |
| break; |
| } |
| // fall through |
| case 'w': // fall through |
| case 'a': // fall through |
| case 'q': |
| if (base->fType.columns() >= 4) { |
| swizzleComponents.push_back(3); |
| break; |
| } |
| // fall through |
| default: |
| fErrors.error(base->fPosition, String::printf("invalid swizzle component '%c'", |
| fields[i])); |
| return nullptr; |
| } |
| } |
| ASSERT(swizzleComponents.size() > 0); |
| if (swizzleComponents.size() > 4) { |
| fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'"); |
| return nullptr; |
| } |
| return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::getCap(Position position, String name) { |
| auto found = fCapsMap.find(name); |
| if (found == fCapsMap.end()) { |
| fErrors.error(position, "unknown capability flag '" + name + "'"); |
| return nullptr; |
| } |
| switch (found->second.fKind) { |
| case CapValue::kBool_Kind: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, position, |
| (bool) found->second.fValue)); |
| case CapValue::kInt_Kind: |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, position, |
| found->second.fValue)); |
| } |
| ASSERT(false); |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertSuffixExpression( |
| const ASTSuffixExpression& expression) { |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.fBase); |
| if (!base) { |
| return nullptr; |
| } |
| switch (expression.fSuffix->fKind) { |
| case ASTSuffix::kIndex_Kind: { |
| const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get(); |
| if (expr) { |
| return this->convertIndex(std::move(base), *expr); |
| } else if (base->fKind == Expression::kTypeReference_Kind) { |
| const Type& oldType = ((TypeReference&) *base).fValue; |
| Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType, |
| -1); |
| fSymbolTable->takeOwnership(newType); |
| return std::unique_ptr<Expression>(new TypeReference(fContext, base->fPosition, |
| *newType)); |
| } else { |
| fErrors.error(expression.fPosition, "'[]' must follow a type name"); |
| return nullptr; |
| } |
| } |
| case ASTSuffix::kCall_Kind: { |
| auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments; |
| std::vector<std::unique_ptr<Expression>> arguments; |
| for (size_t i = 0; i < rawArguments->size(); i++) { |
| std::unique_ptr<Expression> converted = |
| this->convertExpression(*(*rawArguments)[i]); |
| if (!converted) { |
| return nullptr; |
| } |
| arguments.push_back(std::move(converted)); |
| } |
| return this->call(expression.fPosition, std::move(base), std::move(arguments)); |
| } |
| case ASTSuffix::kField_Kind: { |
| if (base->fType == *fContext.fSkCaps_Type) { |
| return this->getCap(expression.fPosition, |
| ((ASTFieldSuffix&) *expression.fSuffix).fField); |
| } |
| switch (base->fType.kind()) { |
| case Type::kVector_Kind: |
| return this->convertSwizzle(std::move(base), |
| ((ASTFieldSuffix&) *expression.fSuffix).fField); |
| case Type::kStruct_Kind: |
| return this->convertField(std::move(base), |
| ((ASTFieldSuffix&) *expression.fSuffix).fField); |
| default: |
| fErrors.error(base->fPosition, "cannot swizzle value of type '" + |
| base->fType.description() + "'"); |
| return nullptr; |
| } |
| } |
| case ASTSuffix::kPostIncrement_Kind: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fPosition, |
| "'++' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| this->markWrittenTo(*base, true); |
| return std::unique_ptr<Expression>(new PostfixExpression(std::move(base), |
| Token::PLUSPLUS)); |
| case ASTSuffix::kPostDecrement_Kind: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fPosition, |
| "'--' cannot operate on '" + base->fType.description() + "'"); |
| return nullptr; |
| } |
| this->markWrittenTo(*base, true); |
| return std::unique_ptr<Expression>(new PostfixExpression(std::move(base), |
| Token::MINUSMINUS)); |
| default: |
| ABORT("unsupported suffix operator"); |
| } |
| } |
| |
| void IRGenerator::checkValid(const Expression& expr) { |
| switch (expr.fKind) { |
| case Expression::kFunctionReference_Kind: |
| fErrors.error(expr.fPosition, "expected '(' to begin function call"); |
| break; |
| case Expression::kTypeReference_Kind: |
| fErrors.error(expr.fPosition, "expected '(' to begin constructor invocation"); |
| break; |
| default: |
| if (expr.fType == *fContext.fInvalid_Type) { |
| fErrors.error(expr.fPosition, "invalid expression"); |
| } |
| } |
| } |
| |
| static bool has_duplicates(const Swizzle& swizzle) { |
| int bits = 0; |
| for (int idx : swizzle.fComponents) { |
| ASSERT(idx >= 0 && idx <= 3); |
| int bit = 1 << idx; |
| if (bits & bit) { |
| return true; |
| } |
| bits |= bit; |
| } |
| return false; |
| } |
| |
| void IRGenerator::markWrittenTo(const Expression& expr, bool readWrite) { |
| switch (expr.fKind) { |
| case Expression::kVariableReference_Kind: { |
| const Variable& var = ((VariableReference&) expr).fVariable; |
| if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) { |
| fErrors.error(expr.fPosition, |
| "cannot modify immutable variable '" + var.fName + "'"); |
| } |
| ((VariableReference&) expr).setRefKind(readWrite ? VariableReference::kReadWrite_RefKind |
| : VariableReference::kWrite_RefKind); |
| break; |
| } |
| case Expression::kFieldAccess_Kind: |
| this->markWrittenTo(*((FieldAccess&) expr).fBase, readWrite); |
| break; |
| case Expression::kSwizzle_Kind: |
| if (has_duplicates((Swizzle&) expr)) { |
| fErrors.error(expr.fPosition, |
| "cannot write to the same swizzle field more than once"); |
| } |
| this->markWrittenTo(*((Swizzle&) expr).fBase, readWrite); |
| break; |
| case Expression::kIndex_Kind: |
| this->markWrittenTo(*((IndexExpression&) expr).fBase, readWrite); |
| break; |
| default: |
| fErrors.error(expr.fPosition, "cannot assign to '" + expr.description() + "'"); |
| break; |
| } |
| } |
| |
| } |