blob: 83087f46945964e573c2289b7cf17f8b793e60bd [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrGLStencilBuffer.h"
#include "GrTypes.h"
#include "SkTemplates.h"
static const GrGLuint GR_MAX_GLUINT = ~0;
static const GrGLint GR_INVAL_GLINT = ~0;
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
// we use a spare texture unit to avoid
// mucking with the state of any of the stages.
static const int SPARE_TEX_UNIT = GrDrawState::kNumStages;
#define SKIP_CACHE_CHECK true
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_BlendCoeff);
GR_STATIC_ASSERT(1 == kOne_BlendCoeff);
GR_STATIC_ASSERT(2 == kSC_BlendCoeff);
GR_STATIC_ASSERT(3 == kISC_BlendCoeff);
GR_STATIC_ASSERT(4 == kDC_BlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_BlendCoeff);
GR_STATIC_ASSERT(6 == kSA_BlendCoeff);
GR_STATIC_ASSERT(7 == kISA_BlendCoeff);
GR_STATIC_ASSERT(8 == kDA_BlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_BlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_BlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_BlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_BlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_BlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_BlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_BlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_BlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_BlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture,
GrSamplerState::SampleMode mode,
GrMatrix* matrix) {
GrAssert(NULL != texture);
GrAssert(NULL != matrix);
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
GrMatrix invY;
invY.setAll(GR_Scalar1, 0, 0,
0, -GR_Scalar1, GR_Scalar1,
0, 0, GrMatrix::I()[8]);
matrix->postConcat(invY);
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
}
bool GrGpuGL::TextureMatrixIsIdentity(const GrGLTexture* texture,
const GrSamplerState& sampler) {
GrAssert(NULL != texture);
if (!sampler.getMatrix().isIdentity()) {
return false;
}
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
return false;
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
static bool gPrintStartupSpew;
static bool fbo_test(const GrGLInterface* gl, int w, int h) {
GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
GrGLuint testFBO;
GR_GL_CALL(gl, GenFramebuffers(1, &testFBO));
GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO));
GrGLuint testRTTex;
GR_GL_CALL(gl, GenTextures(1, &testRTTex));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, testRTTex));
// some implementations require texture to be mip-map complete before
// FBO with level 0 bound as color attachment will be framebuffer complete.
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
GR_GL_NEAREST));
GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h,
0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL));
GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0));
GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D, testRTTex, 0));
GrGLenum status;
GR_GL_CALL_RET(gl, status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GR_GL_CALL(gl, DeleteFramebuffers(1, &testFBO));
GR_GL_CALL(gl, DeleteTextures(1, &testRTTex));
return status == GR_GL_FRAMEBUFFER_COMPLETE;
}
GrGpuGL::GrGpuGL(const GrGLInterface* gl, GrGLBinding glBinding) {
fPrintedCaps = false;
gl->ref();
fGL = gl;
fGLBinding = glBinding;
switch (glBinding) {
case kDesktop_GrGLBinding:
GrAssert(gl->supportsDesktop());
break;
case kES2_GrGLBinding:
GrAssert(gl->supportsES2());
break;
default:
GrCrash("Expect exactly one valid GL binding bit to be in use.");
}
GrGLClearErr(fGL);
const GrGLubyte* ext;
GL_CALL_RET(ext, GetString(GR_GL_EXTENSIONS));
if (gPrintStartupSpew) {
const GrGLubyte* vendor;
const GrGLubyte* renderer;
const GrGLubyte* version;
GL_CALL_RET(vendor, GetString(GR_GL_VENDOR));
GL_CALL_RET(renderer, GetString(GR_GL_RENDERER));
GL_CALL_RET(version, GetString(GR_GL_VERSION));
GrPrintf("------------------------- create GrGpuGL %p --------------\n",
this);
GrPrintf("------ VENDOR %s\n", vendor);
GrPrintf("------ RENDERER %s\n", renderer);
GrPrintf("------ VERSION %s\n", version);
GrPrintf("------ EXTENSIONS\n %s \n", ext);
}
fGLVersion = GrGLGetVersion(gl);
GrAssert(0 != fGLVersion);
fExtensionString = (const char*) ext;
this->resetDirtyFlags();
this->initCaps();
fLastSuccessfulStencilFmtIdx = 0;
}
GrGpuGL::~GrGpuGL() {
// This must be called by before the GrDrawTarget destructor
this->releaseGeometry();
// This subclass must do this before the base class destructor runs
// since we will unref the GrGLInterface.
this->releaseResources();
fGL->unref();
}
///////////////////////////////////////////////////////////////////////////////
static const GrGLuint kUnknownBitCount = ~0;
void GrGpuGL::initCaps() {
GrGLint maxTextureUnits;
// check FS and fixed-function texture unit limits
// we only use textures in the fragment stage currently.
// checks are > to make sure we have a spare unit.
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > GrDrawState::kNumStages);
if (kES2_GrGLBinding != this->glBinding()) {
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_UNITS, &maxTextureUnits);
GrAssert(maxTextureUnits > GrDrawState::kNumStages);
}
if (kES2_GrGLBinding == this->glBinding()) {
GR_GL_GetIntegerv(fGL, GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&fGLCaps.fMaxFragmentUniformVectors);
} else if (kDesktop_GrGLBinding != this->glBinding()) {
GrGLint max;
GR_GL_GetIntegerv(fGL, GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max);
fGLCaps.fMaxFragmentUniformVectors = max / 4;
} else {
fGLCaps.fMaxFragmentUniformVectors = 16;
}
GrGLint numFormats;
GR_GL_GetIntegerv(fGL, GR_GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numFormats);
SkAutoSTMalloc<10, GrGLint> formats(numFormats);
GR_GL_GetIntegerv(fGL, GR_GL_COMPRESSED_TEXTURE_FORMATS, formats);
for (int i = 0; i < numFormats; ++i) {
if (formats[i] == GR_GL_PALETTE8_RGBA8) {
fCaps.f8BitPaletteSupport = true;
break;
}
}
if (kDesktop_GrGLBinding == this->glBinding()) {
// we could also look for GL_ATI_separate_stencil extension or
// GL_EXT_stencil_two_side but they use different function signatures
// than GL2.0+ (and than each other).
fCaps.fTwoSidedStencilSupport = (fGLVersion >= GR_GL_VER(2,0));
// supported on GL 1.4 and higher or by extension
fCaps.fStencilWrapOpsSupport = (fGLVersion >= GR_GL_VER(1,4)) ||
this->hasExtension("GL_EXT_stencil_wrap");
} else {
// ES 2 has two sided stencil and stencil wrap
fCaps.fTwoSidedStencilSupport = true;
fCaps.fStencilWrapOpsSupport = true;
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fRGBA8RenderbufferSupport = true;
} else {
fGLCaps.fRGBA8RenderbufferSupport =
this->hasExtension("GL_OES_rgb8_rgba8") ||
this->hasExtension("GL_ARM_rgba8");
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fBGRAFormatSupport = this->glVersion() >= GR_GL_VER(1,2) ||
this->hasExtension("GL_EXT_bgra");
} else {
bool hasBGRAExt = false;
if (this->hasExtension("GL_APPLE_texture_format_BGRA8888")) {
fGLCaps.fBGRAFormatSupport = true;
} else if (this->hasExtension("GL_EXT_texture_format_BGRA8888")) {
fGLCaps.fBGRAFormatSupport = true;
fGLCaps.fBGRAIsInternalFormat = true;
}
GrAssert(fGLCaps.fBGRAFormatSupport ||
kSkia8888_PM_GrPixelConfig != kBGRA_8888_PM_GrPixelConfig);
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fTextureSwizzleSupport = this->glVersion() >= GR_GL_VER(3,3) ||
this->hasExtension("GL_ARB_texture_swizzle");
} else {
fGLCaps.fTextureSwizzleSupport = false;
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fGLCaps.fUnpackRowLengthSupport = true;
fGLCaps.fUnpackFlipYSupport = false;
fGLCaps.fPackRowLengthSupport = true;
fGLCaps.fPackFlipYSupport = false;
} else {
fGLCaps.fUnpackRowLengthSupport =this->hasExtension("GL_EXT_unpack_subimage");
fGLCaps.fUnpackFlipYSupport = this->hasExtension("GL_CHROMIUM_flipy");
// no extension for pack row length
fGLCaps.fPackRowLengthSupport = false;
fGLCaps.fPackFlipYSupport =
this->hasExtension("GL_ANGLE_pack_reverse_row_order");
}
if (kDesktop_GrGLBinding == this->glBinding()) {
fCaps.fBufferLockSupport = true; // we require VBO support and the desktop VBO
// extension includes glMapBuffer.
} else {
fCaps.fBufferLockSupport = this->hasExtension("GL_OES_mapbuffer");
}
if (kDesktop_GrGLBinding == this->glBinding()) {
if (fGLVersion >= GR_GL_VER(2,0) ||
this->hasExtension("GL_ARB_texture_non_power_of_two")) {
fCaps.fNPOTTextureTileSupport = true;
} else {
fCaps.fNPOTTextureTileSupport = false;
}
} else {
// Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only
fCaps.fNPOTTextureTileSupport = this->hasExtension("GL_OES_texture_npot");
}
fGLCaps.fTextureUsageSupport = (kES2_GrGLBinding == this->glBinding()) &&
this->hasExtension("GL_ANGLE_texture_usage");
// Tex storage is in desktop 4.2 and can be an extension to desktop or ES.
fGLCaps.fTexStorageSupport = (kDesktop_GrGLBinding == this->glBinding() &&
fGLVersion >= GR_GL_VER(4,2)) ||
this->hasExtension("GL_ARB_texture_storage") ||
this->hasExtension("GL_EXT_texture_storage");
fCaps.fHWAALineSupport = (kDesktop_GrGLBinding == this->glBinding());
////////////////////////////////////////////////////////////////////////////
// Experiments to determine limitations that can't be queried.
// TODO: Make these a preprocess that generate some compile time constants.
// TODO: probe once at startup, rather than once per context creation.
GR_GL_GetIntegerv(fGL, GR_GL_MAX_TEXTURE_SIZE, &fCaps.fMaxTextureSize);
GR_GL_GetIntegerv(fGL, GR_GL_MAX_RENDERBUFFER_SIZE, &fCaps.fMaxRenderTargetSize);
// Our render targets are always created with textures as the color
// attachment, hence this min:
fCaps.fMaxRenderTargetSize = GrMin(fCaps.fMaxTextureSize, fCaps.fMaxRenderTargetSize);
this->initFSAASupport();
this->initStencilFormats();
}
void GrGpuGL::initFSAASupport() {
// TODO: Get rid of GrAALevel and use # samples directly.
GR_STATIC_ASSERT(0 == kNone_GrAALevel);
GR_STATIC_ASSERT(1 == kLow_GrAALevel);
GR_STATIC_ASSERT(2 == kMed_GrAALevel);
GR_STATIC_ASSERT(3 == kHigh_GrAALevel);
memset(fGLCaps.fAASamples, 0, sizeof(fGLCaps.fAASamples));
fGLCaps.fMSFBOType = GLCaps::kNone_MSFBO;
if (kDesktop_GrGLBinding != this->glBinding()) {
if (this->hasExtension("GL_CHROMIUM_framebuffer_multisample")) {
// chrome's extension is equivalent to the EXT msaa
// and fbo_blit extensions.
fGLCaps.fMSFBOType = GLCaps::kDesktopEXT_MSFBO;
} else if (this->hasExtension("GL_APPLE_framebuffer_multisample")) {
fGLCaps.fMSFBOType = GLCaps::kAppleES_MSFBO;
}
} else {
if ((fGLVersion >= GR_GL_VER(3,0)) || this->hasExtension("GL_ARB_framebuffer_object")) {
fGLCaps.fMSFBOType = GLCaps::kDesktopARB_MSFBO;
} else if (this->hasExtension("GL_EXT_framebuffer_multisample") &&
this->hasExtension("GL_EXT_framebuffer_blit")) {
fGLCaps.fMSFBOType = GLCaps::kDesktopEXT_MSFBO;
}
}
if (GLCaps::kNone_MSFBO != fGLCaps.fMSFBOType) {
GrGLint maxSamples;
GR_GL_GetIntegerv(fGL, GR_GL_MAX_SAMPLES, &maxSamples);
if (maxSamples > 1 ) {
fGLCaps.fAASamples[kNone_GrAALevel] = 0;
fGLCaps.fAASamples[kLow_GrAALevel] =
GrMax(2, GrFixedFloorToInt((GR_FixedHalf) * maxSamples));
fGLCaps.fAASamples[kMed_GrAALevel] =
GrMax(2, GrFixedFloorToInt(((GR_Fixed1*3)/4) * maxSamples));
fGLCaps.fAASamples[kHigh_GrAALevel] = maxSamples;
}
}
fCaps.fFSAASupport = fGLCaps.fAASamples[kHigh_GrAALevel] > 0;
}
void GrGpuGL::initStencilFormats() {
// Build up list of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least.
// these consts are in order of most preferred to least preferred
// we don't bother with GL_STENCIL_INDEX1 or GL_DEPTH32F_STENCIL8
static const GrGLStencilBuffer::Format
// internal Format stencil bits total bits packed?
gS8 = {GR_GL_STENCIL_INDEX8, 8, 8, false},
gS16 = {GR_GL_STENCIL_INDEX16, 16, 16, false},
gD24S8 = {GR_GL_DEPTH24_STENCIL8, 8, 32, true },
gS4 = {GR_GL_STENCIL_INDEX4, 4, 4, false},
gS = {GR_GL_STENCIL_INDEX, kUnknownBitCount, kUnknownBitCount, false},
gDS = {GR_GL_DEPTH_STENCIL, kUnknownBitCount, kUnknownBitCount, true };
if (kDesktop_GrGLBinding == this->glBinding()) {
bool supportsPackedDS = fGLVersion >= GR_GL_VER(3,0) ||
this->hasExtension("GL_EXT_packed_depth_stencil") ||
this->hasExtension("GL_ARB_framebuffer_object");
// S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we
// require FBO support we can expect these are legal formats and don't
// check. These also all support the unsized GL_STENCIL_INDEX.
fGLCaps.fStencilFormats.push_back() = gS8;
fGLCaps.fStencilFormats.push_back() = gS16;
if (supportsPackedDS) {
fGLCaps.fStencilFormats.push_back() = gD24S8;
}
fGLCaps.fStencilFormats.push_back() = gS4;
if (supportsPackedDS) {
fGLCaps.fStencilFormats.push_back() = gDS;
}
} else {
// ES2 has STENCIL_INDEX8 without extensions but requires extensions
// for other formats.
// ES doesn't support using the unsized format.
fGLCaps.fStencilFormats.push_back() = gS8;
//fStencilFormats.push_back() = gS16;
if (this->hasExtension("GL_OES_packed_depth_stencil")) {
fGLCaps.fStencilFormats.push_back() = gD24S8;
}
if (this->hasExtension("GL_OES_stencil4")) {
fGLCaps.fStencilFormats.push_back() = gS4;
}
}
}
GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig config) const {
if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && GrPixelConfigIsRGBA8888(config)) {
return GrPixelConfigSwapRAndB(config);
} else {
return config;
}
}
GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig config) const {
if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && GrPixelConfigIsRGBA8888(config)) {
return GrPixelConfigSwapRAndB(config);
} else {
return config;
}
}
bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const {
return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL);
}
void GrGpuGL::onResetContext() {
if (gPrintStartupSpew && !fPrintedCaps) {
fPrintedCaps = true;
this->getCaps().print();
fGLCaps.print();
}
// We detect cases when blending is effectively off
fHWBlendDisabled = false;
GL_CALL(Enable(GR_GL_BLEND));
// we don't use the zb at all
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
GL_CALL(Disable(GR_GL_CULL_FACE));
GL_CALL(FrontFace(GR_GL_CCW));
fHWDrawState.setDrawFace(GrDrawState::kBoth_DrawFace);
GL_CALL(Disable(GR_GL_DITHER));
if (kDesktop_GrGLBinding == this->glBinding()) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
fHWAAState.fSmoothLineEnabled = false;
}
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.resetStateFlags();
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
// invalid
fActiveTextureUnitIdx = -1;
// illegal values
fHWDrawState.setBlendFunc((GrBlendCoeff)0xFF, (GrBlendCoeff)0xFF);
fHWDrawState.setBlendConstant(0x00000000);
GL_CALL(BlendColor(0,0,0,0));
fHWDrawState.setColor(GrColor_ILLEGAL);
fHWDrawState.setViewMatrix(GrMatrix::InvalidMatrix());
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
fHWDrawState.setTexture(s, NULL);
fHWDrawState.sampler(s)->setRadial2Params(-GR_ScalarMax,
-GR_ScalarMax,
true);
*fHWDrawState.sampler(s)->matrix() = GrMatrix::InvalidMatrix();
fHWDrawState.sampler(s)->setConvolutionParams(0, NULL, NULL);
}
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = false;
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fViewportRect.invalidate();
fHWDrawState.stencil()->invalidate();
fHWStencilClip = false;
fClipInStencil = false;
fHWGeometryState.fIndexBuffer = NULL;
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.setRenderTarget(NULL);
// we assume these values
if (this->glCaps().fUnpackRowLengthSupport) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().fPackRowLengthSupport) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().fUnpackFlipYSupport) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
if (this->glCaps().fPackFlipYSupport) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
GrTexture* GrGpuGL::onCreatePlatformTexture(const GrPlatformTextureDesc& desc) {
GrGLTexture::Desc glTexDesc;
if (!configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) {
return NULL;
}
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle);
glTexDesc.fOwnsID = false;
glTexDesc.fOrientation = GrGLTexture::kBottomUp_Orientation;
GrGLTexture* texture = NULL;
if (desc.fFlags & kRenderTarget_GrPlatformTextureFlag) {
GrGLRenderTarget::Desc glRTDesc;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fOwnIDs = true;
glRTDesc.fConfig = desc.fConfig;
glRTDesc.fSampleCnt = desc.fSampleCnt;
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
return NULL;
}
texture = new GrGLTexture(this, glTexDesc, glRTDesc);
} else {
texture = new GrGLTexture(this, glTexDesc);
}
if (NULL == texture) {
return NULL;
}
this->setSpareTextureUnit();
return texture;
}
GrRenderTarget* GrGpuGL::onCreatePlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) {
GrGLRenderTarget::Desc glDesc;
glDesc.fConfig = desc.fConfig;
glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle);
glDesc.fMSColorRenderbufferID = 0;
glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
glDesc.fSampleCnt = desc.fSampleCnt;
glDesc.fOwnIDs = false;
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = desc.fWidth;
viewport.fHeight = desc.fHeight;
GrRenderTarget* tgt = new GrGLRenderTarget(this, glDesc, viewport);
if (desc.fStencilBits) {
GrGLStencilBuffer::Format format;
format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat;
format.fPacked = false;
format.fStencilBits = desc.fStencilBits;
format.fTotalBits = desc.fStencilBits;
GrGLStencilBuffer* sb = new GrGLStencilBuffer(this,
0,
desc.fWidth,
desc.fHeight,
desc.fSampleCnt,
format);
tgt->setStencilBuffer(sb);
sb->unref();
}
return tgt;
}
////////////////////////////////////////////////////////////////////////////////
void GrGpuGL::onWriteTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
if (NULL == buffer) {
return;
}
GrGLTexture* glTex = static_cast<GrGLTexture*>(texture);
this->setSpareTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID()));
GrGLTexture::Desc desc;
desc.fConfig = glTex->config();
desc.fWidth = glTex->width();
desc.fHeight = glTex->height();
desc.fOrientation = glTex->orientation();
desc.fTextureID = glTex->textureID();
this->uploadTexData(desc, false,
left, top, width, height,
config, buffer, rowBytes);
}
namespace {
bool adjust_pixel_ops_params(int surfaceWidth,
int surfaceHeight,
size_t bpp,
int* left, int* top, int* width, int* height,
const void** data,
size_t* rowBytes) {
if (!*rowBytes) {
*rowBytes = *width * bpp;
}
GrIRect subRect = GrIRect::MakeXYWH(*left, *top, *width, *height);
GrIRect bounds = GrIRect::MakeWH(surfaceWidth, surfaceHeight);
if (!subRect.intersect(bounds)) {
return false;
}
*data = reinterpret_cast<const void*>(reinterpret_cast<intptr_t>(*data) +
(subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp);
*left = subRect.fLeft;
*top = subRect.fTop;
*width = subRect.width();
*height = subRect.height();
return true;
}
}
bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc,
bool isNewTexture,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const void* data,
size_t rowBytes) {
GrAssert(NULL != data || isNewTexture);
size_t bpp = GrBytesPerPixel(dataConfig);
if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top,
&width, &height, &data, &rowBytes)) {
return false;
}
size_t trimRowBytes = width * bpp;
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
bool useTexStorage = isNewTexture &&
this->glCaps().fTexStorageSupport;
if (useTexStorage) {
if (kDesktop_GrGLBinding == this->glBinding()) {
// 565 is not a sized internal format on desktop GL. So on desktop
// with 565 we always use an unsized internal format to let the
// system pick the best sized format to convert the 565 data to.
// Since glTexStorage only allows sized internal formats we will
// instead fallback to glTexImage2D.
useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig;
} else {
// ES doesn't allow paletted textures to be used with tex storage
useTexStorage = desc.fConfig != kIndex_8_GrPixelConfig;
}
}
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
// glTexStorage requires sized internal formats on both desktop and ES. ES
// glTexImage requires an unsized format.
if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat,
&externalFormat, &externalType)) {
return false;
}
if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) {
// paletted textures cannot be updated
return false;
}
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
bool swFlipY = false;
bool glFlipY = false;
if (NULL != data) {
if (GrGLTexture::kBottomUp_Orientation == desc.fOrientation) {
if (this->glCaps().fUnpackFlipYSupport) {
glFlipY = true;
} else {
swFlipY = true;
}
}
if (this->glCaps().fUnpackRowLengthSupport && !swFlipY) {
// can't use this for flipping, only non-neg values allowed. :(
if (rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
} else {
if (trimRowBytes != rowBytes || swFlipY) {
// copy data into our new storage, skipping the trailing bytes
size_t trimSize = height * trimRowBytes;
const char* src = (const char*)data;
if (swFlipY) {
src += (height - 1) * rowBytes;
}
char* dst = (char*)tempStorage.reset(trimSize);
for (int y = 0; y < height; y++) {
memcpy(dst, src, trimRowBytes);
if (swFlipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our copied version
data = tempStorage.get();
}
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE));
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp)));
}
bool succeeded = true;
if (isNewTexture &&
0 == left && 0 == top &&
desc.fWidth == width && desc.fHeight == height) {
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
if (useTexStorage) {
// We never resize or change formats of textures. We don't use
// mipmaps currently.
GL_ALLOC_CALL(this->glInterface(),
TexStorage2D(GR_GL_TEXTURE_2D,
1, // levels
internalFormat,
desc.fWidth, desc.fHeight));
} else {
if (GR_GL_PALETTE8_RGBA8 == internalFormat) {
GrGLsizei imageSize = desc.fWidth * desc.fHeight +
kGrColorTableSize;
GL_ALLOC_CALL(this->glInterface(),
CompressedTexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
desc.fWidth, desc.fHeight,
0, // border
imageSize,
data));
} else {
GL_ALLOC_CALL(this->glInterface(),
TexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
desc.fWidth, desc.fHeight,
0, // border
externalFormat, externalType,
data));
}
}
GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface());
if (error != GR_GL_NO_ERROR) {
succeeded = false;
} else {
// if we have data and we used TexStorage to create the texture, we
// now upload with TexSubImage.
if (NULL != data && useTexStorage) {
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType,
data));
}
}
} else {
if (swFlipY || glFlipY) {
top = desc.fHeight - (top + height);
}
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType, data));
}
if (restoreGLRowLength) {
GrAssert(this->glCaps().fUnpackRowLengthSupport);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
return succeeded;
}
bool GrGpuGL::createRenderTargetObjects(int width, int height,
GrGLuint texID,
GrGLRenderTarget::Desc* desc) {
desc->fMSColorRenderbufferID = 0;
desc->fRTFBOID = 0;
desc->fTexFBOID = 0;
desc->fOwnIDs = true;
GrGLenum status;
GrGLint err;
GrGLenum msColorFormat = 0; // suppress warning
GL_CALL(GenFramebuffers(1, &desc->fTexFBOID));
if (!desc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render
// to one and then resolve to the texture bound to the other.
if (desc->fSampleCnt > 0) {
if (GLCaps::kNone_MSFBO == fGLCaps.fMSFBOType) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &desc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID));
if (!desc->fRTFBOID ||
!desc->fMSColorRenderbufferID ||
!this->configToGLFormats(desc->fConfig,
// GLES requires sized internal formats
kES2_GrGLBinding == this->glBinding(),
&msColorFormat, NULL, NULL)) {
goto FAILED;
}
} else {
desc->fRTFBOID = desc->fTexFBOID;
}
// below here we may bind the FBO
fHWDrawState.setRenderTarget(NULL);
if (desc->fRTFBOID != desc->fTexFBOID) {
GrAssert(desc->fSampleCnt > 1);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
desc->fSampleCnt,
msColorFormat,
width, height));
err = CHECK_ALLOC_ERROR(this->glInterface());
if (err != GR_GL_NO_ERROR) {
goto FAILED;
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID));
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0));
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
return true;
FAILED:
if (desc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID));
}
if (desc->fRTFBOID != desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID));
}
if (desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// GrAssert(!"null texture");
return NULL;
}
#if GR_DEBUG
static size_t as_size_t(int x) {
return x;
}
#endif
GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc,
const void* srcData,
size_t rowBytes) {
#if GR_COLLECT_STATS
++fStats.fTextureCreateCnt;
#endif
GrGLTexture::Desc glTexDesc;
GrGLRenderTarget::Desc glRTDesc;
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fOwnsID = true;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fOwnIDs = true;
glRTDesc.fConfig = glTexDesc.fConfig;
bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit);
const Caps& caps = this->getCaps();
// We keep GrRenderTargets in GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
glTexDesc.fOrientation = renderTarget ? GrGLTexture::kBottomUp_Orientation :
GrGLTexture::kTopDown_Orientation;
GrAssert(as_size_t(desc.fAALevel) < GR_ARRAY_COUNT(fGLCaps.fAASamples));
glRTDesc.fSampleCnt = fGLCaps.fAASamples[desc.fAALevel];
if (GLCaps::kNone_MSFBO == fGLCaps.fMSFBOType &&
desc.fAALevel != kNone_GrAALevel) {
GrPrintf("AA RT requested but not supported on this platform.");
}
if (renderTarget) {
if (glTexDesc.fWidth > caps.fMaxRenderTargetSize ||
glTexDesc.fHeight > caps.fMaxRenderTargetSize) {
return return_null_texture();
}
}
GL_CALL(GenTextures(1, &glTexDesc.fTextureID));
if (renderTarget && this->glCaps().fTextureUsageSupport) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_USAGE,
GR_GL_FRAMEBUFFER_ATTACHMENT));
}
if (!glTexDesc.fTextureID) {
return return_null_texture();
}
this->setSpareTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID));
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTexture::TexParams initialTexParams;
// we only set a subset here so invalidate first
initialTexParams.invalidate();
initialTexParams.fFilter = GR_GL_NEAREST;
initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
initialTexParams.fWrapS));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
initialTexParams.fWrapT));
if (!this->uploadTexData(glTexDesc, true, 0, 0,
glTexDesc.fWidth, glTexDesc.fHeight,
desc.fConfig, srcData, rowBytes)) {
GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID));
return return_null_texture();
}
GrGLTexture* tex;
if (renderTarget) {
#if GR_COLLECT_STATS
++fStats.fRenderTargetCreateCnt;
#endif
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID));
return return_null_texture();
}
tex = new GrGLTexture(this, glTexDesc, glRTDesc);
} else {
tex = new GrGLTexture(this, glTexDesc);
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n",
glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
namespace {
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLuint rb,
GrGLStencilBuffer::Format* format) {
// we shouldn't ever know one size and not the other
GrAssert((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt,
int width, int height) {
// All internally created RTs are also textures. We don't create
// SBs for a client's standalone RT (that is RT that isnt also a texture).
GrAssert(rt->asTexture());
GrAssert(width >= rt->width());
GrAssert(height >= rt->height());
int samples = rt->numSamples();
GrGLuint sbID;
GL_CALL(GenRenderbuffers(1, &sbID));
if (!sbID) {
return false;
}
GrGLStencilBuffer* sb = NULL;
int stencilFmtCnt = fGLCaps.fStencilFormats.count();
for (int i = 0; i < stencilFmtCnt; ++i) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID));
// we start with the last stencil format that succeeded in hopes
// that we won't go through this loop more than once after the
// first (painful) stencil creation.
int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt;
const GrGLStencilBuffer::Format& sFmt = fGLCaps.fStencilFormats[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
if (samples > 1) {
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
samples,
sFmt.fInternalFormat,
width, height));
} else {
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
}
GrGLenum err = CHECK_ALLOC_ERROR(this->glInterface());
if (err == GR_GL_NO_ERROR) {
// After sized formats we attempt an unsized format and take whatever
// sizes GL gives us. In that case we query for the size.
GrGLStencilBuffer::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), sbID, &format);
sb = new GrGLStencilBuffer(this, sbID, width, height,
samples, format);
if (this->attachStencilBufferToRenderTarget(sb, rt)) {
fLastSuccessfulStencilFmtIdx = sIdx;
rt->setStencilBuffer(sb);
sb->unref();
return true;
}
sb->abandon(); // otherwise we lose sbID
sb->unref();
}
}
GL_CALL(DeleteRenderbuffers(1, &sbID));
return false;
}
bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb,
GrRenderTarget* rt) {
GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt;
GrGLuint fbo = glrt->renderFBOID();
if (NULL == sb) {
if (NULL != rt->getStencilBuffer()) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
#if GR_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
GrAssert(GR_GL_FRAMEBUFFER_COMPLETE == status);
#endif
}
return true;
} else {
GrGLStencilBuffer* glsb = (GrGLStencilBuffer*) sb;
GrGLuint rb = glsb->renderbufferID();
fHWDrawState.setRenderTarget(NULL);
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
return false;
} else {
return true;
}
}
}
////////////////////////////////////////////////////////////////////////////////
GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GL_CALL(GenBuffers(1, &id));
if (id) {
GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, id));
fHWGeometryState.fArrayPtrsDirty = true;
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ARRAY_BUFFER,
size,
NULL, // data ptr
dynamic ? GR_GL_DYNAMIC_DRAW :
GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fVertexBuffer = NULL;
return NULL;
}
GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, id,
size, dynamic);
fHWGeometryState.fVertexBuffer = vertexBuffer;
return vertexBuffer;
}
return NULL;
}
GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) {
GrGLuint id;
GL_CALL(GenBuffers(1, &id));
if (id) {
GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, id));
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ELEMENT_ARRAY_BUFFER,
size,
NULL, // data ptr
dynamic ? GR_GL_DYNAMIC_DRAW :
GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &id));
// deleting bound buffer does implicit bind to 0
fHWGeometryState.fIndexBuffer = NULL;
return NULL;
}
GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, id,
size, dynamic);
fHWGeometryState.fIndexBuffer = indexBuffer;
return indexBuffer;
}
return NULL;
}
void GrGpuGL::flushScissor(const GrIRect* rect) {
const GrDrawState& drawState = this->getDrawState();
const GrGLRenderTarget* rt =
static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget());
GrAssert(NULL != rt);
const GrGLIRect& vp = rt->getViewport();
GrGLIRect scissor;
if (NULL != rect) {
scissor.setRelativeTo(vp, rect->fLeft, rect->fTop,
rect->width(), rect->height());
if (scissor.contains(vp)) {
rect = NULL;
}
}
if (NULL != rect) {
if (fHWBounds.fScissorRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWBounds.fScissorRect = scissor;
}
if (!fHWBounds.fScissorEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = true;
}
} else {
if (fHWBounds.fScissorEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
}
}
void GrGpuGL::onClear(const GrIRect* rect, GrColor color) {
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
// parent class should never let us get here with no RT
GrAssert(NULL != rt);
GrIRect clippedRect;
if (NULL != rect) {
// flushScissor expects rect to be clipped to the target.
clippedRect = *rect;
GrIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height());
if (clippedRect.intersect(rtRect)) {
rect = &clippedRect;
} else {
return;
}
}
this->flushRenderTarget(rect);
this->flushScissor(rect);
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
if (GrPixelConfigIsUnpremultiplied(rt->config())) {
scaleRGB *= a;
}
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWDrawState.disableState(GrDrawState::kNoColorWrites_StateBit);
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGpuGL::clearStencil() {
if (NULL == this->getDrawState().getRenderTarget()) {
return;
}
this->flushRenderTarget(&GrIRect::EmptyIRect());
if (fHWBounds.fScissorEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWBounds.fScissorEnabled = false;
}
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.stencil()->invalidate();
}
void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) {
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
GrAssert(NULL != rt);
// this should only be called internally when we know we have a
// stencil buffer.
GrAssert(NULL != rt->getStencilBuffer());
GrGLint stencilBitCount = rt->getStencilBuffer()->bits();
#if 0
GrAssert(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideClip) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
this->flushRenderTarget(&GrIRect::EmptyIRect());
this->flushScissor(&rect);
GL_CALL(StencilMask(clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWDrawState.stencil()->invalidate();
}
void GrGpuGL::onForceRenderTargetFlush() {
this->flushRenderTarget(&GrIRect::EmptyIRect());
}
bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
int left, int top,
int width, int height,
GrPixelConfig config,
size_t rowBytes) const {
// if GL can do the flip then we'll never pay for it.
if (this->glCaps().fPackFlipYSupport) {
return false;
}
// If we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
if (this->glCaps().fPackRowLengthSupport) {
return true;
}
// If we have to do memcpys to handle rowBytes then y-flip is free
// Note the rowBytes might be tight to the passed in data, but if data
// gets clipped in x to the target the rowBytes will no longer be tight.
if (left >= 0 && (left + width) < renderTarget->width()) {
return 0 == rowBytes ||
GrBytesPerPixel(config) * width == rowBytes;
} else {
return false;
}
}
bool GrGpuGL::onReadPixels(GrRenderTarget* target,
int left, int top,
int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes,
bool invertY) {
GrGLenum format;
GrGLenum type;
if (!this->configToGLFormats(config, false, NULL, &format, &type)) {
return false;
}
size_t bpp = GrBytesPerPixel(config);
if (!adjust_pixel_ops_params(target->width(), target->height(), bpp,
&left, &top, &width, &height,
const_cast<const void**>(&buffer),
&rowBytes)) {
return false;
}
// resolve the render target if necessary
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target);
GrDrawState::AutoRenderTargetRestore artr;
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
artr.set(this->drawState(), target);
this->flushRenderTarget(&GrIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->resolveRenderTarget(tgt);
// we don't track the state of the READ FBO ID.
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
tgt->textureFBOID()));
break;
default:
GrCrash("Unknown resolve type");
}
const GrGLIRect& glvp = tgt->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height);
size_t tightRowBytes = bpp * width;
if (0 == rowBytes) {
rowBytes = tightRowBytes;
}
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().fPackRowLengthSupport) {
GrAssert(!(rowBytes % sizeof(GrColor)));
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowBytes / sizeof(GrColor)));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
if (!invertY && this->glCaps().fPackFlipYSupport) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1));
}
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
format, type, readDst));
if (readDstRowBytes != tightRowBytes) {
GrAssert(this->glCaps().fPackRowLengthSupport);
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (!invertY && this->glCaps().fPackFlipYSupport) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0));
invertY = true;
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
GrAssert(rowBytes == readDstRowBytes);
if (!invertY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
GrAssert(readDst != buffer); GrAssert(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (!invertY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (invertY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
return true;
}
void GrGpuGL::flushRenderTarget(const GrIRect* bound) {
GrGLRenderTarget* rt =
static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget());
GrAssert(NULL != rt);
if (fHWDrawState.getRenderTarget() != rt) {
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
#if GR_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
#endif
fDirtyFlags.fRenderTargetChanged = true;
fHWDrawState.setRenderTarget(rt);
const GrGLIRect& vp = rt->getViewport();
if (fHWBounds.fViewportRect != vp) {
vp.pushToGLViewport(this->glInterface());
fHWBounds.fViewportRect = vp;
}
}
if (NULL == bound || !bound->isEmpty()) {
rt->flagAsNeedingResolve(bound);
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if GR_MAC_BUILD
#include <AGL/agl.h>
#elif GR_WIN32_BUILD
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGpuGL::onGpuDrawIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t startIndex,
uint32_t vertexCount,
uint32_t indexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrGLvoid* indices = (GrGLvoid*)(sizeof(uint16_t) * startIndex);
GrAssert(NULL != fHWGeometryState.fIndexBuffer);
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero since
// DrawElements always draws from the begining of the arrays for idx 0.
GrAssert(0 == startVertex);
GL_CALL(DrawElements(gPrimitiveType2GLMode[type], indexCount,
GR_GL_UNSIGNED_SHORT, indices));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::onGpuDrawNonIndexed(GrPrimitiveType type,
uint32_t startVertex,
uint32_t vertexCount) {
GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
GrAssert(NULL != fHWGeometryState.fVertexBuffer);
// our setupGeometry better have adjusted this to zero.
// DrawElements doesn't take an offset so we always adjus the startVertex.
GrAssert(0 == startVertex);
// pass 0 for parameter first. We have to adjust gl*Pointer() to
// account for startVertex in the DrawElements case. So we always
// rely on setupGeometry to have accounted for startVertex.
GL_CALL(DrawArrays(gPrimitiveType2GLMode[type], 0, vertexCount));
#if SWAP_PER_DRAW
glFlush();
#if GR_MAC_BUILD
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif GR_WIN32_BUILD
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
void GrGpuGL::resolveRenderTarget(GrGLRenderTarget* rt) {
if (rt->needsResolve()) {
GrAssert(GLCaps::kNone_MSFBO != fGLCaps.fMSFBOType);
GrAssert(rt->textureFBOID() != rt->renderFBOID());
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER,
rt->textureFBOID()));
#if GR_COLLECT_STATS
++fStats.fRenderTargetChngCnt;
#endif
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWDrawState.setRenderTarget(NULL);
const GrGLIRect& vp = rt->getViewport();
const GrIRect dirtyRect = rt->getResolveRect();
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height());
if (GLCaps::kAppleES_MSFBO == fGLCaps.fMSFBOType) {
// Apple's extension uses the scissor as the blit bounds.
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
GL_CALL(Scissor(r.fLeft, r.fBottom,
r.fWidth, r.fHeight));
GL_CALL(ResolveMultisampleFramebuffer());
fHWBounds.fScissorRect.invalidate();
fHWBounds.fScissorEnabled = true;
} else {
if (GLCaps::kDesktopARB_MSFBO != fGLCaps.fMSFBOType) {
// this respects the scissor during the blit, so disable it.
GrAssert(GLCaps::kDesktopEXT_MSFBO == fGLCaps.fMSFBOType);
this->flushScissor(NULL);
}
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
rt->flagAsResolved();
}
}
static const GrGLenum grToGLStencilFunc[] = {
GR_GL_ALWAYS, // kAlways_StencilFunc
GR_GL_NEVER, // kNever_StencilFunc
GR_GL_GREATER, // kGreater_StencilFunc
GR_GL_GEQUAL, // kGEqual_StencilFunc
GR_GL_LESS, // kLess_StencilFunc
GR_GL_LEQUAL, // kLEqual_StencilFunc,
GR_GL_EQUAL, // kEqual_StencilFunc,
GR_GL_NOTEQUAL, // kNotEqual_StencilFunc,
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilFunc) == kBasicStencilFuncCount);
GR_STATIC_ASSERT(0 == kAlways_StencilFunc);
GR_STATIC_ASSERT(1 == kNever_StencilFunc);
GR_STATIC_ASSERT(2 == kGreater_StencilFunc);
GR_STATIC_ASSERT(3 == kGEqual_StencilFunc);
GR_STATIC_ASSERT(4 == kLess_StencilFunc);
GR_STATIC_ASSERT(5 == kLEqual_StencilFunc);
GR_STATIC_ASSERT(6 == kEqual_StencilFunc);
GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc);
static const GrGLenum grToGLStencilOp[] = {
GR_GL_KEEP, // kKeep_StencilOp
GR_GL_REPLACE, // kReplace_StencilOp
GR_GL_INCR_WRAP, // kIncWrap_StencilOp
GR_GL_INCR, // kIncClamp_StencilOp
GR_GL_DECR_WRAP, // kDecWrap_StencilOp
GR_GL_DECR, // kDecClamp_StencilOp
GR_GL_ZERO, // kZero_StencilOp
GR_GL_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilOp) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
void GrGpuGL::flushStencil() {
const GrDrawState& drawState = this->getDrawState();
const GrStencilSettings* settings = &drawState.getStencil();
// use stencil for clipping if clipping is enabled and the clip
// has been written into the stencil.
bool stencilClip = fClipInStencil && drawState.isClipState();
bool drawClipToStencil =
drawState.isStateFlagEnabled(kModifyStencilClip_StateBit);
bool stencilChange = (fHWDrawState.getStencil() != *settings) ||
(fHWStencilClip != stencilClip) ||
(fHWDrawState.isStateFlagEnabled(kModifyStencilClip_StateBit) !=
drawClipToStencil);
if (stencilChange) {
// we can't simultaneously perform stencil-clipping and
// modify the stencil clip
GrAssert(!stencilClip || !drawClipToStencil);
if (settings->isDisabled()) {
if (stencilClip) {
settings = &gClipStencilSettings;
}
}
if (settings->isDisabled()) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
} else {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
#if GR_DEBUG
if (!this->getCaps().fStencilWrapOpsSupport) {
GrAssert(settings->frontPassOp() != kIncWrap_StencilOp);
GrAssert(settings->frontPassOp() != kDecWrap_StencilOp);
GrAssert(settings->frontFailOp() != kIncWrap_StencilOp);
GrAssert(settings->backFailOp() != kDecWrap_StencilOp);
GrAssert(settings->backPassOp() != kIncWrap_StencilOp);
GrAssert(settings->backPassOp() != kDecWrap_StencilOp);
GrAssert(settings->backFailOp() != kIncWrap_StencilOp);
GrAssert(settings->frontFailOp() != kDecWrap_StencilOp);
}
#endif
int stencilBits = 0;
GrStencilBuffer* stencilBuffer =
drawState.getRenderTarget()->getStencilBuffer();
if (NULL != stencilBuffer) {
stencilBits = stencilBuffer->bits();
}
// TODO: dynamically attach a stencil buffer
GrAssert(stencilBits || settings->isDisabled());
GrGLuint clipStencilMask = 0;
GrGLuint userStencilMask = ~0;
if (stencilBits > 0) {
clipStencilMask = 1 << (stencilBits - 1);
userStencilMask = clipStencilMask - 1;
}
unsigned int frontRef = settings->frontFuncRef();
unsigned int frontMask = settings->frontFuncMask();
unsigned int frontWriteMask = settings->frontWriteMask();
GrGLenum frontFunc;
if (drawClipToStencil) {
GrAssert(settings->frontFunc() < kBasicStencilFuncCount);
frontFunc = grToGLStencilFunc[settings->frontFunc()];
} else {
frontFunc = grToGLStencilFunc[ConvertStencilFunc(
stencilClip, settings->frontFunc())];
ConvertStencilFuncAndMask(settings->frontFunc(),
stencilClip,
clipStencilMask,
userStencilMask,
&frontRef,
&frontMask);
frontWriteMask &= userStencilMask;
}
GrAssert((size_t)
settings->frontFailOp() < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->frontPassOp() < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->backFailOp() < GR_ARRAY_COUNT(grToGLStencilOp));
GrAssert((size_t)
settings->backPassOp() < GR_ARRAY_COUNT(grToGLStencilOp));
if (this->getCaps().fTwoSidedStencilSupport) {
GrGLenum backFunc;
unsigned int backRef = settings->backFuncRef();
unsigned int backMask = settings->backFuncMask();
unsigned int backWriteMask = settings->backWriteMask();
if (drawClipToStencil) {
GrAssert(settings->backFunc() < kBasicStencilFuncCount);
backFunc = grToGLStencilFunc[settings->backFunc()];
} else {
backFunc = grToGLStencilFunc[ConvertStencilFunc(
stencilClip, settings->backFunc())];
ConvertStencilFuncAndMask(settings->backFunc(),
stencilClip,
clipStencilMask,
userStencilMask,
&backRef,
&backMask);
backWriteMask &= userStencilMask;
}
GL_CALL(StencilFuncSeparate(GR_GL_FRONT, frontFunc,
frontRef, frontMask));
GL_CALL(StencilMaskSeparate(GR_GL_FRONT, frontWriteMask));
GL_CALL(StencilFuncSeparate(GR_GL_BACK, backFunc,
backRef, backMask));
GL_CALL(StencilMaskSeparate(GR_GL_BACK, backWriteMask));
GL_CALL(StencilOpSeparate(GR_GL_FRONT,
grToGLStencilOp[settings->frontFailOp()],
grToGLStencilOp[settings->frontPassOp()],
grToGLStencilOp[settings->frontPassOp()]));
GL_CALL(StencilOpSeparate(GR_GL_BACK,
grToGLStencilOp[settings->backFailOp()],
grToGLStencilOp[settings->backPassOp()],
grToGLStencilOp[settings->backPassOp()]));
} else {
GL_CALL(StencilFunc(frontFunc, frontRef, frontMask));
GL_CALL(StencilMask(frontWriteMask));
GL_CALL(StencilOp(grToGLStencilOp[settings->frontFailOp()],
grToGLStencilOp[settings->frontPassOp()],
grToGLStencilOp[settings->frontPassOp()]));
}
}
*fHWDrawState.stencil() = *settings;
fHWStencilClip = stencilClip;
}
}
void GrGpuGL::flushAAState(GrPrimitiveType type) {
const GrRenderTarget* rt = this->getDrawState().getRenderTarget();
if (kDesktop_GrGLBinding == this->glBinding()) {
// ES doesn't support toggling GL_MULTISAMPLE and doesn't have
// smooth lines.
// we prefer smooth lines over multisampled lines
// msaa should be disabled if drawing smooth lines.
if (GrIsPrimTypeLines(type)) {
bool smooth = this->willUseHWAALines();
if (!fHWAAState.fSmoothLineEnabled && smooth) {
GL_CALL(Enable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = true;
} else if (fHWAAState.fSmoothLineEnabled && !smooth) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = false;
}
if (rt->isMultisampled() &&
fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
}
} else if (rt->isMultisampled() &&
this->getDrawState().isHWAntialiasState() !=
fHWAAState.fMSAAEnabled) {
if (fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = false;
} else {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = true;
}
}
}
}
void GrGpuGL::flushBlend(GrPrimitiveType type,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff) {
if (GrIsPrimTypeLines(type) && this->willUseHWAALines()) {
if (fHWBlendDisabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendDisabled = false;
}
if (kSA_BlendCoeff != fHWDrawState.getSrcBlendCoeff() ||
kISA_BlendCoeff != fHWDrawState.getDstBlendCoeff()) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_BlendCoeff],
gXfermodeCoeff2Blend[kISA_BlendCoeff]));
fHWDrawState.setBlendFunc(kSA_BlendCoeff, kISA_BlendCoeff);
}
} else {
// any optimization to disable blending should
// have already been applied and tweaked the coeffs
// to (1, 0).
bool blendOff = kOne_BlendCoeff == srcCoeff &&
kZero_BlendCoeff == dstCoeff;
if (fHWBlendDisabled != blendOff) {
if (blendOff) {
GL_CALL(Disable(GR_GL_BLEND));
} else {
GL_CALL(Enable(GR_GL_BLEND));
}
fHWBlendDisabled = blendOff;
}
if (!blendOff) {
if (fHWDrawState.getSrcBlendCoeff() != srcCoeff ||
fHWDrawState.getDstBlendCoeff() != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWDrawState.setBlendFunc(srcCoeff, dstCoeff);
}
GrColor blendConst = fCurrDrawState.getBlendConstant();
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
fHWDrawState.getBlendConstant() != blendConst) {
float c[] = {
GrColorUnpackR(blendConst) / 255.f,
GrColorUnpackG(blendConst) / 255.f,
GrColorUnpackB(blendConst) / 255.f,
GrColorUnpackA(blendConst) / 255.f
};
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWDrawState.setBlendConstant(blendConst);
}
}
}
}
namespace {
unsigned gr_to_gl_filter(GrSamplerState::Filter filter) {
switch (filter) {
case GrSamplerState::kBilinear_Filter:
case GrSamplerState::k4x4Downsample_Filter:
return GR_GL_LINEAR;
case GrSamplerState::kNearest_Filter:
case GrSamplerState::kConvolution_Filter:
return GR_GL_NEAREST;
default:
GrAssert(!"Unknown filter type");
return GR_GL_LINEAR;
}
}
const GrGLenum* get_swizzle(GrPixelConfig config,
const GrSamplerState& sampler) {
if (GrPixelConfigIsAlphaOnly(config)) {
static const GrGLenum gAlphaSmear[] = { GR_GL_ALPHA, GR_GL_ALPHA,
GR_GL_ALPHA, GR_GL_ALPHA };
return gAlphaSmear;
} else if (sampler.swapsRAndB()) {
static const GrGLenum gRedBlueSwap[] = { GR_GL_BLUE, GR_GL_GREEN,
GR_GL_RED, GR_GL_ALPHA };
return gRedBlueSwap;
} else {
static const GrGLenum gStraight[] = { GR_GL_RED, GR_GL_GREEN,
GR_GL_BLUE, GR_GL_ALPHA };
return gStraight;
}
}
void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) {
// should add texparameteri to interface to make 1 instead of 4 calls here
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_R,
swizzle[0]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_G,
swizzle[1]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_B,
swizzle[2]));
GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_SWIZZLE_A,
swizzle[3]));
}
}
bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) {
GrDrawState* drawState = this->drawState();
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != drawState->getRenderTarget());
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
// bind texture and set sampler state
if (this->isStageEnabled(s)) {
GrGLTexture* nextTexture =
static_cast<GrGLTexture*>(drawState->getTexture(s));
// true for now, but maybe not with GrEffect.
GrAssert(NULL != nextTexture);
// if we created a rt/tex and rendered to it without using a
// texture and now we're texuring from the rt it will still be
// the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT =
static_cast<GrGLRenderTarget*>(nextTexture->asRenderTarget());
if (NULL != texRT) {
resolveRenderTarget(texRT);
}
if (fHWDrawState.getTexture(s) != nextTexture) {
setTextureUnit(s);
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, nextTexture->textureID()));
#if GR_COLLECT_STATS
++fStats.fTextureChngCnt;
#endif
//GrPrintf("---- bindtexture %d\n", nextTexture->textureID());
fHWDrawState.setTexture(s, nextTexture);
// The texture matrix has to compensate for texture width/height
// and NPOT-embedded-in-POT
fDirtyFlags.fTextureChangedMask |= (1 << s);
}
const GrSamplerState& sampler = drawState->getSampler(s);
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams =
nextTexture->getCachedTexParams(&timestamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
newTexParams.fFilter = gr_to_gl_filter(sampler.getFilter());
const GrGLenum* wraps = GrGLTexture::WrapMode2GLWrap();
newTexParams.fWrapS = wraps[sampler.getWrapX()];
newTexParams.fWrapT = wraps[sampler.getWrapY()];
memcpy(newTexParams.fSwizzleRGBA,
get_swizzle(nextTexture->config(), sampler),
sizeof(newTexParams.fSwizzleRGBA));
if (setAll || newTexParams.fFilter != oldTexParams.fFilter) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
newTexParams.fFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
newTexParams.fFilter));
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
setTextureUnit(s);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
newTexParams.fWrapT));
}
if (this->glCaps().fTextureSwizzleSupport &&
(setAll ||
memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
setTextureUnit(s);
set_tex_swizzle(newTexParams.fSwizzleRGBA,
this->glInterface());
}
nextTexture->setCachedTexParams(newTexParams,
this->getResetTimestamp());
}
}
GrIRect* rect = NULL;
GrIRect clipBounds;
if (drawState->isClipState() &&
fClip.hasConservativeBounds()) {
fClip.getConservativeBounds().roundOut(&clipBounds);
rect = &clipBounds;
}
this->flushRenderTarget(rect);
this->flushAAState(type);
if (drawState->isDitherState() != fHWDrawState.isDitherState()) {
if (drawState->isDitherState()) {
GL_CALL(Enable(GR_GL_DITHER));
} else {
GL_CALL(Disable(GR_GL_DITHER));
}
}
if (drawState->isColorWriteDisabled() !=
fHWDrawState.isColorWriteDisabled()) {
GrGLenum mask;
if (drawState->isColorWriteDisabled()) {
mask = GR_GL_FALSE;
} else {
mask = GR_GL_TRUE;
}
GL_CALL(ColorMask(mask, mask, mask, mask));
}
if (fHWDrawState.getDrawFace() != drawState->getDrawFace()) {
switch (fCurrDrawState.getDrawFace()) {
case GrDrawState::kCCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
break;
case GrDrawState::kCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_FRONT));
break;
case GrDrawState::kBoth_DrawFace:
GL_CALL(Disable(GR_GL_CULL_FACE));
break;
default:
GrCrash("Unknown draw face.");
}
fHWDrawState.setDrawFace(drawState->getDrawFace());
}
#if GR_DEBUG
// check for circular rendering
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrAssert(!this->isStageEnabled(s) ||
NULL == drawState->getRenderTarget() ||
NULL == drawState->getTexture(s) ||
drawState->getTexture(s)->asRenderTarget() !=
drawState->getRenderTarget());
}
#endif
this->flushStencil();
// This copy must happen after flushStencil() is called. flushStencil()
// relies on detecting when the kModifyStencilClip_StateBit state has
// changed since the last draw.
fHWDrawState.copyStateFlags(*drawState);
return true;
}
void GrGpuGL::notifyVertexBufferBind(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer != buffer) {
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = buffer;
}
}
void GrGpuGL::notifyVertexBufferDelete(const GrGLVertexBuffer* buffer) {
if (fHWGeometryState.fVertexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fVertexBuffer = NULL;
fHWGeometryState.fArrayPtrsDirty = true;
}
}
void GrGpuGL::notifyIndexBufferBind(const GrGLIndexBuffer* buffer) {
fHWGeometryState.fIndexBuffer = buffer;
}
void GrGpuGL::notifyIndexBufferDelete(const GrGLIndexBuffer* buffer) {
if (fHWGeometryState.fIndexBuffer == buffer) {
// deleting bound buffer does implied bind to 0
fHWGeometryState.fIndexBuffer = NULL;
}
}
void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) {
GrAssert(NULL != renderTarget);
GrDrawState* drawState = this->drawState();
if (drawState->getRenderTarget() == renderTarget) {
drawState->setRenderTarget(NULL);
}
if (fHWDrawState.getRenderTarget() == renderTarget) {
fHWDrawState.setRenderTarget(NULL);
}
}
void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) {
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrDrawState* drawState = this->drawState();
if (drawState->getTexture(s) == texture) {
fCurrDrawState.setTexture(s, NULL);
}
if (fHWDrawState.getTexture(s) == texture) {
// deleting bound texture does implied bind to 0
fHWDrawState.setTexture(s, NULL);
}
}
}
bool GrGpuGL::configToGLFormats(GrPixelConfig config,
bool getSizedInternalFormat,
GrGLenum* internalFormat,
GrGLenum* externalFormat,
GrGLenum* externalType) {
GrGLenum dontCare;
if (NULL == internalFormat) {
internalFormat = &dontCare;
}
if (NULL == externalFormat) {
externalFormat = &dontCare;
}
if (NULL == externalType) {
externalType = &dontCare;
}
switch (config) {
case kRGBA_8888_PM_GrPixelConfig:
case kRGBA_8888_UPM_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kBGRA_8888_PM_GrPixelConfig:
case kBGRA_8888_UPM_GrPixelConfig:
if (!fGLCaps.fBGRAFormatSupport) {
return false;
}
if (fGLCaps.fBGRAIsInternalFormat) {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_BGRA8;
} else {
*internalFormat = GR_GL_BGRA;
}
} else {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
}
*externalFormat = GR_GL_BGRA;
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kRGB_565_GrPixelConfig:
*internalFormat = GR_GL_RGB;
*externalFormat = GR_GL_RGB;
if (getSizedInternalFormat) {
if (this->glBinding() == kDesktop_GrGLBinding) {
return false;
} else {
*internalFormat = GR_GL_RGB565;
}
} else {
*internalFormat = GR_GL_RGB;
}
*externalType = GR_GL_UNSIGNED_SHORT_5_6_5;
break;
case kRGBA_4444_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA4;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
break;
case kIndex_8_GrPixelConfig:
if (this->getCaps().f8BitPaletteSupport) {
*internalFormat = GR_GL_PALETTE8_RGBA8;
// glCompressedTexImage doesn't take external params
*externalFormat = GR_GL_PALETTE8_RGBA8;
// no sized/unsized internal format distinction here
*internalFormat = GR_GL_PALETTE8_RGBA8;
// unused with CompressedTexImage
*externalType = GR_GL_UNSIGNED_BYTE;
} else {
return false;
}
break;
case kAlpha_8_GrPixelConfig:
*internalFormat = GR_GL_ALPHA;
*externalFormat = GR_GL_ALPHA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_ALPHA8;
} else {
*internalFormat = GR_GL_ALPHA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
break;
default:
return false;
}
return true;
}
void GrGpuGL::setTextureUnit(int unit) {
GrAssert(unit >= 0 && unit < GrDrawState::kNumStages);
if (fActiveTextureUnitIdx != unit) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fActiveTextureUnitIdx = unit;
}
}
void GrGpuGL::setSpareTextureUnit() {
if (fActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT));
fActiveTextureUnitIdx = SPARE_TEX_UNIT;
}
}
void GrGpuGL::resetDirtyFlags() {
Gr_bzero(&fDirtyFlags, sizeof(fDirtyFlags));
}
void GrGpuGL::setBuffers(bool indexed,
int* extraVertexOffset,
int* extraIndexOffset) {
GrAssert(NULL != extraVertexOffset);
const GeometryPoolState& geoPoolState = this->getGeomPoolState();
GrGLVertexBuffer* vbuf;
switch (this->getGeomSrc().fVertexSrc) {
case kBuffer_GeometrySrcType:
*extraVertexOffset = 0;
vbuf = (GrGLVertexBuffer*) this->getGeomSrc().fVertexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedVertices();
*extraVertexOffset = geoPoolState.fPoolStartVertex;
vbuf = (GrGLVertexBuffer*) geoPoolState.fPoolVertexBuffer;
break;
default:
vbuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != vbuf);
GrAssert(!vbuf->isLocked());
if (fHWGeometryState.fVertexBuffer != vbuf) {
GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, vbuf->bufferID()));
fHWGeometryState.fArrayPtrsDirty = true;
fHWGeometryState.fVertexBuffer = vbuf;
}
if (indexed) {
GrAssert(NULL != extraIndexOffset);
GrGLIndexBuffer* ibuf;
switch (this->getGeomSrc().fIndexSrc) {
case kBuffer_GeometrySrcType:
*extraIndexOffset = 0;
ibuf = (GrGLIndexBuffer*)this->getGeomSrc().fIndexBuffer;
break;
case kArray_GeometrySrcType:
case kReserved_GeometrySrcType:
this->finalizeReservedIndices();
*extraIndexOffset = geoPoolState.fPoolStartIndex;
ibuf = (GrGLIndexBuffer*) geoPoolState.fPoolIndexBuffer;
break;
default:
ibuf = NULL; // suppress warning
GrCrash("Unknown geometry src type!");
}
GrAssert(NULL != ibuf);
GrAssert(!ibuf->isLocked());
if (fHWGeometryState.fIndexBuffer != ibuf) {
GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, ibuf->bufferID()));
fHWGeometryState.fIndexBuffer = ibuf;
}
}
}
int GrGpuGL::getMaxEdges() const {
// FIXME: This is a pessimistic estimate based on how many other things
// want to add uniforms. This should be centralized somewhere.
return GR_CT_MIN(fGLCaps.fMaxFragmentUniformVectors - 8,
GrDrawState::kMaxEdges);
}
void GrGpuGL::GLCaps::print() const {
for (int i = 0; i < fStencilFormats.count(); ++i) {
GrPrintf("Stencil Format %d, stencil bits: %02d, total bits: %02d\n",
i,
fStencilFormats[i].fStencilBits,
fStencilFormats[i].fTotalBits);
}
GR_STATIC_ASSERT(0 == kNone_MSFBO);
GR_STATIC_ASSERT(1 == kDesktopARB_MSFBO);
GR_STATIC_ASSERT(2 == kDesktopEXT_MSFBO);
GR_STATIC_ASSERT(3 == kAppleES_MSFBO);
static const char* gMSFBOExtStr[] = {
"None",
"ARB",
"EXT",
"Apple",
};
GrPrintf("MSAA Type: %s\n", gMSFBOExtStr[fMSFBOType]);
for (int i = 0; i < (int)GR_ARRAY_COUNT(fAASamples); ++i) {
GrPrintf("AA Level %d has %d samples\n", i, fAASamples[i]);
}
GrPrintf("Max FS Uniform Vectors: %d\n", fMaxFragmentUniformVectors);
GrPrintf("Support RGBA8 Render Buffer: %s\n",
(fRGBA8RenderbufferSupport ? "YES": "NO"));
GrPrintf("BGRA is an internal format: %s\n",
(fBGRAIsInternalFormat ? "YES": "NO"));
GrPrintf("Support texture swizzle: %s\n",
(fTextureSwizzleSupport ? "YES": "NO"));
GrPrintf("Unpack Row length support: %s\n",
(fUnpackRowLengthSupport ? "YES": "NO"));
GrPrintf("Unpack Flip Y support: %s\n",
(fUnpackFlipYSupport ? "YES": "NO"));
GrPrintf("Pack Row length support: %s\n",
(fPackRowLengthSupport ? "YES": "NO"));
GrPrintf("Pack Flip Y support: %s\n",
(fPackFlipYSupport ? "YES": "NO"));
}