blob: b67718a6b1fa491463bc7a335980f797edcf9373 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrix.h"
#include "SkRRect.h"
#include "Test.h"
static const SkScalar kWidth = 100.0f;
static const SkScalar kHeight = 100.0f;
static void test_inset(skiatest::Reporter* reporter) {
SkRRect rr, rr2;
SkRect r = { 0, 0, 100, 100 };
rr.setRect(r);
rr.inset(-20, -20, &rr2);
REPORTER_ASSERT(reporter, rr2.isRect());
rr.inset(20, 20, &rr2);
REPORTER_ASSERT(reporter, rr2.isRect());
rr.inset(r.width()/2, r.height()/2, &rr2);
REPORTER_ASSERT(reporter, rr2.isEmpty());
rr.setRectXY(r, 20, 20);
rr.inset(19, 19, &rr2);
REPORTER_ASSERT(reporter, rr2.isSimple());
rr.inset(20, 20, &rr2);
REPORTER_ASSERT(reporter, rr2.isRect());
}
// Test out the basic API entry points
static void test_round_rect_basic(skiatest::Reporter* reporter) {
// Test out initialization methods
SkPoint zeroPt = { 0, 0 };
SkRRect empty;
empty.setEmpty();
REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
REPORTER_ASSERT(reporter, empty.rect().isEmpty());
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i));
}
//----
SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
SkRRect rr1;
rr1.setRect(rect);
REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
REPORTER_ASSERT(reporter, rr1.rect() == rect);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i));
}
SkRRect rr1_2; // construct the same RR using the most general set function
SkVector rr1_2_radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
rr1_2.setRectRadii(rect, rr1_2_radii);
REPORTER_ASSERT(reporter, rr1_2 == rr1 && rr1_2.getType() == rr1.getType());
SkRRect rr1_3; // construct the same RR using the nine patch set function
rr1_3.setNinePatch(rect, 0, 0, 0, 0);
REPORTER_ASSERT(reporter, rr1_3 == rr1 && rr1_3.getType() == rr1.getType());
//----
SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) };
SkRRect rr2;
rr2.setOval(rect);
REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type());
REPORTER_ASSERT(reporter, rr2.rect() == rect);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter,
rr2.radii((SkRRect::Corner) i).equalsWithinTolerance(halfPoint));
}
SkRRect rr2_2; // construct the same RR using the most general set function
SkVector rr2_2_radii[4] = { { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY },
{ halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY } };
rr2_2.setRectRadii(rect, rr2_2_radii);
REPORTER_ASSERT(reporter, rr2_2 == rr2 && rr2_2.getType() == rr2.getType());
SkRRect rr2_3; // construct the same RR using the nine patch set function
rr2_3.setNinePatch(rect, halfPoint.fX, halfPoint.fY, halfPoint.fX, halfPoint.fY);
REPORTER_ASSERT(reporter, rr2_3 == rr2 && rr2_3.getType() == rr2.getType());
//----
SkPoint p = { 5, 5 };
SkRRect rr3;
rr3.setRectXY(rect, p.fX, p.fY);
REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type());
REPORTER_ASSERT(reporter, rr3.rect() == rect);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i));
}
SkRRect rr3_2; // construct the same RR using the most general set function
SkVector rr3_2_radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } };
rr3_2.setRectRadii(rect, rr3_2_radii);
REPORTER_ASSERT(reporter, rr3_2 == rr3 && rr3_2.getType() == rr3.getType());
SkRRect rr3_3; // construct the same RR using the nine patch set function
rr3_3.setNinePatch(rect, 5, 5, 5, 5);
REPORTER_ASSERT(reporter, rr3_3 == rr3 && rr3_3.getType() == rr3.getType());
//----
SkRect ninePatchRadii = { 10, 9, 8, 7 };
SkRRect rr4;
rr4.setNinePatch(rect, ninePatchRadii.fLeft, ninePatchRadii.fTop, ninePatchRadii.fRight,
ninePatchRadii.fBottom);
REPORTER_ASSERT(reporter, SkRRect::kNinePatch_Type == rr4.type());
REPORTER_ASSERT(reporter, rr4.rect() == rect);
SkPoint rquad[4];
ninePatchRadii.toQuad(rquad);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, rquad[i] == rr4.radii((SkRRect::Corner) i));
}
SkRRect rr4_2; // construct the same RR using the most general set function
SkVector rr4_2_radii[4] = { { 10, 9 }, { 8, 9 }, {8, 7 }, { 10, 7 } };
rr4_2.setRectRadii(rect, rr4_2_radii);
REPORTER_ASSERT(reporter, rr4_2 == rr4 && rr4_2.getType() == rr4.getType());
//----
SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } };
SkRRect rr5;
rr5.setRectRadii(rect, radii2);
REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type());
REPORTER_ASSERT(reporter, rr5.rect() == rect);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i));
}
// Test out == & !=
REPORTER_ASSERT(reporter, empty != rr3);
REPORTER_ASSERT(reporter, rr3 != rr4);
REPORTER_ASSERT(reporter, rr4 != rr5);
}
// Test out the cases when the RR degenerates to a rect
static void test_round_rect_rects(skiatest::Reporter* reporter) {
SkRect r;
//----
SkRRect empty;
empty.setEmpty();
REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
r = empty.rect();
REPORTER_ASSERT(reporter, 0 == r.fLeft && 0 == r.fTop && 0 == r.fRight && 0 == r.fBottom);
//----
SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
SkRRect rr1;
rr1.setRectXY(rect, 0, 0);
REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
r = rr1.rect();
REPORTER_ASSERT(reporter, rect == r);
//----
SkPoint radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
SkRRect rr2;
rr2.setRectRadii(rect, radii);
REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type());
r = rr2.rect();
REPORTER_ASSERT(reporter, rect == r);
//----
SkPoint radii2[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } };
SkRRect rr3;
rr3.setRectRadii(rect, radii2);
REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr3.type());
}
// Test out the cases when the RR degenerates to an oval
static void test_round_rect_ovals(skiatest::Reporter* reporter) {
//----
SkRect oval;
SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
SkRRect rr1;
rr1.setRectXY(rect, SkScalarHalf(kWidth), SkScalarHalf(kHeight));
REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr1.type());
oval = rr1.rect();
REPORTER_ASSERT(reporter, oval == rect);
}
// Test out the non-degenerate RR cases
static void test_round_rect_general(skiatest::Reporter* reporter) {
//----
SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
SkRRect rr1;
rr1.setRectXY(rect, 20, 20);
REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr1.type());
//----
SkPoint radii[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } };
SkRRect rr2;
rr2.setRectRadii(rect, radii);
REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr2.type());
}
// Test out questionable-parameter handling
static void test_round_rect_iffy_parameters(skiatest::Reporter* reporter) {
// When the radii exceed the base rect they are proportionally scaled down
// to fit
SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
SkPoint radii[4] = { { 50, 100 }, { 100, 50 }, { 50, 100 }, { 100, 50 } };
SkRRect rr1;
rr1.setRectRadii(rect, radii);
REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr1.type());
const SkPoint& p = rr1.radii(SkRRect::kUpperLeft_Corner);
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(p.fX, 33.33333f));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(p.fY, 66.66666f));
// Negative radii should be capped at zero
SkRRect rr2;
rr2.setRectXY(rect, -10, -20);
REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type());
const SkPoint& p2 = rr2.radii(SkRRect::kUpperLeft_Corner);
REPORTER_ASSERT(reporter, 0.0f == p2.fX);
REPORTER_ASSERT(reporter, 0.0f == p2.fY);
}
// Move a small box from the start position by (stepX, stepY) 'numSteps' times
// testing for containment in 'rr' at each step.
static void test_direction(skiatest::Reporter* reporter, const SkRRect &rr,
SkScalar initX, int stepX, SkScalar initY, int stepY,
int numSteps, const bool* contains) {
SkScalar x = initX, y = initY;
for (int i = 0; i < numSteps; ++i) {
SkRect test = SkRect::MakeXYWH(x, y,
stepX ? SkIntToScalar(stepX) : SK_Scalar1,
stepY ? SkIntToScalar(stepY) : SK_Scalar1);
test.sort();
REPORTER_ASSERT(reporter, contains[i] == rr.contains(test));
x += stepX;
y += stepY;
}
}
// Exercise the RR's contains rect method
static void test_round_rect_contains_rect(skiatest::Reporter* reporter) {
static const int kNumRRects = 4;
static const SkVector gRadii[kNumRRects][4] = {
{ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, // rect
{ { 20, 20 }, { 20, 20 }, { 20, 20 }, { 20, 20 } }, // circle
{ { 10, 10 }, { 10, 10 }, { 10, 10 }, { 10, 10 } }, // simple
{ { 0, 0 }, { 20, 20 }, { 10, 10 }, { 30, 30 } } // complex
};
SkRRect rrects[kNumRRects];
for (int i = 0; i < kNumRRects; ++i) {
rrects[i].setRectRadii(SkRect::MakeWH(40, 40), gRadii[i]);
}
// First test easy outs - boxes that are obviously out on
// each corner and edge
static const SkRect easyOuts[] = {
{ -5, -5, 5, 5 }, // NW
{ 15, -5, 20, 5 }, // N
{ 35, -5, 45, 5 }, // NE
{ 35, 15, 45, 20 }, // E
{ 35, 45, 35, 45 }, // SE
{ 15, 35, 20, 45 }, // S
{ -5, 35, 5, 45 }, // SW
{ -5, 15, 5, 20 } // W
};
for (int i = 0; i < kNumRRects; ++i) {
for (size_t j = 0; j < SK_ARRAY_COUNT(easyOuts); ++j) {
REPORTER_ASSERT(reporter, !rrects[i].contains(easyOuts[j]));
}
}
// Now test non-trivial containment. For each compass
// point walk a 1x1 rect in from the edge of the bounding
// rect
static const int kNumSteps = 15;
bool answers[kNumRRects][8][kNumSteps] = {
// all the test rects are inside the degenerate rrect
{
// rect
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
},
// for the circle we expect 6 blocks to be out on the
// corners (then the rest in) and only the first block
// out on the vertical and horizontal axes (then
// the rest in)
{
// circle
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
},
// for the simple round rect we expect 3 out on
// the corners (then the rest in) and no blocks out
// on the vertical and horizontal axes
{
// simple RR
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
},
// for the complex case the answer is different for each direction
{
// complex RR
// all in for NW (rect) corner (same as rect case)
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// only first block out for N (same as circle case)
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// first 6 blocks out for NE (same as circle case)
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// only first block out for E (same as circle case)
{ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// first 3 blocks out for SE (same as simple case)
{ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// first two blocks out for S
{ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
// first 9 blocks out for SW
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 },
// first two blocks out for W (same as S)
{ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
}
};
for (int i = 0; i < kNumRRects; ++i) {
test_direction(reporter, rrects[i], 0, 1, 0, 1, kNumSteps, answers[i][0]); // NW
test_direction(reporter, rrects[i], 19.5f, 0, 0, 1, kNumSteps, answers[i][1]); // N
test_direction(reporter, rrects[i], 40, -1, 0, 1, kNumSteps, answers[i][2]); // NE
test_direction(reporter, rrects[i], 40, -1, 19.5f, 0, kNumSteps, answers[i][3]); // E
test_direction(reporter, rrects[i], 40, -1, 40, -1, kNumSteps, answers[i][4]); // SE
test_direction(reporter, rrects[i], 19.5f, 0, 40, -1, kNumSteps, answers[i][5]); // S
test_direction(reporter, rrects[i], 0, 1, 40, -1, kNumSteps, answers[i][6]); // SW
test_direction(reporter, rrects[i], 0, 1, 19.5f, 0, kNumSteps, answers[i][7]); // W
}
}
// Called for a matrix that should cause SkRRect::transform to fail.
static void assert_transform_failure(skiatest::Reporter* reporter, const SkRRect& orig,
const SkMatrix& matrix) {
// The test depends on the fact that the original is not empty.
SkASSERT(!orig.isEmpty());
SkRRect dst;
dst.setEmpty();
const SkRRect copyOfDst = dst;
const SkRRect copyOfOrig = orig;
bool success = orig.transform(matrix, &dst);
// This transform should fail.
REPORTER_ASSERT(reporter, !success);
// Since the transform failed, dst should be unchanged.
REPORTER_ASSERT(reporter, copyOfDst == dst);
// original should not be modified.
REPORTER_ASSERT(reporter, copyOfOrig == orig);
REPORTER_ASSERT(reporter, orig != dst);
}
#define GET_RADII \
const SkVector& origUL = orig.radii(SkRRect::kUpperLeft_Corner); \
const SkVector& origUR = orig.radii(SkRRect::kUpperRight_Corner); \
const SkVector& origLR = orig.radii(SkRRect::kLowerRight_Corner); \
const SkVector& origLL = orig.radii(SkRRect::kLowerLeft_Corner); \
const SkVector& dstUL = dst.radii(SkRRect::kUpperLeft_Corner); \
const SkVector& dstUR = dst.radii(SkRRect::kUpperRight_Corner); \
const SkVector& dstLR = dst.radii(SkRRect::kLowerRight_Corner); \
const SkVector& dstLL = dst.radii(SkRRect::kLowerLeft_Corner)
// Called to test various transforms on a single SkRRect.
static void test_transform_helper(skiatest::Reporter* reporter, const SkRRect& orig) {
SkRRect dst;
dst.setEmpty();
// The identity matrix will duplicate the rrect.
bool success = orig.transform(SkMatrix::I(), &dst);
REPORTER_ASSERT(reporter, success);
REPORTER_ASSERT(reporter, orig == dst);
// Skew and Perspective make transform fail.
SkMatrix matrix;
matrix.reset();
matrix.setSkewX(SkIntToScalar(2));
assert_transform_failure(reporter, orig, matrix);
matrix.reset();
matrix.setSkewY(SkIntToScalar(3));
assert_transform_failure(reporter, orig, matrix);
matrix.reset();
matrix.setPerspX(4);
assert_transform_failure(reporter, orig, matrix);
matrix.reset();
matrix.setPerspY(5);
assert_transform_failure(reporter, orig, matrix);
// Rotation fails.
matrix.reset();
matrix.setRotate(SkIntToScalar(90));
assert_transform_failure(reporter, orig, matrix);
matrix.setRotate(SkIntToScalar(37));
assert_transform_failure(reporter, orig, matrix);
// Translate will keep the rect moved, but otherwise the same.
matrix.reset();
SkScalar translateX = SkIntToScalar(32);
SkScalar translateY = SkIntToScalar(15);
matrix.setTranslateX(translateX);
matrix.setTranslateY(translateY);
dst.setEmpty();
success = orig.transform(matrix, &dst);
REPORTER_ASSERT(reporter, success);
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter,
orig.radii((SkRRect::Corner) i) == dst.radii((SkRRect::Corner) i));
}
REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
REPORTER_ASSERT(reporter, dst.rect().left() == orig.rect().left() + translateX);
REPORTER_ASSERT(reporter, dst.rect().top() == orig.rect().top() + translateY);
// Keeping the translation, but adding skew will make transform fail.
matrix.setSkewY(SkIntToScalar(7));
assert_transform_failure(reporter, orig, matrix);
// Scaling in -x will flip the round rect horizontally.
matrix.reset();
matrix.setScaleX(SkIntToScalar(-1));
dst.setEmpty();
success = orig.transform(matrix, &dst);
REPORTER_ASSERT(reporter, success);
{
GET_RADII;
// Radii have swapped in x.
REPORTER_ASSERT(reporter, origUL == dstUR);
REPORTER_ASSERT(reporter, origUR == dstUL);
REPORTER_ASSERT(reporter, origLR == dstLL);
REPORTER_ASSERT(reporter, origLL == dstLR);
}
// Width and height remain the same.
REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
// Right and left have swapped (sort of)
REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left());
// Top has stayed the same.
REPORTER_ASSERT(reporter, orig.rect().top() == dst.rect().top());
// Keeping the scale, but adding a persp will make transform fail.
matrix.setPerspX(7);
assert_transform_failure(reporter, orig, matrix);
// Scaling in -y will flip the round rect vertically.
matrix.reset();
matrix.setScaleY(SkIntToScalar(-1));
dst.setEmpty();
success = orig.transform(matrix, &dst);
REPORTER_ASSERT(reporter, success);
{
GET_RADII;
// Radii have swapped in y.
REPORTER_ASSERT(reporter, origUL == dstLL);
REPORTER_ASSERT(reporter, origUR == dstLR);
REPORTER_ASSERT(reporter, origLR == dstUR);
REPORTER_ASSERT(reporter, origLL == dstUL);
}
// Width and height remain the same.
REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
// Top and bottom have swapped (sort of)
REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom());
// Left has stayed the same.
REPORTER_ASSERT(reporter, orig.rect().left() == dst.rect().left());
// Scaling in -x and -y will swap in both directions.
matrix.reset();
matrix.setScaleY(SkIntToScalar(-1));
matrix.setScaleX(SkIntToScalar(-1));
dst.setEmpty();
success = orig.transform(matrix, &dst);
REPORTER_ASSERT(reporter, success);
{
GET_RADII;
REPORTER_ASSERT(reporter, origUL == dstLR);
REPORTER_ASSERT(reporter, origUR == dstLL);
REPORTER_ASSERT(reporter, origLR == dstUL);
REPORTER_ASSERT(reporter, origLL == dstUR);
}
// Width and height remain the same.
REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom());
REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left());
// Scale in both directions.
SkScalar xScale = SkIntToScalar(3);
SkScalar yScale = 3.2f;
matrix.reset();
matrix.setScaleX(xScale);
matrix.setScaleY(yScale);
dst.setEmpty();
success = orig.transform(matrix, &dst);
REPORTER_ASSERT(reporter, success);
// Radii are scaled.
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fX,
SkScalarMul(orig.radii((SkRRect::Corner) i).fX, xScale)));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fY,
SkScalarMul(orig.radii((SkRRect::Corner) i).fY, yScale)));
}
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().width(),
SkScalarMul(orig.rect().width(), xScale)));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().height(),
SkScalarMul(orig.rect().height(), yScale)));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().left(),
SkScalarMul(orig.rect().left(), xScale)));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().top(),
SkScalarMul(orig.rect().top(), yScale)));
}
static void test_round_rect_transform(skiatest::Reporter* reporter) {
SkRRect rrect;
{
SkRect r = { 0, 0, kWidth, kHeight };
rrect.setRectXY(r, SkIntToScalar(4), SkIntToScalar(7));
test_transform_helper(reporter, rrect);
}
{
SkRect r = { SkIntToScalar(5), SkIntToScalar(15),
SkIntToScalar(27), SkIntToScalar(34) };
SkVector radii[4] = { { 0, SkIntToScalar(1) },
{ SkIntToScalar(2), SkIntToScalar(3) },
{ SkIntToScalar(4), SkIntToScalar(5) },
{ SkIntToScalar(6), SkIntToScalar(7) } };
rrect.setRectRadii(r, radii);
test_transform_helper(reporter, rrect);
}
}
// Test out the case where an oval already off in space is translated/scaled
// further off into space - yielding numerical issues when the rect & radii
// are transformed separatly
// BUG=skia:2696
static void test_issue_2696(skiatest::Reporter* reporter) {
SkRRect rrect;
SkRect r = { 28443.8594f, 53.1428604f, 28446.7148f, 56.0000038f };
rrect.setOval(r);
SkMatrix xform;
xform.setAll(2.44f, 0.0f, 485411.7f,
0.0f, 2.44f, -438.7f,
0.0f, 0.0f, 1.0f);
SkRRect dst;
bool success = rrect.transform(xform, &dst);
REPORTER_ASSERT(reporter, success);
SkScalar halfWidth = SkScalarHalf(dst.width());
SkScalar halfHeight = SkScalarHalf(dst.height());
for (int i = 0; i < 4; ++i) {
REPORTER_ASSERT(reporter,
SkScalarNearlyEqual(dst.radii((SkRRect::Corner)i).fX, halfWidth));
REPORTER_ASSERT(reporter,
SkScalarNearlyEqual(dst.radii((SkRRect::Corner)i).fY, halfHeight));
}
}
DEF_TEST(RoundRect, reporter) {
test_round_rect_basic(reporter);
test_round_rect_rects(reporter);
test_round_rect_ovals(reporter);
test_round_rect_general(reporter);
test_round_rect_iffy_parameters(reporter);
test_inset(reporter);
test_round_rect_contains_rect(reporter);
test_round_rect_transform(reporter);
test_issue_2696(reporter);
}