blob: a35d70859a4b167ababf6a333869e2353f9c1b71 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrOvalRenderer.h"
#include "GrProcessor.h"
#include "GrDrawState.h"
#include "GrDrawTarget.h"
#include "GrGeometryProcessor.h"
#include "GrGpu.h"
#include "GrInvariantOutput.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "SkTLazy.h"
#include "effects/GrRRectEffect.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLSL.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
namespace {
// TODO(joshualitt) add per vertex colors
struct CircleVertex {
SkPoint fPos;
SkPoint fOffset;
SkScalar fOuterRadius;
SkScalar fInnerRadius;
};
struct EllipseVertex {
SkPoint fPos;
SkPoint fOffset;
SkPoint fOuterRadii;
SkPoint fInnerRadii;
};
struct DIEllipseVertex {
SkPoint fPos;
SkPoint fOuterOffset;
SkPoint fInnerOffset;
};
inline bool circle_stays_circle(const SkMatrix& m) {
return m.isSimilarity();
}
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for a circle. It
* operates in a space normalized by the circle radius (outer radius in the case of a stroke)
* with origin at the circle center. Two vertex attributes are used:
* vec2f : position in device space of the bounding geometry vertices
* vec4f : (p.xy, outerRad, innerRad)
* p is the position in the normalized space.
* outerRad is the outerRadius in device space.
* innerRad is the innerRadius in normalized space (ignored if not stroking).
*/
class CircleEdgeEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) {
return SkNEW_ARGS(CircleEdgeEffect, (color, stroke, localMatrix));
}
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inCircleEdge() const { return fInCircleEdge; }
virtual ~CircleEdgeEffect() {}
const char* name() const SK_OVERRIDE { return "CircleEdge"; }
inline bool isStroked() const { return fStroke; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor(const GrGeometryProcessor&,
const GrBatchTracker&)
: fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) SK_OVERRIDE{
const CircleEdgeEffect& ce = args.fGP.cast<CircleEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
const BatchTracker& local = args.fBT.cast<BatchTracker>();
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ce);
GrGLVertToFrag v(kVec4f_GrSLType);
args.fPB->addVarying("CircleEdge", &v);
vsBuilder->codeAppendf("%s = %s;", v.vsOut(), ce.inCircleEdge()->fName);
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL,
&fColorUniform);
// setup uniform viewMatrix
this->addUniformViewMatrix(pb);
// Setup position
SetupPosition(vsBuilder, gpArgs, ce.inPosition()->fName,
ce.viewMatrix(), this->uViewM());
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ce.inPosition()->fName,
ce.localMatrix(), args.fTransformsIn, args.fTransformsOut);;
GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("float d = length(%s.xy);", v.fsIn());
fsBuilder->codeAppendf("float edgeAlpha = clamp(%s.z * (1.0 - d), 0.0, 1.0);", v.fsIn());
if (ce.isStroked()) {
fsBuilder->codeAppendf("float innerAlpha = clamp(%s.z * (d - %s.w), 0.0, 1.0);",
v.fsIn(), v.fsIn());
fsBuilder->codeAppend("edgeAlpha *= innerAlpha;");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrBatchTracker& bt,
const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const BatchTracker& local = bt.cast<BatchTracker>();
const CircleEdgeEffect& circleEffect = gp.cast<CircleEdgeEffect>();
uint16_t key = circleEffect.isStroked() ? 0x1 : 0x0;
key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x2 : 0x0;
key |= ComputePosKey(gp.viewMatrix()) << 2;
b->add32(key << 16 | local.fInputColorType);
}
virtual void setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp,
const GrBatchTracker& bt) SK_OVERRIDE {
this->setUniformViewMatrix(pdman, gp.viewMatrix());
const BatchTracker& local = bt.cast<BatchTracker>();
if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(local.fColor, c);
pdman.set4fv(fColorUniform, 1, c);
fColor = local.fColor;
}
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE {
GLProcessor::GenKey(*this, bt, caps, b);
}
virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt,
const GrGLCaps&) const SK_OVERRIDE {
return SkNEW_ARGS(GLProcessor, (*this, bt));
}
void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE {
BatchTracker* local = bt->cast<BatchTracker>();
local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false);
local->fUsesLocalCoords = init.fUsesLocalCoords;
}
bool onCanMakeEqual(const GrBatchTracker& m,
const GrGeometryProcessor& that,
const GrBatchTracker& t) const SK_OVERRIDE {
const BatchTracker& mine = m.cast<BatchTracker>();
const BatchTracker& theirs = t.cast<BatchTracker>();
return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
that, theirs.fUsesLocalCoords) &&
CanCombineOutput(mine.fInputColorType, mine.fColor,
theirs.fInputColorType, theirs.fColor);
}
private:
CircleEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix)
: INHERITED(color, SkMatrix::I(), localMatrix) {
this->initClassID<CircleEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInCircleEdge = &this->addVertexAttrib(Attribute("inCircleEdge",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE {
const CircleEdgeEffect& cee = other.cast<CircleEdgeEffect>();
return cee.fStroke == fStroke;
}
void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
struct BatchTracker {
GrGPInput fInputColorType;
GrColor fColor;
bool fUsesLocalCoords;
};
const Attribute* fInPosition;
const Attribute* fInCircleEdge;
bool fStroke;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleEdgeEffect);
GrGeometryProcessor* CircleEdgeEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
return CircleEdgeEffect::Create(GrRandomColor(random),
random->nextBool(),
GrProcessorUnitTest::TestMatrix(random));
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an axis-aligned
* ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii,
* in both x and y directions.
*
* We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0.
*/
class EllipseEdgeEffect : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Create(GrColor color, bool stroke, const SkMatrix& localMatrix) {
return SkNEW_ARGS(EllipseEdgeEffect, (color, stroke, localMatrix));
}
virtual ~EllipseEdgeEffect() {}
const char* name() const SK_OVERRIDE { return "EllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inEllipseOffset() const { return fInEllipseOffset; }
const Attribute* inEllipseRadii() const { return fInEllipseRadii; }
inline bool isStroked() const { return fStroke; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor(const GrGeometryProcessor&,
const GrBatchTracker&)
: fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) SK_OVERRIDE{
const EllipseEdgeEffect& ee = args.fGP.cast<EllipseEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
const BatchTracker& local = args.fBT.cast<BatchTracker>();
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ee);
GrGLVertToFrag ellipseOffsets(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets", &ellipseOffsets);
vsBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(),
ee.inEllipseOffset()->fName);
GrGLVertToFrag ellipseRadii(kVec4f_GrSLType);
args.fPB->addVarying("EllipseRadii", &ellipseRadii);
vsBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(),
ee.inEllipseRadii()->fName);
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL,
&fColorUniform);
// setup uniform viewMatrix
this->addUniformViewMatrix(pb);
// Setup position
SetupPosition(vsBuilder, gpArgs, ee.inPosition()->fName,
ee.viewMatrix(), this->uViewM());
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
ee.localMatrix(), args.fTransformsIn, args.fTransformsOut);
// for outer curve
GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
fsBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(),
ellipseRadii.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
// for inner curve
if (ee.isStroked()) {
fsBuilder->codeAppendf("scaledOffset = %s*%s.zw;",
ellipseOffsets.fsIn(), ellipseRadii.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;",
ellipseRadii.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrBatchTracker& bt,
const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const BatchTracker& local = bt.cast<BatchTracker>();
const EllipseEdgeEffect& ellipseEffect = gp.cast<EllipseEdgeEffect>();
uint16_t key = ellipseEffect.isStroked() ? 0x1 : 0x0;
key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x2 : 0x0;
key |= ComputePosKey(gp.viewMatrix()) << 2;
b->add32(key << 16 | local.fInputColorType);
}
virtual void setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp,
const GrBatchTracker& bt) SK_OVERRIDE {
this->setUniformViewMatrix(pdman, gp.viewMatrix());
const BatchTracker& local = bt.cast<BatchTracker>();
if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(local.fColor, c);
pdman.set4fv(fColorUniform, 1, c);
fColor = local.fColor;
}
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE {
GLProcessor::GenKey(*this, bt, caps, b);
}
virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt,
const GrGLCaps&) const SK_OVERRIDE {
return SkNEW_ARGS(GLProcessor, (*this, bt));
}
void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE {
BatchTracker* local = bt->cast<BatchTracker>();
local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false);
local->fUsesLocalCoords = init.fUsesLocalCoords;
}
bool onCanMakeEqual(const GrBatchTracker& m,
const GrGeometryProcessor& that,
const GrBatchTracker& t) const SK_OVERRIDE {
const BatchTracker& mine = m.cast<BatchTracker>();
const BatchTracker& theirs = t.cast<BatchTracker>();
return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
that, theirs.fUsesLocalCoords) &&
CanCombineOutput(mine.fInputColorType, mine.fColor,
theirs.fInputColorType, theirs.fColor);
}
private:
EllipseEdgeEffect(GrColor color, bool stroke, const SkMatrix& localMatrix)
: INHERITED(color, SkMatrix::I(), localMatrix) {
this->initClassID<EllipseEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInEllipseOffset = &this->addVertexAttrib(Attribute("inEllipseOffset",
kVec2f_GrVertexAttribType));
fInEllipseRadii = &this->addVertexAttrib(Attribute("inEllipseRadii",
kVec4f_GrVertexAttribType));
fStroke = stroke;
}
bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE {
const EllipseEdgeEffect& eee = other.cast<EllipseEdgeEffect>();
return eee.fStroke == fStroke;
}
void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
struct BatchTracker {
GrGPInput fInputColorType;
GrColor fColor;
bool fUsesLocalCoords;
};
const Attribute* fInPosition;
const Attribute* fInEllipseOffset;
const Attribute* fInEllipseRadii;
bool fStroke;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseEdgeEffect);
GrGeometryProcessor* EllipseEdgeEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
return EllipseEdgeEffect::Create(GrRandomColor(random),
random->nextBool(),
GrProcessorUnitTest::TestMatrix(random));
}
///////////////////////////////////////////////////////////////////////////////
/**
* The output of this effect is a modulation of the input color and coverage for an ellipse,
* specified as a 2D offset from center for both the outer and inner paths (if stroked). The
* implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by
* using differentials.
*
* The result is device-independent and can be used with any affine matrix.
*/
class DIEllipseEdgeEffect : public GrGeometryProcessor {
public:
enum Mode { kStroke = 0, kHairline, kFill };
static GrGeometryProcessor* Create(GrColor color, const SkMatrix& viewMatrix, Mode mode) {
return SkNEW_ARGS(DIEllipseEdgeEffect, (color, viewMatrix, mode));
}
virtual ~DIEllipseEdgeEffect() {}
const char* name() const SK_OVERRIDE { return "DIEllipseEdge"; }
const Attribute* inPosition() const { return fInPosition; }
const Attribute* inEllipseOffsets0() const { return fInEllipseOffsets0; }
const Attribute* inEllipseOffsets1() const { return fInEllipseOffsets1; }
inline Mode getMode() const { return fMode; }
class GLProcessor : public GrGLGeometryProcessor {
public:
GLProcessor(const GrGeometryProcessor&,
const GrBatchTracker&)
: fColor(GrColor_ILLEGAL) {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) SK_OVERRIDE{
const DIEllipseEdgeEffect& ee = args.fGP.cast<DIEllipseEdgeEffect>();
GrGLGPBuilder* pb = args.fPB;
const BatchTracker& local = args.fBT.cast<BatchTracker>();
GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
// emit attributes
vsBuilder->emitAttributes(ee);
GrGLVertToFrag offsets0(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets0", &offsets0);
vsBuilder->codeAppendf("%s = %s;", offsets0.vsOut(),
ee.inEllipseOffsets0()->fName);
GrGLVertToFrag offsets1(kVec2f_GrSLType);
args.fPB->addVarying("EllipseOffsets1", &offsets1);
vsBuilder->codeAppendf("%s = %s;", offsets1.vsOut(),
ee.inEllipseOffsets1()->fName);
// Setup pass through color
this->setupColorPassThrough(pb, local.fInputColorType, args.fOutputColor, NULL,
&fColorUniform);
// setup uniform viewMatrix
this->addUniformViewMatrix(pb);
// Setup position
SetupPosition(vsBuilder, gpArgs, ee.inPosition()->fName,
ee.viewMatrix(), this->uViewM());
// emit transforms
this->emitTransforms(args.fPB, gpArgs->fPositionVar, ee.inPosition()->fName,
ee.localMatrix(), args.fTransformsIn, args.fTransformsOut);
GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
SkAssertResult(fsBuilder->enableFeature(
GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
// for outer curve
fsBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn());
fsBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn());
fsBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn());
fsBuilder->codeAppend("float grad_dot = dot(grad, grad);");
// avoid calling inversesqrt on zero.
fsBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);");
fsBuilder->codeAppend("float invlen = inversesqrt(grad_dot);");
if (kHairline == ee.getMode()) {
// can probably do this with one step
fsBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);");
fsBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);");
} else {
fsBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);");
}
// for inner curve
if (kStroke == ee.getMode()) {
fsBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn());
fsBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;");
fsBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn());
fsBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y,"
" 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);",
offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(),
offsets1.fsIn());
fsBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));");
fsBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);");
}
fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage);
}
static void GenKey(const GrGeometryProcessor& gp,
const GrBatchTracker& bt,
const GrGLCaps&,
GrProcessorKeyBuilder* b) {
const BatchTracker& local = bt.cast<BatchTracker>();
const DIEllipseEdgeEffect& ellipseEffect = gp.cast<DIEllipseEdgeEffect>();
uint16_t key = ellipseEffect.getMode();
key |= local.fUsesLocalCoords && gp.localMatrix().hasPerspective() ? 0x1 << 8 : 0x0;
key |= ComputePosKey(gp.viewMatrix()) << 9;
b->add32(key << 16 | local.fInputColorType);
}
virtual void setData(const GrGLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp,
const GrBatchTracker& bt) SK_OVERRIDE {
this->setUniformViewMatrix(pdman, gp.viewMatrix());
const BatchTracker& local = bt.cast<BatchTracker>();
if (kUniform_GrGPInput == local.fInputColorType && local.fColor != fColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(local.fColor, c);
pdman.set4fv(fColorUniform, 1, c);
fColor = local.fColor;
}
}
private:
GrColor fColor;
UniformHandle fColorUniform;
typedef GrGLGeometryProcessor INHERITED;
};
virtual void getGLProcessorKey(const GrBatchTracker& bt,
const GrGLCaps& caps,
GrProcessorKeyBuilder* b) const SK_OVERRIDE {
GLProcessor::GenKey(*this, bt, caps, b);
}
virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt,
const GrGLCaps&) const SK_OVERRIDE {
return SkNEW_ARGS(GLProcessor, (*this, bt));
}
void initBatchTracker(GrBatchTracker* bt, const InitBT& init) const SK_OVERRIDE {
BatchTracker* local = bt->cast<BatchTracker>();
local->fInputColorType = GetColorInputType(&local->fColor, this->color(), init, false);
local->fUsesLocalCoords = init.fUsesLocalCoords;
}
bool onCanMakeEqual(const GrBatchTracker& m,
const GrGeometryProcessor& that,
const GrBatchTracker& t) const SK_OVERRIDE {
const BatchTracker& mine = m.cast<BatchTracker>();
const BatchTracker& theirs = t.cast<BatchTracker>();
return CanCombineLocalMatrices(*this, mine.fUsesLocalCoords,
that, theirs.fUsesLocalCoords) &&
CanCombineOutput(mine.fInputColorType, mine.fColor,
theirs.fInputColorType, theirs.fColor);
}
private:
DIEllipseEdgeEffect(GrColor color, const SkMatrix& viewMatrix, Mode mode)
: INHERITED(color, viewMatrix) {
this->initClassID<DIEllipseEdgeEffect>();
fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType));
fInEllipseOffsets0 = &this->addVertexAttrib(Attribute("inEllipseOffsets0",
kVec2f_GrVertexAttribType));
fInEllipseOffsets1 = &this->addVertexAttrib(Attribute("inEllipseOffsets1",
kVec2f_GrVertexAttribType));
fMode = mode;
}
bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE {
const DIEllipseEdgeEffect& eee = other.cast<DIEllipseEdgeEffect>();
return eee.fMode == fMode;
}
void onGetInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE {
out->setUnknownSingleComponent();
}
struct BatchTracker {
GrGPInput fInputColorType;
GrColor fColor;
bool fUsesLocalCoords;
};
const Attribute* fInPosition;
const Attribute* fInEllipseOffsets0;
const Attribute* fInEllipseOffsets1;
Mode fMode;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseEdgeEffect);
GrGeometryProcessor* DIEllipseEdgeEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
return DIEllipseEdgeEffect::Create(GrRandomColor(random),
GrProcessorUnitTest::TestMatrix(random),
(Mode)(random->nextRangeU(0,2)));
}
///////////////////////////////////////////////////////////////////////////////
void GrOvalRenderer::reset() {
SkSafeSetNull(fRRectIndexBuffer);
SkSafeSetNull(fStrokeRRectIndexBuffer);
}
bool GrOvalRenderer::drawOval(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRect& oval,
const SkStrokeRec& stroke)
{
bool useCoverageAA = useAA &&
!drawState->getRenderTarget()->isMultisampled() &&
drawState->canUseFracCoveragePrimProc(color, *target->caps());
if (!useCoverageAA) {
return false;
}
// we can draw circles
if (SkScalarNearlyEqual(oval.width(), oval.height()) && circle_stays_circle(viewMatrix)) {
this->drawCircle(target, drawState, color, viewMatrix, useCoverageAA, oval, stroke);
// if we have shader derivative support, render as device-independent
} else if (target->caps()->shaderDerivativeSupport()) {
return this->drawDIEllipse(target, drawState, color, viewMatrix, useCoverageAA, oval,
stroke);
// otherwise axis-aligned ellipses only
} else if (viewMatrix.rectStaysRect()) {
return this->drawEllipse(target, drawState, color, viewMatrix, useCoverageAA, oval, stroke);
} else {
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void GrOvalRenderer::drawCircle(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& circle,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(circle.centerX(), circle.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar radius = viewMatrix.mapRadius(SkScalarHalf(circle.width()));
SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth());
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return;
}
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = radius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(strokeWidth)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(strokeWidth);
}
outerRadius += halfWidth;
if (isStrokeOnly) {
innerRadius = radius - halfWidth;
}
}
SkAutoTUnref<GrGeometryProcessor> gp(
CircleEdgeEffect::Create(color, isStrokeOnly && innerRadius > 0,invert));
GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0);
SkASSERT(gp->getVertexStride() == sizeof(CircleVertex));
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return;
}
CircleVertex* verts = reinterpret_cast<CircleVertex*>(geo.vertices());
// The radii are outset for two reasons. First, it allows the shader to simply perform simpler
// computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is rendered
// and the outset ensures the box will cover all partially covered by the circle.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
SkRect bounds = SkRect::MakeLTRB(
center.fX - outerRadius,
center.fY - outerRadius,
center.fX + outerRadius,
center.fY + outerRadius
);
// The inner radius in the vertex data must be specified in normalized space.
innerRadius = innerRadius / outerRadius;
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOffset = SkPoint::Make(-1, -1);
verts[0].fOuterRadius = outerRadius;
verts[0].fInnerRadius = innerRadius;
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOffset = SkPoint::Make(-1, 1);
verts[1].fOuterRadius = outerRadius;
verts[1].fInnerRadius = innerRadius;
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOffset = SkPoint::Make(1, 1);
verts[2].fOuterRadius = outerRadius;
verts[2].fInnerRadius = innerRadius;
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOffset = SkPoint::Make(1, -1);
verts[3].fOuterRadius = outerRadius;
verts[3].fInnerRadius = innerRadius;
target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer());
target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds);
target->resetIndexSource();
}
///////////////////////////////////////////////////////////////////////////////
bool GrOvalRenderer::drawEllipse(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
#ifdef SK_DEBUG
{
// we should have checked for this previously
bool isAxisAlignedEllipse = viewMatrix.rectStaysRect();
SkASSERT(useCoverageAA && isAxisAlignedEllipse);
}
#endif
// do any matrix crunching before we reset the draw state for device coords
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
viewMatrix.mapPoints(&center, 1);
SkScalar ellipseXRadius = SkScalarHalf(ellipse.width());
SkScalar ellipseYRadius = SkScalarHalf(ellipse.height());
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius +
viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius +
viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius);
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
SkStrokeRec::Style style = stroke.getStyle();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return false;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return false;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
}
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return false;
}
SkAutoTUnref<GrGeometryProcessor> gp(
EllipseEdgeEffect::Create(color,
isStrokeOnly && innerXRadius > 0 && innerYRadius > 0,
invert));
GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0);
SkASSERT(gp->getVertexStride() == sizeof(EllipseVertex));
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return false;
}
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(geo.vertices());
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(xRadius);
SkScalar yRadRecip = SkScalarInvert(yRadius);
SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius);
// We've extended the outer x radius out half a pixel to antialias.
// This will also expand the rect so all the pixels will be captured.
// TODO: Consider if we should use sqrt(2)/2 instead
xRadius += SK_ScalarHalf;
yRadius += SK_ScalarHalf;
SkRect bounds = SkRect::MakeLTRB(
center.fX - xRadius,
center.fY - yRadius,
center.fX + xRadius,
center.fY + yRadius
);
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOffset = SkPoint::Make(-xRadius, -yRadius);
verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOffset = SkPoint::Make(-xRadius, yRadius);
verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOffset = SkPoint::Make(xRadius, yRadius);
verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOffset = SkPoint::Make(xRadius, -yRadius);
verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer());
target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds);
target->resetIndexSource();
return true;
}
bool GrOvalRenderer::drawDIEllipse(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useCoverageAA,
const SkRect& ellipse,
const SkStrokeRec& stroke) {
SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY());
SkScalar xRadius = SkScalarHalf(ellipse.width());
SkScalar yRadius = SkScalarHalf(ellipse.height());
SkStrokeRec::Style style = stroke.getStyle();
DIEllipseEdgeEffect::Mode mode = (SkStrokeRec::kStroke_Style == style) ?
DIEllipseEdgeEffect::kStroke :
(SkStrokeRec::kHairline_Style == style) ?
DIEllipseEdgeEffect::kHairline : DIEllipseEdgeEffect::kFill;
SkScalar innerXRadius = 0;
SkScalar innerYRadius = 0;
if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) {
SkScalar strokeWidth = stroke.getWidth();
if (SkScalarNearlyZero(strokeWidth)) {
strokeWidth = SK_ScalarHalf;
} else {
strokeWidth *= SK_ScalarHalf;
}
// we only handle thick strokes for near-circular ellipses
if (strokeWidth > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return false;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius ||
strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) {
return false;
}
// set inner radius (if needed)
if (SkStrokeRec::kStroke_Style == style) {
innerXRadius = xRadius - strokeWidth;
innerYRadius = yRadius - strokeWidth;
}
xRadius += strokeWidth;
yRadius += strokeWidth;
}
if (DIEllipseEdgeEffect::kStroke == mode) {
mode = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseEdgeEffect::kStroke :
DIEllipseEdgeEffect::kFill;
}
SkScalar innerRatioX = SkScalarDiv(xRadius, innerXRadius);
SkScalar innerRatioY = SkScalarDiv(yRadius, innerYRadius);
SkAutoTUnref<GrGeometryProcessor> gp(DIEllipseEdgeEffect::Create(color, viewMatrix, mode));
GrDrawTarget::AutoReleaseGeometry geo(target, 4, gp->getVertexStride(), 0);
SkASSERT(gp->getVertexStride() == sizeof(DIEllipseVertex));
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return false;
}
DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>(geo.vertices());
// This expands the outer rect so that after CTM we end up with a half-pixel border
SkScalar a = viewMatrix[SkMatrix::kMScaleX];
SkScalar b = viewMatrix[SkMatrix::kMSkewX];
SkScalar c = viewMatrix[SkMatrix::kMSkewY];
SkScalar d = viewMatrix[SkMatrix::kMScaleY];
SkScalar geoDx = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(a*a + c*c));
SkScalar geoDy = SkScalarDiv(SK_ScalarHalf, SkScalarSqrt(b*b + d*d));
// This adjusts the "radius" to include the half-pixel border
SkScalar offsetDx = SkScalarDiv(geoDx, xRadius);
SkScalar offsetDy = SkScalarDiv(geoDy, yRadius);
SkRect bounds = SkRect::MakeLTRB(
center.fX - xRadius - geoDx,
center.fY - yRadius - geoDy,
center.fX + xRadius + geoDx,
center.fY + yRadius + geoDy
);
verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop);
verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy);
verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy);
verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom);
verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy);
verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy);
verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom);
verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy);
verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy);
verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop);
verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy);
verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy);
target->setIndexSourceToBuffer(fGpu->getQuadIndexBuffer());
target->drawIndexedInstances(drawState, gp, kTriangles_GrPrimitiveType, 1, 4, 6, &bounds);
target->resetIndexSource();
return true;
}
///////////////////////////////////////////////////////////////////////////////
static const uint16_t gRRectIndices[] = {
// corners
0, 1, 5, 0, 5, 4,
2, 3, 7, 2, 7, 6,
8, 9, 13, 8, 13, 12,
10, 11, 15, 10, 15, 14,
// edges
1, 2, 6, 1, 6, 5,
4, 5, 9, 4, 9, 8,
6, 7, 11, 6, 11, 10,
9, 10, 14, 9, 14, 13,
// center
// we place this at the end so that we can ignore these indices when rendering stroke-only
5, 6, 10, 5, 10, 9
};
static const int kIndicesPerStrokeRRect = SK_ARRAY_COUNT(gRRectIndices) - 6;
static const int kIndicesPerRRect = SK_ARRAY_COUNT(gRRectIndices);
static const int kVertsPerRRect = 16;
static const int kNumRRectsInIndexBuffer = 256;
GrIndexBuffer* GrOvalRenderer::rRectIndexBuffer(bool isStrokeOnly) {
if (isStrokeOnly) {
if (NULL == fStrokeRRectIndexBuffer) {
fStrokeRRectIndexBuffer = fGpu->createInstancedIndexBuffer(gRRectIndices,
kIndicesPerStrokeRRect,
kNumRRectsInIndexBuffer,
kVertsPerRRect);
}
return fStrokeRRectIndexBuffer;
} else {
if (NULL == fRRectIndexBuffer) {
fRRectIndexBuffer = fGpu->createInstancedIndexBuffer(gRRectIndices,
kIndicesPerRRect,
kNumRRectsInIndexBuffer,
kVertsPerRRect);
}
return fRRectIndexBuffer;
}
}
bool GrOvalRenderer::drawDRRect(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRRect& origOuter,
const SkRRect& origInner) {
bool applyAA = useAA &&
!drawState->getRenderTarget()->isMultisampled() &&
drawState->canUseFracCoveragePrimProc(color, *target->caps());
GrDrawState::AutoRestoreEffects are;
if (!origInner.isEmpty()) {
SkTCopyOnFirstWrite<SkRRect> inner(origInner);
if (!viewMatrix.isIdentity()) {
if (!origInner.transform(viewMatrix, inner.writable())) {
return false;
}
}
GrPrimitiveEdgeType edgeType = applyAA ?
kInverseFillAA_GrProcessorEdgeType :
kInverseFillBW_GrProcessorEdgeType;
// TODO this needs to be a geometry processor
GrFragmentProcessor* fp = GrRRectEffect::Create(edgeType, *inner);
if (NULL == fp) {
return false;
}
are.set(drawState);
drawState->addCoverageProcessor(fp)->unref();
}
SkStrokeRec fillRec(SkStrokeRec::kFill_InitStyle);
if (this->drawRRect(target, drawState, color, viewMatrix, useAA, origOuter, fillRec)) {
return true;
}
SkASSERT(!origOuter.isEmpty());
SkTCopyOnFirstWrite<SkRRect> outer(origOuter);
if (!viewMatrix.isIdentity()) {
if (!origOuter.transform(viewMatrix, outer.writable())) {
return false;
}
}
GrPrimitiveEdgeType edgeType = applyAA ? kFillAA_GrProcessorEdgeType :
kFillBW_GrProcessorEdgeType;
GrFragmentProcessor* effect = GrRRectEffect::Create(edgeType, *outer);
if (NULL == effect) {
return false;
}
if (!are.isSet()) {
are.set(drawState);
}
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return false;
}
drawState->addCoverageProcessor(effect)->unref();
SkRect bounds = outer->getBounds();
if (applyAA) {
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
}
target->drawRect(drawState, color, SkMatrix::I(), bounds, NULL, &invert);
return true;
}
bool GrOvalRenderer::drawRRect(GrDrawTarget* target,
GrDrawState* drawState,
GrColor color,
const SkMatrix& viewMatrix,
bool useAA,
const SkRRect& rrect,
const SkStrokeRec& stroke) {
if (rrect.isOval()) {
return this->drawOval(target, drawState, color, viewMatrix, useAA, rrect.getBounds(),
stroke);
}
bool useCoverageAA = useAA &&
!drawState->getRenderTarget()->isMultisampled() &&
drawState->canUseFracCoveragePrimProc(color, *target->caps());
// only anti-aliased rrects for now
if (!useCoverageAA) {
return false;
}
if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) {
return false;
}
// do any matrix crunching before we reset the draw state for device coords
const SkRect& rrectBounds = rrect.getBounds();
SkRect bounds;
viewMatrix.mapRect(&bounds, rrectBounds);
SkVector radii = rrect.getSimpleRadii();
SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX +
viewMatrix[SkMatrix::kMSkewY]*radii.fY);
SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX +
viewMatrix[SkMatrix::kMScaleY]*radii.fY);
SkStrokeRec::Style style = stroke.getStyle();
// do (potentially) anisotropic mapping of stroke
SkVector scaledStroke;
SkScalar strokeWidth = stroke.getWidth();
bool isStrokeOnly = SkStrokeRec::kStroke_Style == style ||
SkStrokeRec::kHairline_Style == style;
bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style;
if (hasStroke) {
if (SkStrokeRec::kHairline_Style == style) {
scaledStroke.set(1, 1);
} else {
scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewY]));
scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] +
viewMatrix[SkMatrix::kMScaleY]));
}
// if half of strokewidth is greater than radius, we don't handle that right now
if (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius) {
return false;
}
}
// The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on
// the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine-
// patch will have fractional coverage. This only matters when the interior is actually filled.
// We could consider falling back to rect rendering here, since a tiny radius is
// indistinguishable from a square corner.
if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) {
return false;
}
// reset to device coordinates
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
SkDebugf("Failed to invert\n");
return false;
}
GrIndexBuffer* indexBuffer = this->rRectIndexBuffer(isStrokeOnly);
if (NULL == indexBuffer) {
SkDebugf("Failed to create index buffer!\n");
return false;
}
// if the corners are circles, use the circle renderer
if ((!hasStroke || scaledStroke.fX == scaledStroke.fY) && xRadius == yRadius) {
SkScalar innerRadius = 0.0f;
SkScalar outerRadius = xRadius;
SkScalar halfWidth = 0;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.fX)) {
halfWidth = SK_ScalarHalf;
} else {
halfWidth = SkScalarHalf(scaledStroke.fX);
}
if (isStrokeOnly) {
innerRadius = xRadius - halfWidth;
}
outerRadius += halfWidth;
bounds.outset(halfWidth, halfWidth);
}
isStrokeOnly = (isStrokeOnly && innerRadius >= 0);
SkAutoTUnref<GrGeometryProcessor> effect(CircleEdgeEffect::Create(color,
isStrokeOnly,
invert));
GrDrawTarget::AutoReleaseGeometry geo(target, 16, effect->getVertexStride(), 0);
SkASSERT(effect->getVertexStride() == sizeof(CircleVertex));
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return false;
}
CircleVertex* verts = reinterpret_cast<CircleVertex*>(geo.vertices());
// The radii are outset for two reasons. First, it allows the shader to simply perform
// simpler computation because the computed alpha is zero, rather than 50%, at the radius.
// Second, the outer radius is used to compute the verts of the bounding box that is
// rendered and the outset ensures the box will cover all partially covered by the rrect
// corners.
outerRadius += SK_ScalarHalf;
innerRadius -= SK_ScalarHalf;
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + outerRadius,
bounds.fBottom - outerRadius,
bounds.fBottom
};
SkScalar yOuterRadii[4] = {-1, 0, 0, 1 };
// The inner radius in the vertex data must be specified in normalized space.
innerRadius = innerRadius / outerRadius;
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(0, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fOffset = SkPoint::Make(1, yOuterRadii[i]);
verts->fOuterRadius = outerRadius;
verts->fInnerRadius = innerRadius;
verts++;
}
// drop out the middle quad if we're stroked
int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 :
SK_ARRAY_COUNT(gRRectIndices);
target->setIndexSourceToBuffer(indexBuffer);
target->drawIndexedInstances(drawState, effect, kTriangles_GrPrimitiveType, 1, 16, indexCnt,
&bounds);
// otherwise we use the ellipse renderer
} else {
SkScalar innerXRadius = 0.0f;
SkScalar innerYRadius = 0.0f;
if (hasStroke) {
if (SkScalarNearlyZero(scaledStroke.length())) {
scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf);
} else {
scaledStroke.scale(SK_ScalarHalf);
}
// we only handle thick strokes for near-circular ellipses
if (scaledStroke.length() > SK_ScalarHalf &&
(SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) {
return false;
}
// we don't handle it if curvature of the stroke is less than curvature of the ellipse
if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius ||
scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) {
return false;
}
// this is legit only if scale & translation (which should be the case at the moment)
if (isStrokeOnly) {
innerXRadius = xRadius - scaledStroke.fX;
innerYRadius = yRadius - scaledStroke.fY;
}
xRadius += scaledStroke.fX;
yRadius += scaledStroke.fY;
bounds.outset(scaledStroke.fX, scaledStroke.fY);
}
isStrokeOnly = (isStrokeOnly && innerXRadius >= 0 && innerYRadius >= 0);
SkAutoTUnref<GrGeometryProcessor> effect(EllipseEdgeEffect::Create(color,
isStrokeOnly,
invert));
GrDrawTarget::AutoReleaseGeometry geo(target, 16, effect->getVertexStride(), 0);
SkASSERT(effect->getVertexStride() == sizeof(EllipseVertex));
if (!geo.succeeded()) {
SkDebugf("Failed to get space for vertices!\n");
return false;
}
EllipseVertex* verts = reinterpret_cast<EllipseVertex*>(geo.vertices());
// Compute the reciprocals of the radii here to save time in the shader
SkScalar xRadRecip = SkScalarInvert(xRadius);
SkScalar yRadRecip = SkScalarInvert(yRadius);
SkScalar xInnerRadRecip = SkScalarInvert(innerXRadius);
SkScalar yInnerRadRecip = SkScalarInvert(innerYRadius);
// Extend the radii out half a pixel to antialias.
SkScalar xOuterRadius = xRadius + SK_ScalarHalf;
SkScalar yOuterRadius = yRadius + SK_ScalarHalf;
// Expand the rect so all the pixels will be captured.
bounds.outset(SK_ScalarHalf, SK_ScalarHalf);
SkScalar yCoords[4] = {
bounds.fTop,
bounds.fTop + yOuterRadius,
bounds.fBottom - yOuterRadius,
bounds.fBottom
};
SkScalar yOuterOffsets[4] = {
yOuterRadius,
SK_ScalarNearlyZero, // we're using inversesqrt() in the shader, so can't be exactly 0
SK_ScalarNearlyZero,
yOuterRadius
};
for (int i = 0; i < 4; ++i) {
verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]);
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]);
verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]);
verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]);
verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip);
verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip);
verts++;
}
// drop out the middle quad if we're stroked
int indexCnt = isStrokeOnly ? SK_ARRAY_COUNT(gRRectIndices) - 6 :
SK_ARRAY_COUNT(gRRectIndices);
target->setIndexSourceToBuffer(indexBuffer);
target->drawIndexedInstances(drawState, effect, kTriangles_GrPrimitiveType, 1, 16, indexCnt,
&bounds);
}
target->resetIndexSource();
return true;
}