blob: 5bbc3dcb05884b3e04a10bb1ae31ccfd65f35c0f [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGpu_DEFINED
#define GrGpu_DEFINED
#include "GrDrawTarget.h"
#include "GrPathRendering.h"
#include "GrProgramDesc.h"
#include "SkPath.h"
class GrContext;
class GrIndexBufferAllocPool;
class GrOptDrawState;
class GrPath;
class GrPathRange;
class GrPathRenderer;
class GrPathRendererChain;
class GrPrimitiveProcessor;
class GrStencilBuffer;
class GrVertexBufferAllocPool;
class GrGpu : public SkRefCnt {
public:
/**
* Additional blend coefficients for dual source blending, not exposed
* through GrPaint/GrContext.
*/
enum ExtendedBlendCoeffs {
// source 2 refers to second output color when
// using dual source blending.
kS2C_GrBlendCoeff = kPublicGrBlendCoeffCount,
kIS2C_GrBlendCoeff,
kS2A_GrBlendCoeff,
kIS2A_GrBlendCoeff,
kTotalGrBlendCoeffCount
};
/**
* Create an instance of GrGpu that matches the specified backend. If the requested backend is
* not supported (at compile-time or run-time) this returns NULL. The context will not be
* fully constructed and should not be used by GrGpu until after this function returns.
*/
static GrGpu* Create(GrBackend, GrBackendContext, GrContext* context);
////////////////////////////////////////////////////////////////////////////
GrGpu(GrContext* context);
~GrGpu() SK_OVERRIDE;
GrContext* getContext() { return fContext; }
const GrContext* getContext() const { return fContext; }
/**
* Gets the capabilities of the draw target.
*/
const GrDrawTargetCaps* caps() const { return fCaps.get(); }
GrPathRendering* pathRendering() {
return fPathRendering.get();
}
// Called by GrContext when the underlying backend context has been destroyed.
// GrGpu should use this to ensure that no backend API calls will be made from
// here onward, including in its destructor. Subclasses should call
// INHERITED::contextAbandoned() if they override this.
virtual void contextAbandoned();
/**
* The GrGpu object normally assumes that no outsider is setting state
* within the underlying 3D API's context/device/whatever. This call informs
* the GrGpu that the state was modified and it shouldn't make assumptions
* about the state.
*/
void markContextDirty(uint32_t state = kAll_GrBackendState) {
fResetBits |= state;
}
void unimpl(const char[]);
/**
* Creates a texture object. If kRenderTarget_GrSurfaceFlag the texture can
* be used as a render target by calling GrTexture::asRenderTarget(). Not all
* pixel configs can be used as render targets. Support for configs as textures
* or render targets can be checked using GrDrawTargetCaps.
*
* @param desc describes the texture to be created.
* @param budgeted does this texture count against the resource cache budget?
* @param srcData texel data to load texture. Begins with full-size
* palette data for paletted textures. For compressed
* formats it contains the compressed pixel data. Otherwise,
* it contains width*height texels. If NULL texture data
* is uninitialized.
* @param rowBytes the number of bytes between consecutive rows. Zero
* means rows are tightly packed. This field is ignored
* for compressed formats.
*
* @return The texture object if successful, otherwise NULL.
*/
GrTexture* createTexture(const GrSurfaceDesc& desc, bool budgeted,
const void* srcData, size_t rowBytes);
/**
* Implements GrContext::wrapBackendTexture
*/
GrTexture* wrapBackendTexture(const GrBackendTextureDesc&);
/**
* Implements GrContext::wrapBackendTexture
*/
GrRenderTarget* wrapBackendRenderTarget(const GrBackendRenderTargetDesc&);
/**
* Creates a vertex buffer.
*
* @param size size in bytes of the vertex buffer
* @param dynamic hints whether the data will be frequently changed
* by either GrVertexBuffer::map() or
* GrVertexBuffer::updateData().
*
* @return The vertex buffer if successful, otherwise NULL.
*/
GrVertexBuffer* createVertexBuffer(size_t size, bool dynamic);
/**
* Creates an index buffer.
*
* @param size size in bytes of the index buffer
* @param dynamic hints whether the data will be frequently changed
* by either GrIndexBuffer::map() or
* GrIndexBuffer::updateData().
*
* @return The index buffer if successful, otherwise NULL.
*/
GrIndexBuffer* createIndexBuffer(size_t size, bool dynamic);
/**
* Creates an index buffer for instance drawing with a specific pattern.
*
* @param pattern the pattern to repeat
* @param patternSize size in bytes of the pattern
* @param reps number of times to repeat the pattern
* @param vertCount number of vertices the pattern references
* @param dynamic hints whether the data will be frequently changed
* by either GrIndexBuffer::map() or
* GrIndexBuffer::updateData().
*
* @return The index buffer if successful, otherwise NULL.
*/
GrIndexBuffer* createInstancedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
bool isDynamic = false);
/**
* Returns an index buffer that can be used to render quads.
* Six indices per quad: 0, 1, 2, 0, 2, 3, etc.
* The max number of quads can be queried using GrIndexBuffer::maxQuads().
* Draw with kTriangles_GrPrimitiveType
* @ return the quad index buffer
*/
const GrIndexBuffer* getQuadIndexBuffer() const;
/**
* Resolves MSAA.
*/
void resolveRenderTarget(GrRenderTarget* target);
/**
* Gets a preferred 8888 config to use for writing/reading pixel data to/from a surface with
* config surfaceConfig. The returned config must have at least as many bits per channel as the
* readConfig or writeConfig param.
*/
virtual GrPixelConfig preferredReadPixelsConfig(GrPixelConfig readConfig,
GrPixelConfig surfaceConfig) const {
return readConfig;
}
virtual GrPixelConfig preferredWritePixelsConfig(GrPixelConfig writeConfig,
GrPixelConfig surfaceConfig) const {
return writeConfig;
}
/**
* Called before uploading writing pixels to a GrTexture when the src pixel config doesn't
* match the texture's config.
*/
virtual bool canWriteTexturePixels(const GrTexture*, GrPixelConfig srcConfig) const = 0;
/**
* OpenGL's readPixels returns the result bottom-to-top while the skia
* API is top-to-bottom. Thus we have to do a y-axis flip. The obvious
* solution is to have the subclass do the flip using either the CPU or GPU.
* However, the caller (GrContext) may have transformations to apply and can
* simply fold in the y-flip for free. On the other hand, the subclass may
* be able to do it for free itself. For example, the subclass may have to
* do memcpys to handle rowBytes that aren't tight. It could do the y-flip
* concurrently.
*
* This function returns true if a y-flip is required to put the pixels in
* top-to-bottom order and the subclass cannot do it for free.
*
* See read pixels for the params
* @return true if calling readPixels with the same set of params will
* produce bottom-to-top data
*/
virtual bool readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
int left, int top,
int width, int height,
GrPixelConfig config,
size_t rowBytes) const = 0;
/**
* This should return true if reading a NxM rectangle of pixels from a
* render target is faster if the target has dimensons N and M and the read
* rectangle has its top-left at 0,0.
*/
virtual bool fullReadPixelsIsFasterThanPartial() const { return false; };
/**
* Reads a rectangle of pixels from a render target.
*
* @param renderTarget the render target to read from. NULL means the
* current render target.
* @param left left edge of the rectangle to read (inclusive)
* @param top top edge of the rectangle to read (inclusive)
* @param width width of rectangle to read in pixels.
* @param height height of rectangle to read in pixels.
* @param config the pixel config of the destination buffer
* @param buffer memory to read the rectangle into.
* @param rowBytes the number of bytes between consecutive rows. Zero
* means rows are tightly packed.
* @param invertY buffer should be populated bottom-to-top as opposed
* to top-to-bottom (skia's usual order)
*
* @return true if the read succeeded, false if not. The read can fail
* because of a unsupported pixel config or because no render
* target is currently set.
*/
bool readPixels(GrRenderTarget* renderTarget,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer, size_t rowBytes);
/**
* Updates the pixels in a rectangle of a texture.
*
* @param left left edge of the rectangle to write (inclusive)
* @param top top edge of the rectangle to write (inclusive)
* @param width width of rectangle to write in pixels.
* @param height height of rectangle to write in pixels.
* @param config the pixel config of the source buffer
* @param buffer memory to read pixels from
* @param rowBytes number of bytes between consecutive rows. Zero
* means rows are tightly packed.
*/
bool writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes);
/**
* Clear the passed in render target. Ignores the draw state and clip. Clears the whole thing if
* rect is NULL, otherwise just the rect. If canIgnoreRect is set then the entire render target
* can be optionally cleared.
*/
void clear(const SkIRect* rect, GrColor color, bool canIgnoreRect,GrRenderTarget* renderTarget);
void clearStencilClip(const SkIRect& rect, bool insideClip, GrRenderTarget* renderTarget);
/**
* Discards the contents render target. NULL indicates that the current render target should
* be discarded.
**/
virtual void discard(GrRenderTarget* = NULL) = 0;
/**
* This is can be called before allocating a texture to be a dst for copySurface. It will
* populate the origin, config, and flags fields of the desc such that copySurface can
* efficiently succeed. It should only succeed if it can allow copySurface to perform a copy
* that would be more effecient than drawing the src to a dst render target.
*/
virtual bool initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) = 0;
// After the client interacts directly with the 3D context state the GrGpu
// must resync its internal state and assumptions about 3D context state.
// Each time this occurs the GrGpu bumps a timestamp.
// state of the 3D context
// At 10 resets / frame and 60fps a 64bit timestamp will overflow in about
// a billion years.
typedef uint64_t ResetTimestamp;
// This timestamp is always older than the current timestamp
static const ResetTimestamp kExpiredTimestamp = 0;
// Returns a timestamp based on the number of times the context was reset.
// This timestamp can be used to lazily detect when cached 3D context state
// is dirty.
ResetTimestamp getResetTimestamp() const { return fResetTimestamp; }
GrContext::GPUStats* gpuStats() { return &fGPUStats; }
virtual void buildProgramDesc(GrProgramDesc*,
const GrPrimitiveProcessor&,
const GrOptDrawState&,
const GrProgramDesc::DescInfo&,
const GrBatchTracker&) const = 0;
/**
* Called at start and end of gpu trace marking
* GR_CREATE_GPU_TRACE_MARKER(marker_str, target) will automatically call these at the start
* and end of a code block respectively
*/
void addGpuTraceMarker(const GrGpuTraceMarker* marker);
void removeGpuTraceMarker(const GrGpuTraceMarker* marker);
/**
* Takes the current active set of markers and stores them for later use. Any current marker
* in the active set is removed from the active set and the targets remove function is called.
* These functions do not work as a stack so you cannot call save a second time before calling
* restore. Also, it is assumed that when restore is called the current active set of markers
* is empty. When the stored markers are added back into the active set, the targets add marker
* is called.
*/
void saveActiveTraceMarkers();
void restoreActiveTraceMarkers();
// Called to determine whether a copySurface call would succeed or not. Derived
// classes must keep this consistent with their implementation of onCopySurface(). Fallbacks
// to issuing a draw from the src to dst take place at the GrDrawTarget level and this function
// should only return true if a faster copy path exists. The rect and point are pre-clipped. The
// src rect and implied dst rect are guaranteed to be within the src/dst bounds and non-empty.
virtual bool canCopySurface(const GrSurface* dst,
const GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) = 0;
// Called to perform a surface to surface copy. Fallbacks to issuing a draw from the src to dst
// take place at the GrDrawTarget level and this function implement faster copy paths. The rect
// and point are pre-clipped. The src rect and implied dst rect are guaranteed to be within the
// src/dst bounds and non-empty.
virtual bool copySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) = 0;
struct DrawArgs {
typedef GrDrawTarget::DrawInfo DrawInfo;
DrawArgs(const GrPrimitiveProcessor* primProc,
const GrOptDrawState* optState,
const GrProgramDesc* desc,
const GrBatchTracker* batchTracker)
: fPrimitiveProcessor(primProc)
, fOptState(optState)
, fDesc(desc)
, fBatchTracker(batchTracker) {
SkASSERT(primProc && optState && desc && batchTracker);
}
const GrPrimitiveProcessor* fPrimitiveProcessor;
const GrOptDrawState* fOptState;
const GrProgramDesc* fDesc;
const GrBatchTracker* fBatchTracker;
};
void draw(const DrawArgs&, const GrDrawTarget::DrawInfo&);
/** None of these params are optional, pointers used just to avoid making copies. */
struct StencilPathState {
bool fUseHWAA;
GrRenderTarget* fRenderTarget;
const SkMatrix* fViewMatrix;
const GrStencilSettings* fStencil;
const GrScissorState* fScissor;
};
void stencilPath(const GrPath*, const StencilPathState&);
void drawPath(const DrawArgs&, const GrPath*, const GrStencilSettings&);
void drawPaths(const DrawArgs&,
const GrPathRange*,
const void* indices,
GrDrawTarget::PathIndexType,
const float transformValues[],
GrDrawTarget::PathTransformType,
int count,
const GrStencilSettings&);
protected:
// Functions used to map clip-respecting stencil tests into normal
// stencil funcs supported by GPUs.
static GrStencilFunc ConvertStencilFunc(bool stencilInClip,
GrStencilFunc func);
static void ConvertStencilFuncAndMask(GrStencilFunc func,
bool clipInStencil,
unsigned int clipBit,
unsigned int userBits,
unsigned int* ref,
unsigned int* mask);
const GrTraceMarkerSet& getActiveTraceMarkers() { return fActiveTraceMarkers; }
GrContext::GPUStats fGPUStats;
SkAutoTDelete<GrPathRendering> fPathRendering;
// Subclass must initialize this in its constructor.
SkAutoTUnref<const GrDrawTargetCaps> fCaps;
private:
// called when the 3D context state is unknown. Subclass should emit any
// assumed 3D context state and dirty any state cache.
virtual void onResetContext(uint32_t resetBits) = 0;
// overridden by backend-specific derived class to create objects.
virtual GrTexture* onCreateTexture(const GrSurfaceDesc& desc, bool budgeted,
const void* srcData, size_t rowBytes) = 0;
virtual GrTexture* onCreateCompressedTexture(const GrSurfaceDesc& desc, bool budgeted,
const void* srcData) = 0;
virtual GrTexture* onWrapBackendTexture(const GrBackendTextureDesc&) = 0;
virtual GrRenderTarget* onWrapBackendRenderTarget(const GrBackendRenderTargetDesc&) = 0;
virtual GrVertexBuffer* onCreateVertexBuffer(size_t size, bool dynamic) = 0;
virtual GrIndexBuffer* onCreateIndexBuffer(size_t size, bool dynamic) = 0;
// overridden by backend-specific derived class to perform the clear.
virtual void onClear(GrRenderTarget*, const SkIRect* rect, GrColor color,
bool canIgnoreRect) = 0;
// Overridden by backend specific classes to perform a clear of the stencil clip bits. This is
// ONLY used by the the clip target
virtual void onClearStencilClip(GrRenderTarget*,
const SkIRect& rect,
bool insideClip) = 0;
// overridden by backend-specific derived class to perform the draw call.
virtual void onDraw(const DrawArgs&, const GrDrawTarget::DrawInfo&) = 0;
virtual void onStencilPath(const GrPath*, const StencilPathState&) = 0;
virtual void onDrawPath(const DrawArgs&, const GrPath*, const GrStencilSettings&) = 0;
virtual void onDrawPaths(const DrawArgs&,
const GrPathRange*,
const void* indices,
GrDrawTarget::PathIndexType,
const float transformValues[],
GrDrawTarget::PathTransformType,
int count,
const GrStencilSettings&) = 0;
// overridden by backend-specific derived class to perform the read pixels.
virtual bool onReadPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig,
void* buffer,
size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the texture update
virtual bool onWriteTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) = 0;
// overridden by backend-specific derived class to perform the resolve
virtual void onResolveRenderTarget(GrRenderTarget* target) = 0;
// width and height may be larger than rt (if underlying API allows it).
// Should attach the SB to the RT. Returns false if compatible sb could
// not be created.
virtual bool createStencilBufferForRenderTarget(GrRenderTarget*, int width, int height) = 0;
// attaches an existing SB to an existing RT.
virtual bool attachStencilBufferToRenderTarget(GrStencilBuffer*, GrRenderTarget*) = 0;
// clears target's entire stencil buffer to 0
virtual void clearStencil(GrRenderTarget* target) = 0;
// Given a rt, find or create a stencil buffer and attach it
bool attachStencilBufferToRenderTarget(GrRenderTarget* target);
virtual void didAddGpuTraceMarker() = 0;
virtual void didRemoveGpuTraceMarker() = 0;
void resetContext() {
this->onResetContext(fResetBits);
fResetBits = 0;
++fResetTimestamp;
}
void handleDirtyContext() {
if (fResetBits) {
this->resetContext();
}
}
ResetTimestamp fResetTimestamp;
uint32_t fResetBits;
// these are mutable so they can be created on-demand
mutable GrIndexBuffer* fQuadIndexBuffer;
// To keep track that we always have at least as many debug marker adds as removes
int fGpuTraceMarkerCount;
GrTraceMarkerSet fActiveTraceMarkers;
GrTraceMarkerSet fStoredTraceMarkers;
// The context owns us, not vice-versa, so this ptr is not ref'ed by Gpu.
GrContext* fContext;
typedef SkRefCnt INHERITED;
};
#endif