| /* |
| * Copyright 2010 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGr.h" |
| #include "GrBitmapTextureMaker.h" |
| #include "GrCaps.h" |
| #include "GrColorSpaceXform.h" |
| #include "GrContext.h" |
| #include "GrContextPriv.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrPaint.h" |
| #include "GrProxyProvider.h" |
| #include "GrTextureProxy.h" |
| #include "GrTypes.h" |
| #include "GrXferProcessor.h" |
| #include "SkAutoMalloc.h" |
| #include "SkBlendModePriv.h" |
| #include "SkCanvas.h" |
| #include "SkColorFilter.h" |
| #include "SkConvertPixels.h" |
| #include "SkData.h" |
| #include "SkImage_Base.h" |
| #include "SkImageInfoPriv.h" |
| #include "SkImagePriv.h" |
| #include "SkMaskFilterBase.h" |
| #include "SkMessageBus.h" |
| #include "SkMipMap.h" |
| #include "SkPM4fPriv.h" |
| #include "SkPaintPriv.h" |
| #include "SkPixelRef.h" |
| #include "SkResourceCache.h" |
| #include "SkShaderBase.h" |
| #include "SkTemplates.h" |
| #include "SkTraceEvent.h" |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrConstColorProcessor.h" |
| #include "effects/GrDitherEffect.h" |
| #include "effects/GrPorterDuffXferProcessor.h" |
| #include "effects/GrXfermodeFragmentProcessor.h" |
| |
| GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info, const GrCaps& caps) { |
| GrSurfaceDesc desc; |
| desc.fFlags = kNone_GrSurfaceFlags; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fConfig = SkImageInfo2GrPixelConfig(info, caps); |
| desc.fSampleCnt = 1; |
| return desc; |
| } |
| |
| void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) { |
| SkASSERT(key); |
| SkASSERT(imageID); |
| SkASSERT(!imageBounds.isEmpty()); |
| static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey::Builder builder(key, kImageIDDomain, 5, "Image"); |
| builder[0] = imageID; |
| builder[1] = imageBounds.fLeft; |
| builder[2] = imageBounds.fTop; |
| builder[3] = imageBounds.fRight; |
| builder[4] = imageBounds.fBottom; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| sk_sp<GrTextureProxy> GrUploadBitmapToTextureProxy(GrProxyProvider* proxyProvider, |
| const SkBitmap& bitmap, |
| SkColorSpace* dstColorSpace) { |
| if (!bitmap.peekPixels(nullptr)) { |
| return nullptr; |
| } |
| |
| SkDestinationSurfaceColorMode colorMode = dstColorSpace |
| ? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware |
| : SkDestinationSurfaceColorMode::kLegacy; |
| |
| if (!SkImageInfoIsValid(bitmap.info(), colorMode)) { |
| return nullptr; |
| } |
| |
| // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap |
| // even if it's mutable. In ddl, if the bitmap is mutable then we must make a copy since the |
| // upload of the data to the gpu can happen at anytime and the bitmap may change by then. |
| SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode |
| : kNever_SkCopyPixelsMode; |
| sk_sp<SkImage> image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); |
| |
| return proxyProvider->createTextureProxy(std::move(image), kNone_GrSurfaceFlags, 1, |
| SkBudgeted::kYes, SkBackingFit::kExact); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) { |
| class Invalidator : public SkPixelRef::GenIDChangeListener { |
| public: |
| explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {} |
| private: |
| GrUniqueKeyInvalidatedMessage fMsg; |
| |
| void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); } |
| }; |
| |
| pixelRef->addGenIDChangeListener(new Invalidator(key)); |
| } |
| |
| sk_sp<GrTextureProxy> GrCopyBaseMipMapToTextureProxy(GrContext* ctx, GrTextureProxy* baseProxy) { |
| SkASSERT(baseProxy); |
| |
| if (!ctx->caps()->isConfigCopyable(baseProxy->config())) { |
| return nullptr; |
| } |
| |
| GrProxyProvider* proxyProvider = ctx->contextPriv().proxyProvider(); |
| GrSurfaceDesc desc; |
| desc.fFlags = kNone_GrSurfaceFlags; |
| desc.fWidth = baseProxy->width(); |
| desc.fHeight = baseProxy->height(); |
| desc.fConfig = baseProxy->config(); |
| desc.fSampleCnt = 1; |
| |
| sk_sp<GrTextureProxy> proxy = |
| proxyProvider->createMipMapProxy(desc, baseProxy->origin(), SkBudgeted::kYes); |
| if (!proxy) { |
| return nullptr; |
| } |
| |
| // Copy the base layer to our proxy |
| sk_sp<SkColorSpace> colorSpace; |
| if (GrPixelConfigIsSRGB(proxy->config())) { |
| colorSpace = SkColorSpace::MakeSRGB(); |
| } |
| sk_sp<GrSurfaceContext> sContext = |
| ctx->contextPriv().makeWrappedSurfaceContext(proxy, std::move(colorSpace)); |
| SkASSERT(sContext); |
| SkAssertResult(sContext->copy(baseProxy)); |
| |
| return proxy; |
| } |
| |
| sk_sp<GrTextureProxy> GrRefCachedBitmapTextureProxy(GrContext* ctx, |
| const SkBitmap& bitmap, |
| const GrSamplerState& params, |
| SkScalar scaleAdjust[2]) { |
| // Caller doesn't care about the texture's color space (they can always get it from the bitmap) |
| return GrBitmapTextureMaker(ctx, bitmap).refTextureProxyForParams(params, nullptr, |
| nullptr, scaleAdjust); |
| } |
| |
| sk_sp<GrTextureProxy> GrMakeCachedBitmapProxy(GrProxyProvider* proxyProvider, |
| const SkBitmap& bitmap, |
| SkBackingFit fit) { |
| if (!bitmap.peekPixels(nullptr)) { |
| return nullptr; |
| } |
| |
| // In non-ddl we will always instantiate right away. Thus we never want to copy the SkBitmap |
| // even if its mutable. In ddl, if the bitmap is mutable then we must make a copy since the |
| // upload of the data to the gpu can happen at anytime and the bitmap may change by then. |
| SkCopyPixelsMode cpyMode = proxyProvider->recordingDDL() ? kIfMutable_SkCopyPixelsMode |
| : kNever_SkCopyPixelsMode; |
| sk_sp<SkImage> image = SkMakeImageFromRasterBitmap(bitmap, cpyMode); |
| |
| if (!image) { |
| return nullptr; |
| } |
| |
| return GrMakeCachedImageProxy(proxyProvider, std::move(image), fit); |
| } |
| |
| static void create_unique_key_for_image(const SkImage* image, GrUniqueKey* result) { |
| if (!image) { |
| result->reset(); // will be invalid |
| return; |
| } |
| |
| if (const SkBitmap* bm = as_IB(image)->onPeekBitmap()) { |
| if (!bm->isVolatile()) { |
| SkIPoint origin = bm->pixelRefOrigin(); |
| SkIRect subset = SkIRect::MakeXYWH(origin.fX, origin.fY, bm->width(), bm->height()); |
| GrMakeKeyFromImageID(result, bm->getGenerationID(), subset); |
| } |
| return; |
| } |
| |
| GrMakeKeyFromImageID(result, image->uniqueID(), image->bounds()); |
| } |
| |
| sk_sp<GrTextureProxy> GrMakeCachedImageProxy(GrProxyProvider* proxyProvider, |
| sk_sp<SkImage> srcImage, |
| SkBackingFit fit) { |
| sk_sp<GrTextureProxy> proxy; |
| GrUniqueKey originalKey; |
| |
| create_unique_key_for_image(srcImage.get(), &originalKey); |
| |
| if (originalKey.isValid()) { |
| proxy = proxyProvider->findOrCreateProxyByUniqueKey(originalKey, kTopLeft_GrSurfaceOrigin); |
| } |
| if (!proxy) { |
| proxy = proxyProvider->createTextureProxy(srcImage, kNone_GrSurfaceFlags, 1, |
| SkBudgeted::kYes, fit); |
| if (proxy && originalKey.isValid()) { |
| proxyProvider->assignUniqueKeyToProxy(originalKey, proxy.get()); |
| const SkBitmap* bm = as_IB(srcImage.get())->onPeekBitmap(); |
| // When recording DDLs we do not want to install change listeners because doing |
| // so isn't threadsafe. |
| if (bm && !proxyProvider->recordingDDL()) { |
| GrInstallBitmapUniqueKeyInvalidator(originalKey, bm->pixelRef()); |
| } |
| } |
| } |
| |
| return proxy; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrColor4f SkColorToPremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { |
| // We want to premultiply after linearizing, so this is easy: |
| return SkColorToUnpremulGrColor4f(c, colorSpaceInfo).premul(); |
| } |
| |
| GrColor4f SkColorToPremulGrColor4fLegacy(SkColor c) { |
| return GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)).premul(); |
| } |
| |
| GrColor4f SkColorToUnpremulGrColor4f(SkColor c, const GrColorSpaceInfo& colorSpaceInfo) { |
| GrColor4f color; |
| if (colorSpaceInfo.colorSpace()) { |
| // SkColor4f::FromColor does sRGB -> Linear |
| color = GrColor4f::FromSkColor4f(SkColor4f::FromColor(c)); |
| } else { |
| // GrColor4f::FromGrColor just multiplies by 1/255 |
| color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c)); |
| } |
| |
| if (auto* xform = colorSpaceInfo.colorSpaceXformFromSRGB()) { |
| color = xform->clampedXform(color); |
| } |
| |
| return color; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrPixelConfig SkImageInfo2GrPixelConfig(const SkColorType type, SkColorSpace* cs, |
| const GrCaps& caps) { |
| switch (type) { |
| case kUnknown_SkColorType: |
| return kUnknown_GrPixelConfig; |
| case kAlpha_8_SkColorType: |
| return kAlpha_8_GrPixelConfig; |
| case kRGB_565_SkColorType: |
| return kRGB_565_GrPixelConfig; |
| case kARGB_4444_SkColorType: |
| return kRGBA_4444_GrPixelConfig; |
| case kRGBA_8888_SkColorType: |
| return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) |
| ? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig; |
| // TODO: We're checking for srgbSupport, but we can then end up picking sBGRA as our pixel |
| // config (which may not be supported). We need a better test here. |
| case kRGB_888x_SkColorType: |
| return kRGB_888_GrPixelConfig; |
| case kBGRA_8888_SkColorType: |
| return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB()) |
| ? kSBGRA_8888_GrPixelConfig : kBGRA_8888_GrPixelConfig; |
| case kRGBA_1010102_SkColorType: |
| return kRGBA_1010102_GrPixelConfig; |
| case kRGB_101010x_SkColorType: |
| return kUnknown_GrPixelConfig; |
| case kGray_8_SkColorType: |
| return kGray_8_GrPixelConfig; |
| case kRGBA_F16_SkColorType: |
| return kRGBA_half_GrPixelConfig; |
| } |
| SkASSERT(0); // shouldn't get here |
| return kUnknown_GrPixelConfig; |
| } |
| |
| GrPixelConfig SkImageInfo2GrPixelConfig(const SkImageInfo& info, const GrCaps& caps) { |
| return SkImageInfo2GrPixelConfig(info.colorType(), info.colorSpace(), caps); |
| } |
| |
| bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) { |
| SkColorType ct = GrColorTypeToSkColorType(GrPixelConfigToColorType(config)); |
| if (kUnknown_SkColorType != ct) { |
| if (ctOut) { |
| *ctOut = ct; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| GrPixelConfig GrRenderableConfigForColorSpace(const SkColorSpace* colorSpace) { |
| if (!colorSpace) { |
| return kRGBA_8888_GrPixelConfig; |
| } else if (colorSpace->gammaIsLinear()) { |
| return kRGBA_half_GrPixelConfig; |
| } else if (colorSpace->gammaCloseToSRGB()) { |
| return kSRGBA_8888_GrPixelConfig; |
| } else { |
| SkDEBUGFAIL("No renderable config exists for color space with strange gamma"); |
| return kUnknown_GrPixelConfig; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| static inline bool blend_requires_shader(const SkBlendMode mode) { |
| return SkBlendMode::kDst != mode; |
| } |
| |
| static inline bool skpaint_to_grpaint_impl(GrContext* context, |
| const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| std::unique_ptr<GrFragmentProcessor>* shaderProcessor, |
| SkBlendMode* primColorMode, |
| GrPaint* grPaint) { |
| grPaint->setAllowSRGBInputs(colorSpaceInfo.isGammaCorrect()); |
| |
| // Convert SkPaint color to 4f format, including optional linearizing and gamut conversion. |
| GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), colorSpaceInfo); |
| |
| const GrFPArgs fpArgs(context, &viewM, skPaint.getFilterQuality(), &colorSpaceInfo); |
| |
| // Setup the initial color considering the shader, the SkPaint color, and the presence or not |
| // of per-vertex colors. |
| std::unique_ptr<GrFragmentProcessor> shaderFP; |
| if (!primColorMode || blend_requires_shader(*primColorMode)) { |
| if (shaderProcessor) { |
| shaderFP = std::move(*shaderProcessor); |
| } else if (const auto* shader = as_SB(skPaint.getShader())) { |
| shaderFP = shader->asFragmentProcessor(fpArgs); |
| if (!shaderFP) { |
| return false; |
| } |
| } |
| } |
| |
| // Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is |
| // a known constant value. In that case we can simply apply a color filter during this |
| // conversion without converting the color filter to a GrFragmentProcessor. |
| bool applyColorFilterToPaintColor = false; |
| if (shaderFP) { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the shader color. The shader sees |
| // the opaque paint color. The shader's output is blended using the provided mode by |
| // the primitive color. The blended color is then modulated by the paint's alpha. |
| |
| // The geometry processor will insert the primitive color to start the color chain, so |
| // the GrPaint color will be ignored. |
| |
| GrColor4f shaderInput = origColor.opaque(); |
| shaderFP = GrFragmentProcessor::OverrideInput(std::move(shaderFP), shaderInput); |
| shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP), |
| *primColorMode); |
| |
| // The above may return null if compose results in a pass through of the prim color. |
| if (shaderFP) { |
| grPaint->addColorFragmentProcessor(std::move(shaderFP)); |
| } |
| |
| // We can ignore origColor here - alpha is unchanged by gamma |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all |
| // color channels. It's value should be treated as the same in ANY color space. |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| GrColor4f::FromGrColor(paintAlpha), |
| GrConstColorProcessor::InputMode::kModulateRGBA)); |
| } |
| } else { |
| // The shader's FP sees the paint unpremul color |
| grPaint->setColor4f(origColor); |
| grPaint->addColorFragmentProcessor(std::move(shaderFP)); |
| } |
| } else { |
| if (primColorMode) { |
| // There is a blend between the primitive color and the paint color. The blend considers |
| // the opaque paint color. The paint's alpha is applied to the post-blended color. |
| auto processor = GrConstColorProcessor::Make(origColor.opaque(), |
| GrConstColorProcessor::InputMode::kIgnore); |
| processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor), |
| *primColorMode); |
| if (processor) { |
| grPaint->addColorFragmentProcessor(std::move(processor)); |
| } |
| |
| grPaint->setColor4f(origColor.opaque()); |
| |
| // We can ignore origColor here - alpha is unchanged by gamma |
| GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor()); |
| if (GrColor_WHITE != paintAlpha) { |
| // No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all |
| // color channels. It's value should be treated as the same in ANY color space. |
| grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make( |
| GrColor4f::FromGrColor(paintAlpha), |
| GrConstColorProcessor::InputMode::kModulateRGBA)); |
| } |
| } else { |
| // No shader, no primitive color. |
| grPaint->setColor4f(origColor.premul()); |
| applyColorFilterToPaintColor = true; |
| } |
| } |
| |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (colorFilter) { |
| if (applyColorFilterToPaintColor) { |
| // If we're in legacy mode, we *must* avoid using the 4f version of the color filter, |
| // because that will combine with the linearized version of the stored color. |
| if (colorSpaceInfo.isGammaCorrect()) { |
| grPaint->setColor4f(GrColor4f::FromSkColor4f( |
| colorFilter->filterColor4f(origColor.toSkColor4f())).premul()); |
| } else { |
| grPaint->setColor4f(SkColorToPremulGrColor4fLegacy( |
| colorFilter->filterColor(skPaint.getColor()))); |
| } |
| } else { |
| auto cfFP = colorFilter->asFragmentProcessor(context, colorSpaceInfo); |
| if (cfFP) { |
| grPaint->addColorFragmentProcessor(std::move(cfFP)); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| SkMaskFilterBase* maskFilter = as_MFB(skPaint.getMaskFilter()); |
| if (maskFilter) { |
| if (auto mfFP = maskFilter->asFragmentProcessor(fpArgs)) { |
| grPaint->addCoverageFragmentProcessor(std::move(mfFP)); |
| } |
| } |
| |
| // When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on |
| // the GrPaint to also be null (also kSrcOver). |
| SkASSERT(!grPaint->getXPFactory()); |
| if (!skPaint.isSrcOver()) { |
| grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode())); |
| } |
| |
| #ifndef SK_IGNORE_GPU_DITHER |
| // Conservative default, in case GrPixelConfigToColorType() fails. |
| SkColorType ct = SkColorType::kRGB_565_SkColorType; |
| GrPixelConfigToColorType(colorSpaceInfo.config(), &ct); |
| if (SkPaintPriv::ShouldDither(skPaint, ct) && grPaint->numColorFragmentProcessors() > 0 && |
| !colorSpaceInfo.isGammaCorrect()) { |
| auto ditherFP = GrDitherEffect::Make(colorSpaceInfo.config()); |
| if (ditherFP) { |
| grPaint->addColorFragmentProcessor(std::move(ditherFP)); |
| } |
| } |
| #endif |
| return true; |
| } |
| |
| bool SkPaintToGrPaint(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& skPaint, const SkMatrix& viewM, GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, nullptr, |
| grPaint); |
| } |
| |
| /** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */ |
| bool SkPaintToGrPaintReplaceShader(GrContext* context, |
| const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& skPaint, |
| std::unique_ptr<GrFragmentProcessor> shaderFP, |
| GrPaint* grPaint) { |
| if (!shaderFP) { |
| return false; |
| } |
| return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), &shaderFP, |
| nullptr, grPaint); |
| } |
| |
| /** Ignores the SkShader (if any) on skPaint. */ |
| bool SkPaintToGrPaintNoShader(GrContext* context, |
| const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& skPaint, |
| GrPaint* grPaint) { |
| // Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced. |
| std::unique_ptr<GrFragmentProcessor> nullShaderFP(nullptr); |
| return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, SkMatrix::I(), &nullShaderFP, |
| nullptr, grPaint); |
| } |
| |
| /** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must |
| be setup as a vertex attribute using the specified SkBlendMode. */ |
| bool SkPaintToGrPaintWithXfermode(GrContext* context, |
| const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& skPaint, |
| const SkMatrix& viewM, |
| SkBlendMode primColorMode, |
| GrPaint* grPaint) { |
| return skpaint_to_grpaint_impl(context, colorSpaceInfo, skPaint, viewM, nullptr, &primColorMode, |
| grPaint); |
| } |
| |
| bool SkPaintToGrPaintWithTexture(GrContext* context, |
| const GrColorSpaceInfo& colorSpaceInfo, |
| const SkPaint& paint, |
| const SkMatrix& viewM, |
| std::unique_ptr<GrFragmentProcessor> fp, |
| bool textureIsAlphaOnly, |
| GrPaint* grPaint) { |
| std::unique_ptr<GrFragmentProcessor> shaderFP; |
| if (textureIsAlphaOnly) { |
| if (const auto* shader = as_SB(paint.getShader())) { |
| shaderFP = shader->asFragmentProcessor(GrFPArgs( |
| context, &viewM, nullptr, paint.getFilterQuality(), &colorSpaceInfo)); |
| if (!shaderFP) { |
| return false; |
| } |
| std::unique_ptr<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) }; |
| shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2); |
| } else { |
| shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp)); |
| } |
| } else { |
| shaderFP = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp)); |
| } |
| |
| return SkPaintToGrPaintReplaceShader(context, colorSpaceInfo, paint, std::move(shaderFP), |
| grPaint); |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality, |
| const SkMatrix& viewM, |
| const SkMatrix& localM, |
| bool sharpenMipmappedTextures, |
| bool* doBicubic) { |
| *doBicubic = false; |
| GrSamplerState::Filter textureFilterMode; |
| switch (paintFilterQuality) { |
| case kNone_SkFilterQuality: |
| textureFilterMode = GrSamplerState::Filter::kNearest; |
| break; |
| case kLow_SkFilterQuality: |
| textureFilterMode = GrSamplerState::Filter::kBilerp; |
| break; |
| case kMedium_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| // With sharp mips, we bias lookups by -0.5. That means our final LOD is >= 0 until the |
| // computed LOD is >= 0.5. At what scale factor does a texture get an LOD of 0.5? |
| // |
| // Want: 0 = log2(1/s) - 0.5 |
| // 0.5 = log2(1/s) |
| // 2^0.5 = 1/s |
| // 1/2^0.5 = s |
| // 2^0.5/2 = s |
| SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1; |
| if (matrix.getMinScale() < mipScale) { |
| textureFilterMode = GrSamplerState::Filter::kMipMap; |
| } else { |
| // Don't trigger MIP level generation unnecessarily. |
| textureFilterMode = GrSamplerState::Filter::kBilerp; |
| } |
| break; |
| } |
| case kHigh_SkFilterQuality: { |
| SkMatrix matrix; |
| matrix.setConcat(viewM, localM); |
| *doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode); |
| break; |
| } |
| default: |
| // Should be unreachable. If not, fall back to mipmaps. |
| textureFilterMode = GrSamplerState::Filter::kMipMap; |
| break; |
| |
| } |
| return textureFilterMode; |
| } |