blob: a4fbc9887a45ab156163e0d96021859403f21fcb [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAvoidXfermode.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkString.h"
SkAvoidXfermode::SkAvoidXfermode(SkColor opColor, U8CPU tolerance, Mode mode) {
if (tolerance > 255) {
tolerance = 255;
}
fTolerance = SkToU8(tolerance);
fOpColor = opColor;
fDistMul = (256 << 14) / (tolerance + 1);
fMode = mode;
}
SkFlattenable* SkAvoidXfermode::CreateProc(SkReadBuffer& buffer) {
const SkColor color = buffer.readColor();
const unsigned tolerance = buffer.readUInt();
const unsigned mode = buffer.readUInt();
return Create(color, tolerance, (Mode)mode);
}
void SkAvoidXfermode::flatten(SkWriteBuffer& buffer) const {
buffer.writeColor(fOpColor);
buffer.writeUInt(fTolerance);
buffer.writeUInt(fMode);
}
// returns 0..31
static unsigned color_dist16(uint16_t c, unsigned r, unsigned g, unsigned b) {
SkASSERT(r <= SK_R16_MASK);
SkASSERT(g <= SK_G16_MASK);
SkASSERT(b <= SK_B16_MASK);
unsigned dr = SkAbs32(SkGetPackedR16(c) - r);
unsigned dg = SkAbs32(SkGetPackedG16(c) - g) >> (SK_G16_BITS - SK_R16_BITS);
unsigned db = SkAbs32(SkGetPackedB16(c) - b);
return SkMax32(dr, SkMax32(dg, db));
}
// returns 0..255
static unsigned color_dist32(SkPMColor c, U8CPU r, U8CPU g, U8CPU b) {
SkASSERT(r <= 0xFF);
SkASSERT(g <= 0xFF);
SkASSERT(b <= 0xFF);
unsigned dr = SkAbs32(SkGetPackedR32(c) - r);
unsigned dg = SkAbs32(SkGetPackedG32(c) - g);
unsigned db = SkAbs32(SkGetPackedB32(c) - b);
return SkMax32(dr, SkMax32(dg, db));
}
static int scale_dist_14(int dist, uint32_t mul, uint32_t sub) {
int tmp = dist * mul - sub;
int result = (tmp + (1 << 13)) >> 14;
return result;
}
static inline unsigned Accurate255To256(unsigned x) {
return x + (x >> 7);
}
void SkAvoidXfermode::xfer32(SkPMColor dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const {
unsigned opR = SkColorGetR(fOpColor);
unsigned opG = SkColorGetG(fOpColor);
unsigned opB = SkColorGetB(fOpColor);
uint32_t mul = fDistMul;
uint32_t sub = (fDistMul - (1 << 14)) << 8;
int MAX, mask;
if (kTargetColor_Mode == fMode) {
mask = -1;
MAX = 255;
} else {
mask = 0;
MAX = 0;
}
for (int i = 0; i < count; i++) {
int d = color_dist32(dst[i], opR, opG, opB);
// now reverse d if we need to
d = MAX + (d ^ mask) - mask;
SkASSERT((unsigned)d <= 255);
d = Accurate255To256(d);
d = scale_dist_14(d, mul, sub);
SkASSERT(d <= 256);
if (d > 0) {
if (aa) {
d = SkAlphaMul(d, Accurate255To256(*aa++));
if (0 == d) {
continue;
}
}
dst[i] = SkFourByteInterp256(src[i], dst[i], d);
}
}
}
static inline U16CPU SkBlend3216(SkPMColor src, U16CPU dst, unsigned scale) {
SkASSERT(scale <= 32);
scale <<= 3;
return SkPackRGB16(SkAlphaBlend(SkPacked32ToR16(src), SkGetPackedR16(dst), scale),
SkAlphaBlend(SkPacked32ToG16(src), SkGetPackedG16(dst), scale),
SkAlphaBlend(SkPacked32ToB16(src), SkGetPackedB16(dst), scale));
}
void SkAvoidXfermode::xfer16(uint16_t dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const {
unsigned opR = SkColorGetR(fOpColor) >> (8 - SK_R16_BITS);
unsigned opG = SkColorGetG(fOpColor) >> (8 - SK_G16_BITS);
unsigned opB = SkColorGetB(fOpColor) >> (8 - SK_R16_BITS);
uint32_t mul = fDistMul;
uint32_t sub = (fDistMul - (1 << 14)) << SK_R16_BITS;
int MAX, mask;
if (kTargetColor_Mode == fMode) {
mask = -1;
MAX = 31;
} else {
mask = 0;
MAX = 0;
}
for (int i = 0; i < count; i++) {
int d = color_dist16(dst[i], opR, opG, opB);
// now reverse d if we need to
d = MAX + (d ^ mask) - mask;
SkASSERT((unsigned)d <= 31);
// convert from 0..31 to 0..32
d += d >> 4;
d = scale_dist_14(d, mul, sub);
SkASSERT(d <= 32);
if (d > 0) {
if (aa) {
d = SkAlphaMul(d, Accurate255To256(*aa++));
if (0 == d) {
continue;
}
}
dst[i] = SkBlend3216(src[i], dst[i], d);
}
}
}
void SkAvoidXfermode::xferA8(SkAlpha dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const {
}
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrXferProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLXferProcessor.h"
///////////////////////////////////////////////////////////////////////////////
// Fragment Processor
///////////////////////////////////////////////////////////////////////////////
class GLAvoidFP;
class AvoidFP : public GrFragmentProcessor {
public:
static const GrFragmentProcessor* Create(SkColor opColor, uint8_t tolerance,
SkAvoidXfermode::Mode mode,
const GrFragmentProcessor* dst) {
return new AvoidFP(opColor, tolerance, mode, dst);
}
~AvoidFP() override { }
const char* name() const override { return "Avoid"; }
SkString dumpInfo() const override {
SkString str;
str.appendf("Color: 0x%08x Tol: %d Mode: %s",
fOpColor, fTolerance,
fMode == SkAvoidXfermode::kAvoidColor_Mode ? "Avoid" : "Target");
return str;
}
SkColor opColor() const { return fOpColor; }
uint8_t tol() const { return fTolerance; }
SkAvoidXfermode::Mode mode() const { return fMode; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor& fpBase) const override {
const AvoidFP& fp = fpBase.cast<AvoidFP>();
return fOpColor == fp.fOpColor &&
fTolerance == fp.fTolerance &&
fMode == fp.fMode;
}
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
}
AvoidFP(SkColor opColor, uint8_t tolerance,
SkAvoidXfermode::Mode mode, const GrFragmentProcessor* dst)
: fOpColor(opColor), fTolerance(tolerance), fMode(mode) {
this->initClassID<AvoidFP>();
SkASSERT(dst);
SkDEBUGCODE(int dstIndex = )this->registerChildProcessor(dst);
SkASSERT(0 == dstIndex);
}
SkColor fOpColor;
uint8_t fTolerance;
SkAvoidXfermode::Mode fMode;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
// Add common code for calculating avoid's distance value
static void add_avoid_code(GrGLSLFragmentBuilder* fragBuilder,
const char* dstColor,
const char* srcCoverage,
const char* kColorAndTolUni,
const char* kCoverageName,
SkAvoidXfermode::Mode mode) {
fragBuilder->codeAppendf("vec3 temp = %s.rgb - %s.rgb;", dstColor, kColorAndTolUni);
fragBuilder->codeAppendf("float dist = max(max(abs(temp.r), abs(temp.g)), abs(temp.b));");
if (SkAvoidXfermode::kTargetColor_Mode == mode) {
fragBuilder->codeAppendf("dist = 1.0 - dist;");
}
// the 'a' portion of the uniform is the scaled and inverted tolerance
fragBuilder->codeAppendf("dist = dist * %s.a - (%s.a - 1.0);",
kColorAndTolUni, kColorAndTolUni);
fragBuilder->codeAppendf("vec4 %s = vec4(dist);", kCoverageName);
if (srcCoverage) {
fragBuilder->codeAppendf("%s *= %s;", kCoverageName, srcCoverage);
}
}
class GLAvoidFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const AvoidFP& avoid = args.fFp.cast<AvoidFP>();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString dstColor("dstColor");
this->emitChild(0, nullptr, &dstColor, args);
fColorAndTolUni = args.fUniformHandler->addUniform(
kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"colorAndTol");
const char* kColorAndTolUni = args.fUniformHandler->getUniformCStr(fColorAndTolUni);
const char* kCoverageName = "newCoverage";
// add_avoid_code emits the code needed to compute the new coverage
add_avoid_code(fragBuilder,
dstColor.c_str(), nullptr,
kColorAndTolUni, kCoverageName, avoid.mode());
// The raster implementation's quantization and behavior yield a very noticeable
// effect near zero (0.0039 = 1/256).
fragBuilder->codeAppendf("if (%s.r < 0.0039) { %s = %s; } else {",
kCoverageName, args.fOutputColor, dstColor.c_str());
fragBuilder->codeAppendf("%s = %s * %s + (vec4(1.0)-%s) * %s;",
args.fOutputColor,
kCoverageName, args.fInputColor ? args.fInputColor : "vec4(1.0)",
kCoverageName, dstColor.c_str());
fragBuilder->codeAppend("}");
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&, GrProcessorKeyBuilder* b) {
const AvoidFP& avoid = proc.cast<AvoidFP>();
uint32_t key = avoid.mode() == SkAvoidXfermode::kTargetColor_Mode ? 1 : 0;
b->add32(key);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) override {
const AvoidFP& avoid = proc.cast<AvoidFP>();
pdman.set4f(fColorAndTolUni,
SkColorGetR(avoid.opColor())/255.0f,
SkColorGetG(avoid.opColor())/255.0f,
SkColorGetB(avoid.opColor())/255.0f,
256.0f/(avoid.tol()+1.0f));
}
private:
GrGLSLProgramDataManager::UniformHandle fColorAndTolUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrGLSLFragmentProcessor* AvoidFP::onCreateGLSLInstance() const {
return new GLAvoidFP;
}
void AvoidFP::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const {
GLAvoidFP::GenKey(*this, caps, b);
}
const GrFragmentProcessor* AvoidFP::TestCreate(GrProcessorTestData* d) {
SkColor opColor = d->fRandom->nextU();
uint8_t tolerance = d->fRandom->nextBits(8);
SkAvoidXfermode::Mode mode = d->fRandom->nextBool() ? SkAvoidXfermode::kAvoidColor_Mode
: SkAvoidXfermode::kTargetColor_Mode;
SkAutoTUnref<const GrFragmentProcessor> dst(GrProcessorUnitTest::CreateChildFP(d));
return new AvoidFP(opColor, tolerance, mode, dst);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(AvoidFP);
///////////////////////////////////////////////////////////////////////////////
// Xfer Processor
///////////////////////////////////////////////////////////////////////////////
class AvoidXP : public GrXferProcessor {
public:
AvoidXP(const DstTexture* dstTexture, bool hasMixedSamples,
SkColor opColor, uint8_t tolerance, SkAvoidXfermode::Mode mode)
: INHERITED(dstTexture, true, hasMixedSamples)
, fOpColor(opColor)
, fTolerance(tolerance)
, fMode(mode) {
this->initClassID<AvoidXP>();
}
const char* name() const override { return "Avoid"; }
GrGLSLXferProcessor* createGLSLInstance() const override;
SkColor opColor() const { return fOpColor; }
uint8_t tol() const { return fTolerance; }
SkAvoidXfermode::Mode mode() const { return fMode; }
private:
GrXferProcessor::OptFlags onGetOptimizations(const GrPipelineOptimizations& optimizations,
bool doesStencilWrite,
GrColor* overrideColor,
const GrCaps& caps) const override {
return GrXferProcessor::kNone_OptFlags;
}
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const AvoidXP& xp = xpBase.cast<AvoidXP>();
return fOpColor == xp.fOpColor &&
fTolerance == xp.fTolerance &&
fMode == xp.fMode;
}
SkColor fOpColor;
uint8_t fTolerance;
SkAvoidXfermode::Mode fMode;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLAvoidXP : public GrGLSLXferProcessor {
public:
static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) {
const AvoidXP& avoid = processor.cast<AvoidXP>();
uint32_t key = SkAvoidXfermode::kTargetColor_Mode == avoid.mode() ? 1 : 0;
b->add32(key);
}
private:
void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder,
GrGLSLUniformHandler* uniformHandler,
const char* srcColor,
const char* srcCoverage,
const char* dstColor,
const char* outColor,
const char* outColorSecondary,
const GrXferProcessor& proc) override {
const AvoidXP& avoid = proc.cast<AvoidXP>();
fColorAndTolUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"colorAndTol");
const char* kColorandTolUni = uniformHandler->getUniformCStr(fColorAndTolUni);
const char* kCoverageName = "newCoverage";
// add_avoid_code emits the code needed to compute the new coverage
add_avoid_code(fragBuilder,
dstColor, srcCoverage,
kColorandTolUni, kCoverageName, avoid.mode());
// The raster implementation's quantization and behavior yield a very noticeable
// effect near zero (0.0039 = 1/256).
fragBuilder->codeAppendf("if (%s.r < 0.0039) { %s = %s; } else {",
kCoverageName, outColor, dstColor);
fragBuilder->codeAppendf("%s = %s;", outColor, srcColor ? srcColor : "vec4(1.0)");
INHERITED::DefaultCoverageModulation(fragBuilder, kCoverageName, dstColor, outColor,
outColorSecondary, proc);
fragBuilder->codeAppend("}");
}
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrXferProcessor& processor) override {
const AvoidXP& avoid = processor.cast<AvoidXP>();
pdman.set4f(fColorAndTolUni,
SkColorGetR(avoid.opColor())/255.0f,
SkColorGetG(avoid.opColor())/255.0f,
SkColorGetB(avoid.opColor())/255.0f,
256.0f/(avoid.tol()+1.0f));
};
GrGLSLProgramDataManager::UniformHandle fColorAndTolUni;
typedef GrGLSLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
void AvoidXP::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const {
GLAvoidXP::GenKey(*this, caps, b);
}
GrGLSLXferProcessor* AvoidXP::createGLSLInstance() const { return new GLAvoidXP; }
///////////////////////////////////////////////////////////////////////////////
class GrAvoidXPFactory : public GrXPFactory {
public:
static GrXPFactory* Create(SkColor opColor, uint8_t tolerance,
SkAvoidXfermode::Mode mode) {
return new GrAvoidXPFactory(opColor, tolerance, mode);
}
void getInvariantBlendedColor(const GrProcOptInfo& colorPOI,
GrXPFactory::InvariantBlendedColor* blendedColor) const override {
blendedColor->fWillBlendWithDst = true;
blendedColor->fKnownColorFlags = kNone_GrColorComponentFlags;
}
private:
GrAvoidXPFactory(SkColor opColor, uint8_t tolerance, SkAvoidXfermode::Mode mode)
: fOpColor(opColor)
, fTolerance(tolerance)
, fMode(mode) {
this->initClassID<GrAvoidXPFactory>();
}
GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
const GrPipelineOptimizations& optimizations,
bool hasMixedSamples,
const DstTexture* dstTexture) const override {
return new AvoidXP(dstTexture, hasMixedSamples, fOpColor, fTolerance, fMode);
}
bool onWillReadDstColor(const GrCaps& caps,
const GrPipelineOptimizations& optimizations,
bool hasMixedSamples) const override {
return true;
}
bool onIsEqual(const GrXPFactory& xpfBase) const override {
const GrAvoidXPFactory& xpf = xpfBase.cast<GrAvoidXPFactory>();
return fOpColor == xpf.fOpColor &&
fTolerance == xpf.fTolerance &&
fMode == xpf.fMode;
}
GR_DECLARE_XP_FACTORY_TEST;
SkColor fOpColor;
uint8_t fTolerance;
SkAvoidXfermode::Mode fMode;
typedef GrXPFactory INHERITED;
};
GR_DEFINE_XP_FACTORY_TEST(GrAvoidXPFactory);
const GrXPFactory* GrAvoidXPFactory::TestCreate(GrProcessorTestData* d) {
SkColor opColor = d->fRandom->nextU();
uint8_t tolerance = d->fRandom->nextBits(8);
SkAvoidXfermode::Mode mode = d->fRandom->nextBool() ? SkAvoidXfermode::kAvoidColor_Mode
: SkAvoidXfermode::kTargetColor_Mode;
return GrAvoidXPFactory::Create(opColor, tolerance, mode);
}
///////////////////////////////////////////////////////////////////////////////
const GrFragmentProcessor* SkAvoidXfermode::getFragmentProcessorForImageFilter(
const GrFragmentProcessor* dst) const {
return AvoidFP::Create(fOpColor, fTolerance, fMode, dst);
}
GrXPFactory* SkAvoidXfermode::asXPFactory() const {
return GrAvoidXPFactory::Create(fOpColor, fTolerance, fMode);
}
#endif
#ifndef SK_IGNORE_TO_STRING
void SkAvoidXfermode::toString(SkString* str) const {
str->append("AvoidXfermode: opColor: ");
str->appendHex(fOpColor);
str->appendf("tolerance: %d ", fTolerance);
static const char* gModeStrings[] = { "Avoid", "Target" };
str->appendf("mode: %s", gModeStrings[fMode]);
}
#endif