| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "DMSrcSink.h" |
| #include <cmath> |
| #include <functional> |
| #include "../src/jumper/SkJumper.h" |
| #include "Resources.h" |
| #include "SkAndroidCodec.h" |
| #include "SkAutoMalloc.h" |
| #include "SkBase64.h" |
| #include "SkCodec.h" |
| #include "SkCodecImageGenerator.h" |
| #include "SkColorSpace.h" |
| #include "SkColorSpaceXform.h" |
| #include "SkColorSpaceXformCanvas.h" |
| #include "SkColorSpace_XYZ.h" |
| #include "SkCommonFlags.h" |
| #include "SkCommonFlagsGpu.h" |
| #include "SkData.h" |
| #include "SkDebugCanvas.h" |
| #include "SkDeferredDisplayListRecorder.h" |
| #include "SkDocument.h" |
| #include "SkExecutor.h" |
| #include "SkImageGenerator.h" |
| #include "SkImageGeneratorCG.h" |
| #include "SkImageGeneratorWIC.h" |
| #include "SkImageInfoPriv.h" |
| #include "SkLiteDL.h" |
| #include "SkLiteRecorder.h" |
| #include "SkMallocPixelRef.h" |
| #include "SkMultiPictureDocumentPriv.h" |
| #include "SkMultiPictureDraw.h" |
| #include "SkNullCanvas.h" |
| #include "SkOSFile.h" |
| #include "SkOSPath.h" |
| #include "SkOpts.h" |
| #include "SkPictureCommon.h" |
| #include "SkPictureData.h" |
| #include "SkPictureRecorder.h" |
| #include "SkPipe.h" |
| #include "SkPngEncoder.h" |
| #include "SkRandom.h" |
| #include "SkRecordDraw.h" |
| #include "SkRecorder.h" |
| #include "SkStream.h" |
| #include "SkSurfaceCharacterization.h" |
| #include "SkSwizzler.h" |
| #include "SkTLogic.h" |
| #include "SkTaskGroup.h" |
| #include "SkThreadedBMPDevice.h" |
| #if defined(SK_BUILD_FOR_WIN) |
| #include "SkAutoCoInitialize.h" |
| #include "SkHRESULT.h" |
| #include "SkTScopedComPtr.h" |
| #include <XpsObjectModel.h> |
| #endif |
| |
| #if !defined(SK_BUILD_FOR_GOOGLE3) |
| #include "Skottie.h" |
| #endif |
| |
| #if defined(SK_XML) |
| #include "SkSVGCanvas.h" |
| #include "SkSVGDOM.h" |
| #include "SkXMLWriter.h" |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| #include "GrBackendSurface.h" |
| #include "GrContextPriv.h" |
| #include "GrGpu.h" |
| #endif |
| |
| DEFINE_bool(multiPage, false, "For document-type backends, render the source" |
| " into multiple pages"); |
| DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?"); |
| |
| using sk_gpu_test::GrContextFactory; |
| |
| namespace DM { |
| |
| GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} |
| |
| Error GMSrc::draw(SkCanvas* canvas) const { |
| std::unique_ptr<skiagm::GM> gm(fFactory(nullptr)); |
| gm->draw(canvas); |
| return ""; |
| } |
| |
| SkISize GMSrc::size() const { |
| std::unique_ptr<skiagm::GM> gm(fFactory(nullptr)); |
| return gm->getISize(); |
| } |
| |
| Name GMSrc::name() const { |
| std::unique_ptr<skiagm::GM> gm(fFactory(nullptr)); |
| return gm->getName(); |
| } |
| |
| void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { |
| std::unique_ptr<skiagm::GM> gm(fFactory(nullptr)); |
| gm->modifyGrContextOptions(options); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fSampleSize(sampleSize) |
| {} |
| |
| bool BRDSrc::veto(SinkFlags flags) const { |
| // No need to test to non-raster or indirect backends. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| static SkBitmapRegionDecoder* create_brd(Path path) { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str())); |
| if (!encoded) { |
| return nullptr; |
| } |
| return SkBitmapRegionDecoder::Create(encoded, SkBitmapRegionDecoder::kAndroidCodec_Strategy); |
| } |
| |
| static inline void alpha8_to_gray8(SkBitmap* bitmap) { |
| // Android requires kGray8 bitmaps to be tagged as kAlpha8. Here we convert |
| // them back to kGray8 so our test framework can draw them correctly. |
| if (kAlpha_8_SkColorType == bitmap->info().colorType()) { |
| SkImageInfo newInfo = bitmap->info().makeColorType(kGray_8_SkColorType) |
| .makeAlphaType(kOpaque_SkAlphaType); |
| *const_cast<SkImageInfo*>(&bitmap->info()) = newInfo; |
| } |
| } |
| |
| Error BRDSrc::draw(SkCanvas* canvas) const { |
| if (canvas->imageInfo().colorSpace() && |
| kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) { |
| // SkAndroidCodec uses legacy premultiplication and blending. Therefore, we only |
| // run these tests on legacy canvases. |
| // We allow an exception for F16, since Android uses F16. |
| return Error::Nonfatal("Skip testing to color correct canvas."); |
| } |
| |
| SkColorType colorType = canvas->imageInfo().colorType(); |
| if (kRGB_565_SkColorType == colorType && |
| CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { |
| return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); |
| } |
| switch (fDstColorType) { |
| case CodecSrc::kGetFromCanvas_DstColorType: |
| break; |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| colorType = kGray_8_SkColorType; |
| break; |
| default: |
| SkASSERT(false); |
| break; |
| } |
| |
| std::unique_ptr<SkBitmapRegionDecoder> brd(create_brd(fPath)); |
| if (nullptr == brd.get()) { |
| return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str())); |
| } |
| |
| auto recommendedCT = brd->computeOutputColorType(colorType); |
| if (kRGB_565_SkColorType == colorType && recommendedCT != colorType) { |
| return Error::Nonfatal("Skip decoding non-opaque to 565."); |
| } |
| colorType = recommendedCT; |
| |
| auto colorSpace = brd->computeOutputColorSpace(colorType, nullptr); |
| |
| const uint32_t width = brd->width(); |
| const uint32_t height = brd->height(); |
| // Visually inspecting very small output images is not necessary. |
| if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| switch (fMode) { |
| case kFullImage_Mode: { |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), |
| fSampleSize, colorType, false, colorSpace)) { |
| return "Cannot decode (full) region."; |
| } |
| alpha8_to_gray8(&bitmap); |
| |
| canvas->drawBitmap(bitmap, 0, 0); |
| return ""; |
| } |
| case kDivisor_Mode: { |
| const uint32_t divisor = 2; |
| if (width < divisor || height < divisor) { |
| return Error::Nonfatal("Divisor is larger than image dimension."); |
| } |
| |
| // Use a border to test subsets that extend outside the image. |
| // We will not allow the border to be larger than the image dimensions. Allowing |
| // these large borders causes off by one errors that indicate a problem with the |
| // test suite, not a problem with the implementation. |
| const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor); |
| const uint32_t scaledBorder = SkTMin(5u, maxBorder); |
| const uint32_t unscaledBorder = scaledBorder * fSampleSize; |
| |
| // We may need to clear the canvas to avoid uninitialized memory. |
| // Assume we are scaling a 780x780 image with sampleSize = 8. |
| // The output image should be 97x97. |
| // Each subset will be 390x390. |
| // Each scaled subset be 48x48. |
| // Four scaled subsets will only fill a 96x96 image. |
| // The bottom row and last column will not be touched. |
| // This is an unfortunate result of our rounding rules when scaling. |
| // Maybe we need to consider testing scaled subsets without trying to |
| // combine them to match the full scaled image? Or maybe this is the |
| // best we can do? |
| canvas->clear(0); |
| |
| for (uint32_t x = 0; x < divisor; x++) { |
| for (uint32_t y = 0; y < divisor; y++) { |
| // Calculate the subset dimensions |
| uint32_t subsetWidth = width / divisor; |
| uint32_t subsetHeight = height / divisor; |
| const int left = x * subsetWidth; |
| const int top = y * subsetHeight; |
| |
| // Increase the size of the last subset in each row or column, when the |
| // divisor does not divide evenly into the image dimensions |
| subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; |
| subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; |
| |
| // Increase the size of the subset in order to have a border on each side |
| const int decodeLeft = left - unscaledBorder; |
| const int decodeTop = top - unscaledBorder; |
| const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; |
| const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, |
| decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false, |
| colorSpace)) { |
| return "Cannot decode region."; |
| } |
| |
| alpha8_to_gray8(&bitmap); |
| canvas->drawBitmapRect(bitmap, |
| SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| SkRect::MakeXYWH((SkScalar) (left / fSampleSize), |
| (SkScalar) (top / fSampleSize), |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| nullptr); |
| } |
| } |
| return ""; |
| } |
| default: |
| SkASSERT(false); |
| return "Error: Should not be reached."; |
| } |
| } |
| |
| SkISize BRDSrc::size() const { |
| std::unique_ptr<SkBitmapRegionDecoder> brd(create_brd(fPath)); |
| if (brd) { |
| return {SkTMax(1, brd->width() / (int)fSampleSize), |
| SkTMax(1, brd->height() / (int)fSampleSize)}; |
| } |
| return {0, 0}; |
| } |
| |
| static SkString get_scaled_name(const Path& path, float scale) { |
| return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); |
| } |
| |
| Name BRDSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, 1.0f / (float) fSampleSize); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static bool serial_from_path_name(const SkString& path) { |
| if (!FLAGS_RAW_threading) { |
| static const char* const exts[] = { |
| "arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw", |
| "ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW", |
| }; |
| const char* actualExt = strrchr(path.c_str(), '.'); |
| if (actualExt) { |
| actualExt++; |
| for (auto* ext : exts) { |
| if (0 == strcmp(ext, actualExt)) { |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType, |
| float scale) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fDstAlphaType(dstAlphaType) |
| , fScale(scale) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool CodecSrc::veto(SinkFlags flags) const { |
| // Test to direct raster backends (8888 and 565). |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| // Allows us to test decodes to non-native 8888. |
| static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) { |
| if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) { |
| return; |
| } |
| |
| for (int y = 0; y < bitmap.height(); y++) { |
| uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); |
| SkOpts::RGBA_to_BGRA(row, row, bitmap.width()); |
| } |
| } |
| |
| // FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339. |
| // This allows us to still test unpremultiplied decodes. |
| static void premultiply_if_necessary(SkBitmap& bitmap) { |
| if (kUnpremul_SkAlphaType != bitmap.alphaType()) { |
| return; |
| } |
| |
| switch (bitmap.colorType()) { |
| case kRGBA_F16_SkColorType: { |
| SkJumper_MemoryCtx ctx = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() }; |
| SkRasterPipeline_<256> p; |
| p.append(SkRasterPipeline::load_f16, &ctx); |
| p.append(SkRasterPipeline::premul); |
| p.append(SkRasterPipeline::store_f16, &ctx); |
| p.run(0,0, bitmap.width(), bitmap.height()); |
| } |
| break; |
| case kN32_SkColorType: |
| for (int y = 0; y < bitmap.height(); y++) { |
| uint32_t* row = (uint32_t*) bitmap.getAddr(0, y); |
| SkOpts::RGBA_to_rgbA(row, row, bitmap.width()); |
| } |
| break; |
| default: |
| // No need to premultiply kGray or k565 outputs. |
| break; |
| } |
| |
| // In the kIndex_8 case, the canvas won't even try to draw unless we mark the |
| // bitmap as kPremul. |
| bitmap.setAlphaType(kPremul_SkAlphaType); |
| } |
| |
| static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType, |
| CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) { |
| switch (dstColorType) { |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType) { |
| return false; |
| } |
| *decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType); |
| break; |
| case CodecSrc::kNonNative8888_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType |
| || kRGBA_F16_SkColorType == canvasColorType) { |
| return false; |
| } |
| #ifdef SK_PMCOLOR_IS_RGBA |
| *decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType); |
| #else |
| *decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType); |
| #endif |
| break; |
| default: |
| if (kRGB_565_SkColorType == canvasColorType && |
| kOpaque_SkAlphaType != decodeInfo->alphaType()) { |
| return false; |
| } |
| |
| if (kRGBA_F16_SkColorType == canvasColorType) { |
| sk_sp<SkColorSpace> linearSpace = decodeInfo->colorSpace()->makeLinearGamma(); |
| *decodeInfo = decodeInfo->makeColorSpace(std::move(linearSpace)); |
| } |
| |
| *decodeInfo = decodeInfo->makeColorType(canvasColorType); |
| break; |
| } |
| |
| *decodeInfo = decodeInfo->makeAlphaType(dstAlphaType); |
| return true; |
| } |
| |
| static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes, |
| CodecSrc::DstColorType dstColorType, |
| SkScalar left = 0, SkScalar top = 0) { |
| SkBitmap bitmap; |
| bitmap.installPixels(info, pixels, rowBytes); |
| premultiply_if_necessary(bitmap); |
| swap_rb_if_necessary(bitmap, dstColorType); |
| canvas->drawBitmap(bitmap, left, top); |
| } |
| |
| // For codec srcs, we want the "draw" step to be a memcpy. Any interesting color space or |
| // color format conversions should be performed by the codec. Sometimes the output of the |
| // decode will be in an interesting color space. On our srgb and f16 backends, we need to |
| // "pretend" that the color space is standard sRGB to avoid triggering color conversion |
| // at draw time. |
| static void set_bitmap_color_space(SkImageInfo* info) { |
| if (kRGBA_F16_SkColorType == info->colorType()) { |
| *info = info->makeColorSpace(SkColorSpace::MakeSRGBLinear()); |
| } else { |
| *info = info->makeColorSpace(SkColorSpace::MakeSRGB()); |
| } |
| } |
| |
| Error CodecSrc::draw(SkCanvas* canvas) const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec.get()) { |
| return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo(); |
| if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, |
| fDstAlphaType)) { |
| return Error::Nonfatal("Skipping uninteresting test."); |
| } |
| |
| // Try to scale the image if it is desired |
| SkISize size = codec->getScaledDimensions(fScale); |
| if (size == decodeInfo.dimensions() && 1.0f != fScale) { |
| return Error::Nonfatal("Test without scaling is uninteresting."); |
| } |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeWH(size.width(), size.height()); |
| |
| const int bpp = decodeInfo.bytesPerPixel(); |
| const size_t rowBytes = size.width() * bpp; |
| const size_t safeSize = decodeInfo.computeByteSize(rowBytes); |
| SkAutoMalloc pixels(safeSize); |
| |
| SkCodec::Options options; |
| options.fPremulBehavior = canvas->imageInfo().colorSpace() ? |
| SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; |
| if (kCodecZeroInit_Mode == fMode) { |
| memset(pixels.get(), 0, size.height() * rowBytes); |
| options.fZeroInitialized = SkCodec::kYes_ZeroInitialized; |
| } |
| |
| SkImageInfo bitmapInfo = decodeInfo; |
| set_bitmap_color_space(&bitmapInfo); |
| if (kRGBA_8888_SkColorType == decodeInfo.colorType() || |
| kBGRA_8888_SkColorType == decodeInfo.colorType()) { |
| bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); |
| } |
| |
| switch (fMode) { |
| case kAnimated_Mode: { |
| std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo(); |
| if (frameInfos.size() <= 1) { |
| return SkStringPrintf("%s is not an animated image.", fPath.c_str()); |
| } |
| |
| // As in CodecSrc::size(), compute a roughly square grid to draw the frames |
| // into. "factor" is the number of frames to draw on one row. There will be |
| // up to "factor" rows as well. |
| const float root = sqrt((float) frameInfos.size()); |
| const int factor = sk_float_ceil2int(root); |
| |
| // Used to cache a frame that future frames will depend on. |
| SkAutoMalloc priorFramePixels; |
| int cachedFrame = SkCodec::kNone; |
| for (int i = 0; static_cast<size_t>(i) < frameInfos.size(); i++) { |
| options.fFrameIndex = i; |
| // Check for a prior frame |
| const int reqFrame = frameInfos[i].fRequiredFrame; |
| if (reqFrame != SkCodec::kNone && reqFrame == cachedFrame |
| && priorFramePixels.get()) { |
| // Copy into pixels |
| memcpy(pixels.get(), priorFramePixels.get(), safeSize); |
| options.fPriorFrame = reqFrame; |
| } else { |
| options.fPriorFrame = SkCodec::kNone; |
| } |
| SkCodec::Result result = codec->getPixels(decodeInfo, pixels.get(), |
| rowBytes, &options); |
| if (SkCodec::kInvalidInput == result && i > 0) { |
| // Some of our test images have truncated later frames. Treat that |
| // the same as incomplete. |
| result = SkCodec::kIncompleteInput; |
| } |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: { |
| // If the next frame depends on this one, store it in priorFrame. |
| // It is possible that we may discard a frame that future frames depend on, |
| // but the codec will simply redecode the discarded frame. |
| // Do this before calling draw_to_canvas, which premultiplies in place. If |
| // we're decoding to unpremul, we want to pass the unmodified frame to the |
| // codec for decoding the next frame. |
| if (static_cast<size_t>(i+1) < frameInfos.size() |
| && frameInfos[i+1].fRequiredFrame == i) { |
| memcpy(priorFramePixels.reset(safeSize), pixels.get(), safeSize); |
| cachedFrame = i; |
| } |
| |
| SkAutoCanvasRestore acr(canvas, true); |
| const int xTranslate = (i % factor) * decodeInfo.width(); |
| const int yTranslate = (i / factor) * decodeInfo.height(); |
| canvas->translate(SkIntToScalar(xTranslate), SkIntToScalar(yTranslate)); |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| if (result != SkCodec::kSuccess) { |
| return ""; |
| } |
| break; |
| } |
| case SkCodec::kInvalidConversion: |
| if (i > 0 && (decodeInfo.colorType() == kRGB_565_SkColorType)) { |
| return Error::Nonfatal(SkStringPrintf( |
| "Cannot decode frame %i to 565 (%s).", i, fPath.c_str())); |
| } |
| // Fall through. |
| default: |
| return SkStringPrintf("Couldn't getPixels for frame %i in %s.", |
| i, fPath.c_str()); |
| } |
| } |
| break; |
| } |
| case kCodecZeroInit_Mode: |
| case kCodec_Mode: { |
| switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { |
| case SkCodec::kSuccess: |
| // We consider these to be valid, since we should still decode what is |
| // available. |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| // Everything else is considered a failure. |
| return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| break; |
| } |
| case kScanline_Mode: { |
| void* dst = pixels.get(); |
| uint32_t height = decodeInfo.height(); |
| const bool useIncremental = [this]() { |
| auto exts = { "png", "PNG", "gif", "GIF" }; |
| for (auto ext : exts) { |
| if (fPath.endsWith(ext)) { |
| return true; |
| } |
| } |
| return false; |
| }(); |
| // ico may use the old scanline method or the new one, depending on whether it |
| // internally holds a bmp or a png. |
| const bool ico = fPath.endsWith("ico"); |
| bool useOldScanlineMethod = !useIncremental && !ico; |
| if (useIncremental || ico) { |
| if (SkCodec::kSuccess == codec->startIncrementalDecode(decodeInfo, dst, |
| rowBytes, &options)) { |
| int rowsDecoded; |
| auto result = codec->incrementalDecode(&rowsDecoded); |
| if (SkCodec::kIncompleteInput == result || SkCodec::kErrorInInput == result) { |
| codec->fillIncompleteImage(decodeInfo, dst, rowBytes, |
| SkCodec::kNo_ZeroInitialized, height, |
| rowsDecoded); |
| } |
| } else { |
| if (useIncremental) { |
| // Error: These should support incremental decode. |
| return "Could not start incremental decode"; |
| } |
| // Otherwise, this is an ICO. Since incremental failed, it must contain a BMP, |
| // which should work via startScanlineDecode |
| useOldScanlineMethod = true; |
| } |
| } |
| |
| if (useOldScanlineMethod) { |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) { |
| return "Could not start scanline decoder"; |
| } |
| |
| // We do not need to check the return value. On an incomplete |
| // image, memory will be filled with a default value. |
| codec->getScanlines(dst, height, rowBytes); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); |
| break; |
| } |
| case kStripe_Mode: { |
| const int height = decodeInfo.height(); |
| // This value is chosen arbitrarily. We exercise more cases by choosing a value that |
| // does not align with image blocks. |
| const int stripeHeight = 37; |
| const int numStripes = (height + stripeHeight - 1) / stripeHeight; |
| void* dst = pixels.get(); |
| |
| // Decode odd stripes |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { |
| return "Could not start scanline decoder"; |
| } |
| |
| // This mode was designed to test the new skip scanlines API in libjpeg-turbo. |
| // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting |
| // to run this test for image types that do not have this scanline ordering. |
| // We only run this on Jpeg, which is always kTopDown. |
| SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()); |
| |
| for (int i = 0; i < numStripes; i += 2) { |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); |
| codec->skipScanlines(linesToSkip); |
| |
| // Read a stripe |
| const int startY = (i + 1) * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| if (linesToRead > 0) { |
| codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead, |
| rowBytes); |
| } |
| } |
| |
| // Decode even stripes |
| const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo); |
| if (SkCodec::kSuccess != startResult) { |
| return "Failed to restart scanline decoder with same parameters."; |
| } |
| for (int i = 0; i < numStripes; i += 2) { |
| // Read a stripe |
| const int startY = i * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead, |
| rowBytes); |
| |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); |
| if (linesToSkip > 0) { |
| codec->skipScanlines(linesToSkip); |
| } |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, fDstColorType); |
| break; |
| } |
| case kCroppedScanline_Mode: { |
| const int width = decodeInfo.width(); |
| const int height = decodeInfo.height(); |
| // This value is chosen because, as we move across the image, it will sometimes |
| // align with the jpeg block sizes and it will sometimes not. This allows us |
| // to test interestingly different code paths in the implementation. |
| const int tileSize = 36; |
| SkIRect subset; |
| for (int x = 0; x < width; x += tileSize) { |
| subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height); |
| options.fSubset = ⊂ |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options)) { |
| return "Could not start scanline decoder."; |
| } |
| |
| codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes); |
| } |
| |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| break; |
| } |
| case kSubset_Mode: { |
| // Arbitrarily choose a divisor. |
| int divisor = 2; |
| // Total width/height of the image. |
| const int W = codec->getInfo().width(); |
| const int H = codec->getInfo().height(); |
| if (divisor > W || divisor > H) { |
| return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big " |
| "for %s with dimensions (%d x %d)", divisor, |
| fPath.c_str(), W, H)); |
| } |
| // subset dimensions |
| // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. |
| const int w = SkAlign2(W / divisor); |
| const int h = SkAlign2(H / divisor); |
| SkIRect subset; |
| options.fSubset = ⊂ |
| SkBitmap subsetBm; |
| // We will reuse pixel memory from bitmap. |
| void* dst = pixels.get(); |
| // Keep track of left and top (for drawing subsetBm into canvas). We could use |
| // fScale * x and fScale * y, but we want integers such that the next subset will start |
| // where the last one ended. So we'll add decodeInfo.width() and height(). |
| int left = 0; |
| for (int x = 0; x < W; x += w) { |
| int top = 0; |
| for (int y = 0; y < H; y+= h) { |
| // Do not make the subset go off the edge of the image. |
| const int preScaleW = SkTMin(w, W - x); |
| const int preScaleH = SkTMin(h, H - y); |
| subset.setXYWH(x, y, preScaleW, preScaleH); |
| // And scale |
| // FIXME: Should we have a version of getScaledDimensions that takes a subset |
| // into account? |
| const int scaledW = SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)); |
| const int scaledH = SkTMax(1, SkScalarRoundToInt(preScaleH * fScale)); |
| decodeInfo = decodeInfo.makeWH(scaledW, scaledH); |
| SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH); |
| size_t subsetRowBytes = subsetBitmapInfo.minRowBytes(); |
| const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes, |
| &options); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) " |
| "from %s with dimensions (%d x %d)\t error %d", |
| x, y, decodeInfo.width(), decodeInfo.height(), |
| fPath.c_str(), W, H, result); |
| } |
| draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, fDstColorType, |
| SkIntToScalar(left), SkIntToScalar(top)); |
| |
| // translate by the scaled height. |
| top += decodeInfo.height(); |
| } |
| // translate by the scaled width. |
| left += decodeInfo.width(); |
| } |
| return ""; |
| } |
| default: |
| SkASSERT(false); |
| return "Invalid fMode"; |
| } |
| return ""; |
| } |
| |
| SkISize CodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| |
| auto imageSize = codec->getScaledDimensions(fScale); |
| if (fMode == kAnimated_Mode) { |
| // We'll draw one of each frame, so make it big enough to hold them all |
| // in a grid. The grid will be roughly square, with "factor" frames per |
| // row and up to "factor" rows. |
| const size_t count = codec->getFrameInfo().size(); |
| const float root = sqrt((float) count); |
| const int factor = sk_float_ceil2int(root); |
| imageSize.fWidth = imageSize.fWidth * factor; |
| imageSize.fHeight = imageSize.fHeight * sk_float_ceil2int((float) count / (float) factor); |
| } |
| return imageSize; |
| } |
| |
| Name CodecSrc::name() const { |
| if (1.0f == fScale) { |
| Name name = SkOSPath::Basename(fPath.c_str()); |
| if (fMode == kAnimated_Mode) { |
| name.append("_animated"); |
| } |
| return name; |
| } |
| SkASSERT(fMode != kAnimated_Mode); |
| return get_scaled_name(fPath, fScale); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType, |
| SkAlphaType dstAlphaType, int sampleSize) |
| : fPath(path) |
| , fDstColorType(dstColorType) |
| , fDstAlphaType(dstAlphaType) |
| , fSampleSize(sampleSize) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool AndroidCodecSrc::veto(SinkFlags flags) const { |
| // No need to test decoding to non-raster or indirect backend. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Error AndroidCodecSrc::draw(SkCanvas* canvas) const { |
| if (canvas->imageInfo().colorSpace() && |
| kRGBA_F16_SkColorType != canvas->imageInfo().colorType()) { |
| // SkAndroidCodec uses legacy premultiplication and blending. Therefore, we only |
| // run these tests on legacy canvases. |
| // We allow an exception for F16, since Android uses F16. |
| return Error::Nonfatal("Skip testing to color correct canvas."); |
| } |
| |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo(); |
| if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType, |
| fDstAlphaType)) { |
| return Error::Nonfatal("Skipping uninteresting test."); |
| } |
| |
| // Scale the image if it is desired. |
| SkISize size = codec->getSampledDimensions(fSampleSize); |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeWH(size.width(), size.height()); |
| |
| int bpp = decodeInfo.bytesPerPixel(); |
| size_t rowBytes = size.width() * bpp; |
| SkAutoMalloc pixels(size.height() * rowBytes); |
| |
| SkBitmap bitmap; |
| SkImageInfo bitmapInfo = decodeInfo; |
| set_bitmap_color_space(&bitmapInfo); |
| if (kRGBA_8888_SkColorType == decodeInfo.colorType() || |
| kBGRA_8888_SkColorType == decodeInfo.colorType()) { |
| bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); |
| } |
| |
| // Create options for the codec. |
| SkAndroidCodec::AndroidOptions options; |
| options.fSampleSize = fSampleSize; |
| |
| switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, fDstColorType); |
| return ""; |
| } |
| |
| SkISize AndroidCodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return codec->getSampledDimensions(fSampleSize); |
| } |
| |
| Name AndroidCodecSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, 1.0f / (float) fSampleSize); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu) |
| : fPath(path) |
| , fMode(mode) |
| , fDstAlphaType(alphaType) |
| , fIsGpu(isGpu) |
| , fRunSerially(serial_from_path_name(path)) |
| {} |
| |
| bool ImageGenSrc::veto(SinkFlags flags) const { |
| if (fIsGpu) { |
| // MSAA runs tend to run out of memory and tests the same code paths as regular gpu configs. |
| return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect || |
| flags.multisampled == SinkFlags::kMultisampled; |
| } |
| |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Error ImageGenSrc::draw(SkCanvas* canvas) const { |
| if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { |
| return Error::Nonfatal("Uninteresting to test image generator to 565."); |
| } |
| |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| // Initialize COM in order to test with WIC. |
| SkAutoCoInitialize com; |
| if (!com.succeeded()) { |
| return "Could not initialize COM."; |
| } |
| #endif |
| |
| std::unique_ptr<SkImageGenerator> gen(nullptr); |
| switch (fMode) { |
| case kCodec_Mode: |
| gen = SkCodecImageGenerator::MakeFromEncodedCodec(encoded); |
| if (!gen) { |
| return "Could not create codec image generator."; |
| } |
| break; |
| case kPlatform_Mode: { |
| #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) |
| gen = SkImageGeneratorCG::MakeFromEncodedCG(encoded); |
| #elif defined(SK_BUILD_FOR_WIN) |
| gen.reset(SkImageGeneratorWIC::NewFromEncodedWIC(encoded.get())); |
| #endif |
| |
| if (!gen) { |
| return "Could not create platform image generator."; |
| } |
| break; |
| } |
| default: |
| SkASSERT(false); |
| return "Invalid image generator mode"; |
| } |
| |
| // Test deferred decoding path on GPU |
| if (fIsGpu) { |
| sk_sp<SkImage> image(SkImage::MakeFromGenerator(std::move(gen), nullptr)); |
| if (!image) { |
| return "Could not create image from codec image generator."; |
| } |
| canvas->drawImage(image, 0, 0); |
| return ""; |
| } |
| |
| // Test various color and alpha types on CPU |
| SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType); |
| |
| SkImageGenerator::Options options; |
| options.fBehavior = canvas->imageInfo().colorSpace() ? |
| SkTransferFunctionBehavior::kRespect : SkTransferFunctionBehavior::kIgnore; |
| |
| int bpp = decodeInfo.bytesPerPixel(); |
| size_t rowBytes = decodeInfo.width() * bpp; |
| SkAutoMalloc pixels(decodeInfo.height() * rowBytes); |
| if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes, &options)) { |
| SkString err = |
| SkStringPrintf("Image generator could not getPixels() for %s\n", fPath.c_str()); |
| |
| #if defined(SK_BUILD_FOR_WIN) |
| if (kPlatform_Mode == fMode) { |
| // Do not issue a fatal error for WIC flakiness. |
| return Error::Nonfatal(err); |
| } |
| #endif |
| |
| return err; |
| } |
| |
| set_bitmap_color_space(&decodeInfo); |
| draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, |
| CodecSrc::kGetFromCanvas_DstColorType); |
| return ""; |
| } |
| |
| SkISize ImageGenSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return codec->getInfo().dimensions(); |
| } |
| |
| Name ImageGenSrc::name() const { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ColorCodecSrc::ColorCodecSrc(Path path, Mode mode, SkColorType colorType) |
| : fPath(path) |
| , fMode(mode) |
| , fColorType(colorType) |
| {} |
| |
| bool ColorCodecSrc::veto(SinkFlags flags) const { |
| // Test to direct raster backends (8888 and 565). |
| return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect; |
| } |
| |
| void clamp_if_necessary(const SkBitmap& bitmap, SkColorType dstCT) { |
| if (kRGBA_F16_SkColorType != bitmap.colorType() || kRGBA_F16_SkColorType == dstCT) { |
| // No need to clamp if the dst is F16. We will clamp when we encode to PNG. |
| return; |
| } |
| |
| SkJumper_MemoryCtx ptr = { bitmap.getAddr(0,0), bitmap.rowBytesAsPixels() }; |
| |
| SkRasterPipeline_<256> p; |
| p.append(SkRasterPipeline::load_f16, &ptr); |
| p.append(SkRasterPipeline::clamp_0); |
| if (kPremul_SkAlphaType == bitmap.alphaType()) { |
| p.append(SkRasterPipeline::clamp_a); |
| } else { |
| p.append(SkRasterPipeline::clamp_1); |
| } |
| p.append(SkRasterPipeline::store_f16, &ptr); |
| |
| p.run(0,0, bitmap.width(), bitmap.height()); |
| } |
| |
| Error ColorCodecSrc::draw(SkCanvas* canvas) const { |
| if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) { |
| return Error::Nonfatal("No need to test color correction to 565 backend."); |
| } |
| |
| bool runInLegacyMode = kBaseline_Mode == fMode; |
| if (runInLegacyMode && canvas->imageInfo().colorSpace()) { |
| return Error::Nonfatal("Skipping tests that are only interesting in legacy mode."); |
| } else if (!runInLegacyMode && !canvas->imageInfo().colorSpace()) { |
| return Error::Nonfatal("Skipping tests that are only interesting in srgb mode."); |
| } |
| |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); |
| } |
| |
| // Load the dst ICC profile. This particular dst is fairly similar to Adobe RGB. |
| sk_sp<SkData> dstData = GetResourceAsData("icc_profiles/HP_ZR30w.icc"); |
| if (!dstData) { |
| return "Cannot read monitor profile. Is the resource path set correctly?"; |
| } |
| |
| sk_sp<SkColorSpace> dstSpace = nullptr; |
| if (kDst_sRGB_Mode == fMode) { |
| dstSpace = SkColorSpace::MakeSRGB(); |
| } else if (kDst_HPZR30w_Mode == fMode) { |
| dstSpace = SkColorSpace::MakeICC(dstData->data(), dstData->size()); |
| } |
| |
| SkImageInfo decodeInfo = codec->getInfo().makeColorType(fColorType).makeColorSpace(dstSpace); |
| if (kUnpremul_SkAlphaType == decodeInfo.alphaType()) { |
| decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType); |
| } |
| if (kRGBA_F16_SkColorType == fColorType) { |
| decodeInfo = decodeInfo.makeColorSpace(decodeInfo.colorSpace()->makeLinearGamma()); |
| } |
| |
| SkImageInfo bitmapInfo = decodeInfo; |
| set_bitmap_color_space(&bitmapInfo); |
| if (kRGBA_8888_SkColorType == decodeInfo.colorType() || |
| kBGRA_8888_SkColorType == decodeInfo.colorType()) |
| { |
| bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType); |
| } |
| |
| SkBitmap bitmap; |
| if (!bitmap.tryAllocPixels(bitmapInfo)) { |
| return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(), |
| bitmapInfo.width(), bitmapInfo.height()); |
| } |
| |
| size_t rowBytes = bitmap.rowBytes(); |
| SkCodec::Result r = codec->getPixels(decodeInfo, bitmap.getPixels(), rowBytes); |
| switch (r) { |
| case SkCodec::kSuccess: |
| case SkCodec::kErrorInInput: |
| case SkCodec::kIncompleteInput: |
| break; |
| default: |
| return SkStringPrintf("Couldn't getPixels %s. Error code %d", fPath.c_str(), r); |
| } |
| |
| switch (fMode) { |
| case kBaseline_Mode: |
| case kDst_sRGB_Mode: |
| case kDst_HPZR30w_Mode: |
| // We do not support drawing unclamped F16. |
| clamp_if_necessary(bitmap, canvas->imageInfo().colorType()); |
| canvas->drawBitmap(bitmap, 0, 0); |
| break; |
| default: |
| SkASSERT(false); |
| return "Invalid fMode"; |
| } |
| return ""; |
| } |
| |
| SkISize ColorCodecSrc::size() const { |
| sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str())); |
| std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded)); |
| if (nullptr == codec) { |
| return {0, 0}; |
| } |
| return {codec->getInfo().width(), codec->getInfo().height()}; |
| } |
| |
| Name ColorCodecSrc::name() const { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SKPSrc::SKPSrc(Path path) : fPath(path) { } |
| |
| static sk_sp<SkPicture> read_skp(const char* path, const SkDeserialProcs* procs = nullptr) { |
| std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path); |
| if (!stream) { |
| return nullptr; |
| } |
| sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream.get(), procs)); |
| if (!pic) { |
| return nullptr; |
| } |
| stream = nullptr; // Might as well drop this when we're done with it. |
| |
| return pic; |
| } |
| |
| Error SKPSrc::draw(SkCanvas* canvas) const { |
| sk_sp<SkPicture> pic = read_skp(fPath.c_str()); |
| if (!pic) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| |
| canvas->clipRect(SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)); |
| canvas->drawPicture(pic); |
| return ""; |
| } |
| |
| static SkRect get_cull_rect_for_skp(const char* path) { |
| std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path); |
| if (!stream) { |
| return SkRect::MakeEmpty(); |
| } |
| SkPictInfo info; |
| if (!SkPicture_StreamIsSKP(stream.get(), &info)) { |
| return SkRect::MakeEmpty(); |
| } |
| |
| return info.fCullRect; |
| } |
| |
| SkISize SKPSrc::size() const { |
| SkRect viewport = get_cull_rect_for_skp(fPath.c_str()); |
| if (!viewport.intersect((SkRect::MakeWH(FLAGS_skpViewportSize, FLAGS_skpViewportSize)))) { |
| return {0, 0}; |
| } |
| return viewport.roundOut().size(); |
| } |
| |
| Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| #if !defined(SK_BUILD_FOR_GOOGLE3) |
| SkottieSrc::SkottieSrc(Path path) |
| : fName(SkOSPath::Basename(path.c_str())) { |
| |
| fAnimation = skottie::Animation::MakeFromFile(path.c_str()); |
| if (!fAnimation) { |
| return; |
| } |
| |
| // Fit kTileCount x kTileCount frames to a 1000x1000 film strip. |
| static constexpr SkScalar kTargetSize = 1000; |
| fTileSize = SkSize::Make(kTargetSize / kTileCount, kTargetSize / kTileCount).toCeil(); |
| } |
| |
| Error SkottieSrc::draw(SkCanvas* canvas) const { |
| if (!fAnimation) { |
| return SkStringPrintf("Unable to parse file: %s", fName.c_str()); |
| } |
| |
| canvas->drawColor(SK_ColorWHITE); |
| |
| const auto ip = fAnimation->inPoint() * 1000 / fAnimation->frameRate(), |
| op = fAnimation->outPoint() * 1000 / fAnimation->frameRate(), |
| fr = (op - ip) / (kTileCount * kTileCount - 1); |
| |
| // Shuffled order to exercise non-linear frame progression. |
| static constexpr int frames[] = { 4, 0, 3, 1, 2 }; |
| static_assert(SK_ARRAY_COUNT(frames) == kTileCount, ""); |
| |
| for (int i = 0; i < kTileCount; ++i) { |
| const SkScalar y = frames[i] * fTileSize.height(); |
| |
| for (int j = 0; j < kTileCount; ++j) { |
| const SkScalar x = frames[j] * fTileSize.width(); |
| SkRect dest = SkRect::MakeXYWH(x, y, fTileSize.width(), fTileSize.height()); |
| |
| const auto t = fr * (frames[i] * kTileCount + frames[j]); |
| { |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->clipRect(dest, true); |
| canvas->concat(SkMatrix::MakeRectToRect(SkRect::MakeSize(fAnimation->size()), |
| dest, |
| SkMatrix::kCenter_ScaleToFit)); |
| |
| fAnimation->animationTick(t); |
| fAnimation->render(canvas); |
| } |
| } |
| } |
| |
| return ""; |
| } |
| |
| SkISize SkottieSrc::size() const { |
| return SkISize::Make(kTileCount * fTileSize.width(), |
| kTileCount * fTileSize.height()); |
| } |
| |
| Name SkottieSrc::name() const { return fName; } |
| |
| bool SkottieSrc::veto(SinkFlags flags) const { |
| // No need to test to non-(raster||gpu||vector) or indirect backends. |
| bool type_ok = flags.type == SinkFlags::kRaster |
| || flags.type == SinkFlags::kGPU |
| || flags.type == SinkFlags::kVector; |
| |
| return !type_ok || flags.approach != SinkFlags::kDirect; |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| #if defined(SK_XML) |
| // Used when the image doesn't have an intrinsic size. |
| static const SkSize kDefaultSVGSize = {1000, 1000}; |
| |
| // Used to force-scale tiny fixed-size images. |
| static const SkSize kMinimumSVGSize = {128, 128}; |
| |
| SVGSrc::SVGSrc(Path path) |
| : fName(SkOSPath::Basename(path.c_str())) |
| , fScale(1) { |
| |
| SkFILEStream stream(path.c_str()); |
| if (!stream.isValid()) { |
| return; |
| } |
| fDom = SkSVGDOM::MakeFromStream(stream); |
| if (!fDom) { |
| return; |
| } |
| |
| const SkSize& sz = fDom->containerSize(); |
| if (sz.isEmpty()) { |
| // no intrinsic size |
| fDom->setContainerSize(kDefaultSVGSize); |
| } else { |
| fScale = SkTMax(1.f, SkTMax(kMinimumSVGSize.width() / sz.width(), |
| kMinimumSVGSize.height() / sz.height())); |
| } |
| } |
| |
| Error SVGSrc::draw(SkCanvas* canvas) const { |
| if (!fDom) { |
| return SkStringPrintf("Unable to parse file: %s", fName.c_str()); |
| } |
| |
| SkAutoCanvasRestore acr(canvas, true); |
| canvas->scale(fScale, fScale); |
| fDom->render(canvas); |
| |
| return ""; |
| } |
| |
| SkISize SVGSrc::size() const { |
| if (!fDom) { |
| return {0, 0}; |
| } |
| |
| return SkSize{fDom->containerSize().width() * fScale, fDom->containerSize().height() * fScale} |
| .toRound(); |
| } |
| |
| Name SVGSrc::name() const { return fName; } |
| |
| bool SVGSrc::veto(SinkFlags flags) const { |
| // No need to test to non-(raster||gpu||vector) or indirect backends. |
| bool type_ok = flags.type == SinkFlags::kRaster |
| || flags.type == SinkFlags::kGPU |
| || flags.type == SinkFlags::kVector; |
| |
| return !type_ok || flags.approach != SinkFlags::kDirect; |
| } |
| |
| #endif // defined(SK_XML) |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| MSKPSrc::MSKPSrc(Path path) : fPath(path) { |
| std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str()); |
| int count = SkMultiPictureDocumentReadPageCount(stream.get()); |
| if (count > 0) { |
| fPages.reset(count); |
| (void)SkMultiPictureDocumentReadPageSizes(stream.get(), &fPages[0], fPages.count()); |
| } |
| } |
| |
| int MSKPSrc::pageCount() const { return fPages.count(); } |
| |
| SkISize MSKPSrc::size() const { return this->size(0); } |
| SkISize MSKPSrc::size(int i) const { |
| return i >= 0 && i < fPages.count() ? fPages[i].fSize.toCeil() : SkISize{0, 0}; |
| } |
| |
| Error MSKPSrc::draw(SkCanvas* c) const { return this->draw(0, c); } |
| Error MSKPSrc::draw(int i, SkCanvas* canvas) const { |
| if (this->pageCount() == 0) { |
| return SkStringPrintf("Unable to parse MultiPictureDocument file: %s", fPath.c_str()); |
| } |
| if (i >= fPages.count() || i < 0) { |
| return SkStringPrintf("MultiPictureDocument page number out of range: %d", i); |
| } |
| SkPicture* page = fPages[i].fPicture.get(); |
| if (!page) { |
| std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(fPath.c_str()); |
| if (!stream) { |
| return SkStringPrintf("Unable to open file: %s", fPath.c_str()); |
| } |
| if (!SkMultiPictureDocumentRead(stream.get(), &fPages[0], fPages.count())) { |
| return SkStringPrintf("SkMultiPictureDocument reader failed on page %d: %s", i, |
| fPath.c_str()); |
| } |
| page = fPages[i].fPicture.get(); |
| } |
| canvas->drawPicture(page); |
| return ""; |
| } |
| |
| Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { |
| return src.draw(SkMakeNullCanvas().get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static bool encode_png_base64(const SkBitmap& bitmap, SkString* dst) { |
| SkPixmap pm; |
| if (!bitmap.peekPixels(&pm)) { |
| dst->set("peekPixels failed"); |
| return false; |
| } |
| |
| // We're going to embed this PNG in a data URI, so make it as small as possible |
| SkPngEncoder::Options options; |
| options.fFilterFlags = SkPngEncoder::FilterFlag::kAll; |
| options.fZLibLevel = 9; |
| options.fUnpremulBehavior = pm.colorSpace() ? SkTransferFunctionBehavior::kRespect |
| : SkTransferFunctionBehavior::kIgnore; |
| |
| SkDynamicMemoryWStream wStream; |
| if (!SkPngEncoder::Encode(&wStream, pm, options)) { |
| dst->set("SkPngEncoder::Encode failed"); |
| return false; |
| } |
| |
| sk_sp<SkData> pngData = wStream.detachAsData(); |
| size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr); |
| |
| // The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs. |
| // Infra says these can be pretty big, as long as we're only outputting them on failure. |
| static const size_t kMaxBase64Length = 1024 * 1024; |
| if (len > kMaxBase64Length) { |
| dst->printf("Encoded image too large (%u bytes)", static_cast<uint32_t>(len)); |
| return false; |
| } |
| |
| dst->resize(len); |
| SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str()); |
| return true; |
| } |
| |
| static Error compare_bitmaps(const SkBitmap& reference, const SkBitmap& bitmap) { |
| // The dimensions are a property of the Src only, and so should be identical. |
| SkASSERT(reference.computeByteSize() == bitmap.computeByteSize()); |
| if (reference.computeByteSize() != bitmap.computeByteSize()) { |
| return "Dimensions don't match reference"; |
| } |
| // All SkBitmaps in DM are tight, so this comparison is easy. |
| if (0 != memcmp(reference.getPixels(), bitmap.getPixels(), reference.computeByteSize())) { |
| SkString encoded; |
| SkString errString("Pixels don't match reference"); |
| if (encode_png_base64(reference, &encoded)) { |
| errString.append("\nExpected: data:image/png;base64,"); |
| errString.append(encoded); |
| } else { |
| errString.append("\nExpected image failed to encode: "); |
| errString.append(encoded); |
| } |
| if (encode_png_base64(bitmap, &encoded)) { |
| errString.append("\nActual: data:image/png;base64,"); |
| errString.append(encoded); |
| } else { |
| errString.append("\nActual image failed to encode: "); |
| errString.append(encoded); |
| } |
| return errString; |
| } |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); |
| |
| GPUSink::GPUSink(GrContextFactory::ContextType ct, |
| GrContextFactory::ContextOverrides overrides, |
| SkCommandLineConfigGpu::SurfType surfType, |
| int samples, |
| bool diText, |
| SkColorType colorType, |
| SkAlphaType alphaType, |
| sk_sp<SkColorSpace> colorSpace, |
| bool threaded, |
| const GrContextOptions& grCtxOptions) |
| : fContextType(ct) |
| , fContextOverrides(overrides) |
| , fSurfType(surfType) |
| , fSampleCount(samples) |
| , fUseDIText(diText) |
| , fColorType(colorType) |
| , fAlphaType(alphaType) |
| , fColorSpace(std::move(colorSpace)) |
| , fThreaded(threaded) |
| , fBaseContextOptions(grCtxOptions) {} |
| |
| DEFINE_bool(drawOpClip, false, "Clip each GrDrawOp to its device bounds for testing."); |
| |
| Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream* dstStream, SkString* log) const { |
| return this->onDraw(src, dst, dstStream, log, fBaseContextOptions); |
| } |
| |
| Error GPUSink::onDraw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log, |
| const GrContextOptions& baseOptions) const { |
| GrContextOptions grOptions = baseOptions; |
| |
| src.modifyGrContextOptions(&grOptions); |
| |
| GrContextFactory factory(grOptions); |
| const SkISize size = src.size(); |
| SkImageInfo info = |
| SkImageInfo::Make(size.width(), size.height(), fColorType, fAlphaType, fColorSpace); |
| sk_sp<SkSurface> surface; |
| #if SK_SUPPORT_GPU |
| GrContext* context = factory.getContextInfo(fContextType, fContextOverrides).grContext(); |
| const int maxDimension = context->caps()->maxTextureSize(); |
| if (maxDimension < SkTMax(size.width(), size.height())) { |
| return Error::Nonfatal("Src too large to create a texture.\n"); |
| } |
| uint32_t flags = fUseDIText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0; |
| SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); |
| GrBackendTexture backendTexture; |
| GrBackendRenderTarget backendRT; |
| switch (fSurfType) { |
| case SkCommandLineConfigGpu::SurfType::kDefault: |
| surface = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info, fSampleCount, |
| &props); |
| break; |
| case SkCommandLineConfigGpu::SurfType::kBackendTexture: |
| backendTexture = context->contextPriv().getGpu()->createTestingOnlyBackendTexture( |
| nullptr, info.width(), info.height(), info.colorType(), true, GrMipMapped::kNo); |
| surface = SkSurface::MakeFromBackendTexture(context, backendTexture, |
| kTopLeft_GrSurfaceOrigin, fSampleCount, |
| fColorType, info.refColorSpace(), &props); |
| break; |
| case SkCommandLineConfigGpu::SurfType::kBackendRenderTarget: |
| if (1 == fSampleCount) { |
| auto srgbEncoded = info.colorSpace() && info.colorSpace()->gammaCloseToSRGB() |
| ? GrSRGBEncoded::kYes |
| : GrSRGBEncoded::kNo; |
| auto colorType = SkColorTypeToGrColorType(info.colorType()); |
| backendRT = context->contextPriv().getGpu()->createTestingOnlyBackendRenderTarget( |
| info.width(), info.height(), colorType, srgbEncoded); |
| surface = SkSurface::MakeFromBackendRenderTarget( |
| context, backendRT, kBottomLeft_GrSurfaceOrigin, info.colorType(), |
| info.refColorSpace(), &props); |
| } |
| break; |
| } |
| #endif |
| |
| if (!surface) { |
| return "Could not create a surface."; |
| } |
| if (FLAGS_preAbandonGpuContext) { |
| factory.abandonContexts(); |
| } |
| SkCanvas* canvas = surface->getCanvas(); |
| Error err = src.draw(canvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| canvas->flush(); |
| if (FLAGS_gpuStats) { |
| #if SK_SUPPORT_GPU |
| canvas->getGrContext()->contextPriv().dumpCacheStats(log); |
| canvas->getGrContext()->contextPriv().dumpGpuStats(log); |
| #endif |
| } |
| if (info.colorType() == kRGB_565_SkColorType || info.colorType() == kARGB_4444_SkColorType || |
| info.colorType() == kRGB_888x_SkColorType) { |
| // We don't currently support readbacks into these formats on the GPU backend. Convert to |
| // 32 bit. |
| info = SkImageInfo::Make(size.width(), size.height(), kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType, fColorSpace); |
| } |
| dst->allocPixels(info); |
| canvas->readPixels(*dst, 0, 0); |
| if (FLAGS_abandonGpuContext) { |
| factory.abandonContexts(); |
| } else if (FLAGS_releaseAndAbandonGpuContext) { |
| factory.releaseResourcesAndAbandonContexts(); |
| } |
| #if SK_SUPPORT_GPU |
| if (!context->contextPriv().abandoned()) { |
| surface.reset(); |
| if (backendTexture.isValid()) { |
| context->contextPriv().getGpu()->deleteTestingOnlyBackendTexture(backendTexture); |
| } |
| if (backendRT.isValid()) { |
| context->contextPriv().getGpu()->deleteTestingOnlyBackendRenderTarget(backendRT); |
| } |
| } |
| #endif |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| GPUThreadTestingSink::GPUThreadTestingSink(GrContextFactory::ContextType ct, |
| GrContextFactory::ContextOverrides overrides, |
| SkCommandLineConfigGpu::SurfType surfType, |
| int samples, |
| bool diText, |
| SkColorType colorType, |
| SkAlphaType alphaType, |
| sk_sp<SkColorSpace> colorSpace, |
| bool threaded, |
| const GrContextOptions& grCtxOptions) |
| : INHERITED(ct, overrides, surfType, samples, diText, colorType, alphaType, |
| std::move(colorSpace), threaded, grCtxOptions) |
| #if SK_SUPPORT_GPU |
| , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_gpuThreads)) { |
| #else |
| , fExecutor(nullptr) { |
| #endif |
| SkASSERT(fExecutor); |
| } |
| |
| Error GPUThreadTestingSink::draw(const Src& src, SkBitmap* dst, SkWStream* wStream, |
| SkString* log) const { |
| // Draw twice, once with worker threads, and once without. Verify that we get the same result. |
| // Also, force us to only use the software path renderer, so we really stress-test the threaded |
| // version of that code. |
| GrContextOptions contextOptions = this->baseContextOptions(); |
| contextOptions.fGpuPathRenderers = GpuPathRenderers::kNone; |
| |
| contextOptions.fExecutor = fExecutor.get(); |
| Error err = this->onDraw(src, dst, wStream, log, contextOptions); |
| if (!err.isEmpty() || !dst) { |
| return err; |
| } |
| |
| SkBitmap reference; |
| SkString refLog; |
| SkDynamicMemoryWStream refStream; |
| contextOptions.fExecutor = nullptr; |
| Error refErr = this->onDraw(src, &reference, &refStream, &refLog, contextOptions); |
| if (!refErr.isEmpty()) { |
| return refErr; |
| } |
| |
| return compare_bitmaps(reference, *dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { |
| if (src.size().isEmpty()) { |
| return "Source has empty dimensions"; |
| } |
| SkASSERT(doc); |
| int pageCount = src.pageCount(); |
| for (int i = 0; i < pageCount; ++i) { |
| int width = src.size(i).width(), height = src.size(i).height(); |
| SkCanvas* canvas = |
| doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); |
| if (!canvas) { |
| return "SkDocument::beginPage(w,h) returned nullptr"; |
| } |
| Error err = src.draw(i, canvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| doc->endPage(); |
| } |
| doc->close(); |
| dst->flush(); |
| return ""; |
| } |
| |
| Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkDocument::PDFMetadata metadata; |
| metadata.fTitle = src.name(); |
| metadata.fSubject = "rendering correctness test"; |
| metadata.fCreator = "Skia/DM"; |
| metadata.fRasterDPI = fRasterDpi; |
| metadata.fPDFA = fPDFA; |
| sk_sp<SkDocument> doc = SkDocument::MakePDF(dst, metadata); |
| if (!doc) { |
| return "SkDocument::MakePDF() returned nullptr"; |
| } |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| XPSSink::XPSSink() {} |
| |
| #ifdef SK_BUILD_FOR_WIN |
| static SkTScopedComPtr<IXpsOMObjectFactory> make_xps_factory() { |
| IXpsOMObjectFactory* factory; |
| HRN(CoCreateInstance(CLSID_XpsOMObjectFactory, |
| nullptr, |
| CLSCTX_INPROC_SERVER, |
| IID_PPV_ARGS(&factory))); |
| return SkTScopedComPtr<IXpsOMObjectFactory>(factory); |
| } |
| |
| Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkAutoCoInitialize com; |
| if (!com.succeeded()) { |
| return "Could not initialize COM."; |
| } |
| SkTScopedComPtr<IXpsOMObjectFactory> factory = make_xps_factory(); |
| if (!factory) { |
| return "Failed to create XPS Factory."; |
| } |
| sk_sp<SkDocument> doc(SkDocument::MakeXPS(dst, factory.get())); |
| if (!doc) { |
| return "SkDocument::MakeXPS() returned nullptr"; |
| } |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| #else |
| Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| return "XPS not supported on this platform."; |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| PipeSink::PipeSink() {} |
| |
| Error PipeSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| return src.draw(SkPipeSerializer().beginWrite(SkRect::Make(src.size()), dst)); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SKPSink::SKPSink() {} |
| |
| Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkSize size; |
| size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(size.width(), size.height())); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| recorder.finishRecordingAsPicture()->serialize(dst); |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error DebugSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkDebugCanvas debugCanvas(src.size().width(), src.size().height()); |
| Error err = src.draw(&debugCanvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| std::unique_ptr<SkCanvas> nullCanvas = SkMakeNullCanvas(); |
| UrlDataManager dataManager(SkString("data")); |
| Json::Value json = debugCanvas.toJSON( |
| dataManager, debugCanvas.getSize(), nullCanvas.get()); |
| std::string value = Json::StyledWriter().write(json); |
| return dst->write(value.c_str(), value.size()) ? "" : "SkWStream Error"; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SVGSink::SVGSink(int pageIndex) : fPageIndex(pageIndex) {} |
| |
| Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| #if defined(SK_XML) |
| if (src.pageCount() > 1) { |
| int pageCount = src.pageCount(); |
| if (fPageIndex > pageCount - 1) { |
| return Error(SkStringPrintf("Page index %d too high for document with only %d pages.", |
| fPageIndex, pageCount)); |
| } |
| } |
| std::unique_ptr<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst)); |
| return src.draw(fPageIndex, |
| SkSVGCanvas::Make(SkRect::MakeWH(SkIntToScalar(src.size().width()), |
| SkIntToScalar(src.size().height())), |
| xmlWriter.get()) |
| .get()); |
| #else |
| (void)fPageIndex; |
| return Error("SVG sink is disabled."); |
| #endif // SK_XML |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace) |
| : fColorType(colorType) |
| , fColorSpace(std::move(colorSpace)) {} |
| |
| void RasterSink::allocPixels(const Src& src, SkBitmap* dst) const { |
| const SkISize size = src.size(); |
| // If there's an appropriate alpha type for this color type, use it, otherwise use premul. |
| SkAlphaType alphaType = kPremul_SkAlphaType; |
| (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); |
| |
| dst->allocPixelsFlags(SkImageInfo::Make(size.width(), size.height(), |
| fColorType, alphaType, fColorSpace), |
| SkBitmap::kZeroPixels_AllocFlag); |
| } |
| |
| Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { |
| this->allocPixels(src, dst); |
| SkCanvas canvas(*dst); |
| return src.draw(&canvas); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ThreadedSink::ThreadedSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace) |
| : RasterSink(colorType, colorSpace) |
| , fExecutor(SkExecutor::MakeFIFOThreadPool(FLAGS_backendThreads)) { |
| } |
| |
| Error ThreadedSink::draw(const Src& src, SkBitmap* dst, SkWStream* stream, SkString* str) const { |
| this->allocPixels(src, dst); |
| |
| std::unique_ptr<SkThreadedBMPDevice> device(new SkThreadedBMPDevice( |
| *dst, FLAGS_backendTiles, FLAGS_backendThreads, fExecutor.get())); |
| std::unique_ptr<SkCanvas> canvas(new SkCanvas(device.get())); |
| Error result = src.draw(canvas.get()); |
| canvas->flush(); |
| return result; |
| |
| // ??? yuqian: why does the following give me segmentation fault while the above one works? |
| // The seg fault occurs right in the beginning of ThreadedSink::draw with invalid |
| // memory address (it would crash without even calling this->allocPixels). |
| |
| // SkThreadedBMPDevice device(*dst, tileCnt, FLAGS_cpuThreads, fExecutor.get()); |
| // SkCanvas canvas(&device); |
| // Error result = src.draw(&canvas); |
| // canvas.flush(); |
| // return result; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), |
| // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. |
| // Several examples below. |
| |
| template <typename Fn> |
| static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, |
| SkISize size, const Fn& draw) { |
| class ProxySrc : public Src { |
| public: |
| ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {} |
| Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } |
| Name name() const override { return "ProxySrc"; } |
| SkISize size() const override { return fSize; } |
| private: |
| SkISize fSize; |
| const Fn& fDraw; |
| }; |
| return sink->draw(ProxySrc(size, draw), bitmap, stream, log); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output."); |
| |
| // Is *bitmap identical to what you get drawing src into sink? |
| static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) { |
| // We can only check raster outputs. |
| // (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.) |
| if (FLAGS_check && bitmap) { |
| SkBitmap reference; |
| SkString log; |
| SkDynamicMemoryWStream wStream; |
| Error err = sink->draw(src, &reference, &wStream, &log); |
| // If we can draw into this Sink via some pipeline, we should be able to draw directly. |
| SkASSERT(err.isEmpty()); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| return compare_bitmaps(reference, *bitmap); |
| } |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { |
| SkRect bounds = SkRect::MakeIWH(srcW, srcH); |
| matrix->mapRect(&bounds); |
| matrix->postTranslate(-bounds.x(), -bounds.y()); |
| return {SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())}; |
| } |
| |
| ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| SkMatrix matrix = fMatrix; |
| SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->concat(matrix); |
| return src.draw(canvas); |
| }); |
| } |
| |
| // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. |
| // This should be pixel-preserving. |
| ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| Error err = fSink->draw(src, bitmap, stream, log); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| SkMatrix inverse; |
| if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { |
| return "Cannot upright --matrix."; |
| } |
| SkMatrix upright = SkMatrix::I(); |
| upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); |
| upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); |
| upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); |
| upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); |
| |
| SkBitmap uprighted; |
| SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); |
| uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); |
| |
| SkCanvas canvas(uprighted); |
| canvas.concat(upright); |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| canvas.drawBitmap(*bitmap, 0, 0, &paint); |
| |
| *bitmap = uprighted; |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaSerialization::draw( |
| const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| // Record our Src into a picture. |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture()); |
| |
| // Serialize it and then deserialize it. |
| sk_sp<SkPicture> deserialized(SkPicture::MakeFromData(pic->serialize().get())); |
| |
| err = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->drawPicture(deserialized); |
| return ""; |
| }); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) |
| : Via(sink) |
| , fW(w) |
| , fH(h) |
| , fFactory(factory) {} |
| |
| Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()), |
| fFactory.get())); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture()); |
| |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { |
| const int xTiles = (size.width() + fW - 1) / fW, |
| yTiles = (size.height() + fH - 1) / fH; |
| SkMultiPictureDraw mpd(xTiles*yTiles); |
| SkTArray<sk_sp<SkSurface>> surfaces; |
| // surfaces.setReserve(xTiles*yTiles); |
| |
| SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); |
| for (int j = 0; j < yTiles; j++) { |
| for (int i = 0; i < xTiles; i++) { |
| // This lets our ultimate Sink determine the best kind of surface. |
| // E.g., if it's a GpuSink, the surfaces and images are textures. |
| auto s = canvas->makeSurface(info); |
| if (!s) { |
| s = SkSurface::MakeRaster(info); // Some canvases can't create surfaces. |
| } |
| surfaces.push_back(s); |
| SkCanvas* c = s->getCanvas(); |
| c->translate(SkIntToScalar(-i * fW), |
| SkIntToScalar(-j * fH)); // Line up the canvas with this tile. |
| mpd.add(c, pic.get()); |
| } |
| } |
| mpd.draw(); |
| for (int j = 0; j < yTiles; j++) { |
| for (int i = 0; i < xTiles; i++) { |
| sk_sp<SkImage> image(surfaces[i+xTiles*j]->makeImageSnapshot()); |
| canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); |
| } |
| } |
| return ""; |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| #if SK_SUPPORT_GPU |
| |
| ViaDDL::ViaDDL(int numDivisions, Sink* sink) |
| : Via(sink) |
| , fNumDivisions(numDivisions) { |
| } |
| |
| // This class consolidates tracking & extraction of the original image data from the sources, |
| // the upload of said data to the GPU and the fulfillment of promise images. |
| class ViaDDL::PromiseImageHelper { |
| public: |
| class PromiseImageInfo { |
| public: |
| int fIndex; // index in the 'fImageInfo' array |
| uint32_t fOriginalUniqueID; // original ID for deduping |
| SkBitmap fBitmap; // CPU-side cache of the contents |
| GrBackendTexture fBackendTexture; // GPU-side version |
| }; |
| |
| PromiseImageHelper() : fLocked(false) { } |
| |
| // This class will hand out pointers to its PromiseImageInfo. This is just some insurance |
| // we won't be moving them around. |
| void lock() { fLocked = true; } |
| |
| bool isValidID(int id) const { |
| return id >= 0 && id < fImageInfo.count(); |
| } |
| |
| const PromiseImageInfo* getInfo(int id) const { |
| SkASSERT(fLocked); |
| return &fImageInfo[id]; |
| } |
| |
| // returns -1 on failure |
| int findOrDefineImage(SkImage* image) { |
| int preExistingID = this->findImage(image); |
| if (preExistingID >= 0) { |
| SkASSERT(this->isValidID(preExistingID)); |
| return preExistingID; |
| } |
| |
| int newID = this->addImage(image); |
| SkASSERT(this->isValidID(newID)); |
| return newID; |
| } |
| |
| void uploadAllToGPU(GrContext* context) { |
| GrGpu* gpu = context->contextPriv().getGpu(); |
| SkASSERT(gpu); |
| |
| for (int i = 0; i < fImageInfo.count(); ++i) { |
| // DDL TODO: how can we tell if we need mipmapping! |
| fImageInfo[i].fBackendTexture = gpu->createTestingOnlyBackendTexture( |
| fImageInfo[i].fBitmap.getPixels(), |
| fImageInfo[i].fBitmap.width(), |
| fImageInfo[i].fBitmap.height(), |
| fImageInfo[i].fBitmap.colorType(), |
| false, GrMipMapped::kNo); |
| SkAssertResult(fImageInfo[i].fBackendTexture.isValid()); |
| } |
| } |
| |
| void cleanUpVRAM(GrContext* context) { |
| GrGpu* gpu = context->contextPriv().getGpu(); |
| SkASSERT(gpu); |
| |
| for (int i = 0; i < fImageInfo.count(); ++i) { |
| gpu->deleteTestingOnlyBackendTexture(fImageInfo[i].fBackendTexture); |
| } |
| } |
| |
| static void PromiseImageFulfillProc(void* textureContext, GrBackendTexture* outTexture) { |
| auto imgInfo = static_cast<const PromiseImageInfo*>(textureContext); |
| |
| SkASSERT(imgInfo->fBackendTexture.isValid()); |
| *outTexture = imgInfo->fBackendTexture; |
| } |
| |
| static void PromiseImageReleaseProc(void* textureContext) { |
| // Do nothing. We free all the backend textures at the end in cleanUpVRAM. |
| } |
| |
| static void PromiseImageDoneProc(void* textureContext) { |
| // Do nothing. |
| } |
| |
| private: |
| // returns -1 if not found |
| int findImage(SkImage* image) const { |
| for (int i = 0; i < fImageInfo.count(); ++i) { |
| if (fImageInfo[i].fOriginalUniqueID == image->uniqueID()) { |
| SkASSERT(fImageInfo[i].fIndex == i); |
| SkASSERT(this->isValidID(i) && this->isValidID(fImageInfo[i].fIndex)); |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| // returns -1 on failure |
| int addImage(SkImage* image) { |
| SkASSERT(!fLocked); |
| |
| sk_sp<SkImage> rasterImage = image->makeRasterImage(); // force decoding of lazy images |
| |
| SkImageInfo ii = SkImageInfo::Make(rasterImage->width(), rasterImage->height(), |
| rasterImage->colorType(), rasterImage->alphaType(), |
| rasterImage->refColorSpace()); |
| |
| SkBitmap bm; |
| bm.allocPixels(ii); |
| |
| if (!rasterImage->readPixels(bm.pixmap(), 0, 0)) { |
| return -1; |
| } |
| |
| bm.setImmutable(); |
| |
| PromiseImageInfo newImageInfo; |
| newImageInfo.fIndex = fImageInfo.count(); |
| newImageInfo.fOriginalUniqueID = image->uniqueID(); |
| newImageInfo.fBitmap = bm; |
| /* fBackendTexture is filled in by uploadAllToGPU */ |
| |
| fImageInfo.push_back(newImageInfo); |
| SkASSERT(newImageInfo.fIndex == fImageInfo.count()-1); |
| return fImageInfo.count()-1; |
| } |
| |
| SkTArray<PromiseImageInfo> fImageInfo; |
| bool fLocked; // are additions still allowed |
| }; |
| |
| // TileData class encapsulates the information and behavior for a single tile/thread in |
| // a DDL rendering. |
| class ViaDDL::TileData { |
| public: |
| // Note: we could just pass in surface characterization |
| TileData(sk_sp<SkSurface> surf, const SkIRect& clip) |
| : fSurface(std::move(surf)) |
| , fClip(clip) { |
| SkAssertResult(fSurface->characterize(&fCharacterization)); |
| } |
| |
| // This method operates in parallel |
| // In each thread we will reconvert the compressedPictureData into an SkPicture |
| // replacing each image-index with a promise image. |
| void preprocess(SkData* compressedPictureData, const PromiseImageHelper& helper) { |
| SkDeferredDisplayListRecorder recorder(fCharacterization); |
| |
| // DDL TODO: the DDLRecorder's GrContext isn't initialized until getCanvas is called. |
| // Maybe set it up in the ctor? |
| SkCanvas* subCanvas = recorder.getCanvas(); |
| |
| sk_sp<SkPicture> reconstitutedPicture; |
| |
| { |
| PromiseImageCallbackContext callbackCtx = { &helper, &recorder }; |
| |
| SkDeserialProcs procs; |
| procs.fImageCtx = &callbackCtx; |
| procs.fImageProc = PromiseImageCreator; |
| |
| reconstitutedPicture = SkPicture::MakeFromData(compressedPictureData, &procs); |
| if (!reconstitutedPicture) { |
| return; |
| } |
| } |
| |
| subCanvas->clipRect(SkRect::MakeWH(fClip.width(), fClip.height())); |
| subCanvas->translate(-fClip.fLeft, -fClip.fTop); |
| |
| // Note: in this use case we only render a picture to the deferred canvas |
| // but, more generally, clients will use arbitrary draw calls. |
| subCanvas->drawPicture(reconstitutedPicture); |
| |
| fDisplayList = recorder.detach(); |
| } |
| |
| // This method operates serially and replays the recorded DDL into the tile surface. |
| void draw() { |
| fSurface->draw(fDisplayList.get()); |
| } |
| |
| // This method also operates serially and composes the results of replaying the DDL into |
| // the final destination surface. |
| void compose(SkCanvas* dst) { |
| sk_sp<SkImage> img = fSurface->makeImageSnapshot(); |
| dst->save(); |
| dst->clipRect(SkRect::Make(fClip)); |
| dst->drawImage(std::move(img), fClip.fLeft, fClip.fTop); |
| dst->restore(); |
| } |
| |
| private: |
| // This class lets us pass the collected image information and the DDLRecorder to the |
| // promise_image_creator callback when reconstituting a deflated SKP for a particular tile |
| // (i.e., in a thread). |
| class PromiseImageCallbackContext { |
| public: |
| const PromiseImageHelper* fHelper; |
| SkDeferredDisplayListRecorder* fRecorder; |
| }; |
| |
| // This generates promise images to replace the indices in the compressed picture. This |
| // reconstitution is performed separately in each thread so we end of with multiple |
| // promise image referring to the same GrBackendTexture. |
| // DDL TODO: Having multiple promise images using the same GrBackendTexture won't work in |
| // Vulkan! Move creation of the promise images to the main thread & SkImage. |
| static sk_sp<SkImage> PromiseImageCreator(const void* rawData, size_t length, void* ctxIn) { |
| PromiseImageCallbackContext* ctx = static_cast<PromiseImageCallbackContext*>(ctxIn); |
| const PromiseImageHelper* helper = ctx->fHelper; |
| SkDeferredDisplayListRecorder* recorder = ctx->fRecorder; |
| |
| SkASSERT(length == sizeof(int)); |
| |
| const int* indexPtr = static_cast<const int*>(rawData); |
| SkASSERT(helper->isValidID(*indexPtr)); |
| |
| const PromiseImageHelper::PromiseImageInfo* curImage = helper->getInfo(*indexPtr); |
| SkASSERT(curImage->fIndex == *indexPtr); |
| |
| GrBackendFormat backendFormat = curImage->fBackendTexture.format(); |
| |
| // DDL TODO: sort out mipmapping |
| sk_sp<SkImage> image = recorder->makePromiseTexture( |
| backendFormat, |
| curImage->fBitmap.width(), |
| curImage->fBitmap.height(), |
| GrMipMapped::kNo, |
| GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin, |
| curImage->fBitmap.colorType(), |
| curImage->fBitmap.alphaType(), |
| curImage->fBitmap.refColorSpace(), |
| PromiseImageHelper::PromiseImageFulfillProc, |
| PromiseImageHelper::PromiseImageReleaseProc, |
| PromiseImageHelper::PromiseImageDoneProc, |
| (void*) curImage); |
| SkASSERT(image); |
| return image; |
| } |
| |
| sk_sp<SkSurface> fSurface; |
| SkIRect fClip; // in the device space of the dest canvas |
| std::unique_ptr<SkDeferredDisplayList> fDisplayList; |
| SkSurfaceCharacterization fCharacterization; |
| }; |
| |
| Error ViaDDL::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| sk_sp<SkPicture> inputPicture(recorder.finishRecordingAsPicture()); |
| |
| // this is our ultimate final drawing area/rect |
| SkIRect viewport = SkIRect::MakeWH(size.fWidth, size.fHeight); |
| |
| PromiseImageHelper helper; |
| sk_sp<SkData> compressedPictureData; |
| |
| // Convert the SkPicture into SkData replacing all the SkImages with an index. |
| { |
| SkSerialProcs procs; |
| |
| procs.fImageCtx = &helper; |
| procs.fImageProc = [](SkImage* image, void* ctx) -> sk_sp<SkData> { |
| auto helper = static_cast<PromiseImageHelper*>(ctx); |
| |
| int id = helper->findOrDefineImage(image); |
| if (id >= 0) { |
| SkASSERT(helper->isValidID(id)); |
| return SkData::MakeWithCopy(&id, sizeof(id)); |
| } |
| |
| return nullptr; |
| }; |
| |
| compressedPictureData = inputPicture->serialize(&procs); |
| if (!compressedPictureData) { |
| return SkStringPrintf("ViaDDL: Couldn't deflate SkPicture"); |
| } |
| } |
| |
| helper.lock(); // after this point no more images should be added to the helper |
| |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, |
| [&](SkCanvas* canvas) -> Error { |
| GrContext* context = canvas->getGrContext(); |
| if (!context || !context->contextPriv().getGpu()) { |
| return SkStringPrintf("DDLs are GPU only"); |
| } |
| |
| helper.uploadAllToGPU(context); |
| |
| int xTileSize = viewport.width()/fNumDivisions; |
| int yTileSize = viewport.height()/fNumDivisions; |
| |
| SkTArray<TileData> tileData; |
| tileData.reserve(fNumDivisions*fNumDivisions); |
| |
| // First, create the destination tiles |
| for (int y = 0, yOff = 0; y < fNumDivisions; ++y, yOff += yTileSize) { |
| int ySize = (y < fNumDivisions-1) ? yTileSize : viewport.height()-yOff; |
| |
| for (int x = 0, xOff = 0; x < fNumDivisions; ++x, xOff += xTileSize) { |
| int xSize = (x < fNumDivisions-1) ? xTileSize : viewport.width()-xOff; |
| |
| SkIRect clip = SkIRect::MakeXYWH(xOff, yOff, xSize, ySize); |
| |
| SkASSERT(viewport.contains(clip)); |
| |
| SkImageInfo tileII = SkImageInfo::MakeN32Premul(xSize, ySize); |
| |
| tileData.push_back(TileData(canvas->makeSurface(tileII), clip)); |
| } |
| } |
| |
| // Second, run the cpu pre-processing in threads |
| SkTaskGroup().batch(tileData.count(), [&](int i) { |
| tileData[i].preprocess(compressedPictureData.get(), helper); |
| }); |
| |
| // Third, synchronously render the display lists into the dest tiles |
| // TODO: it would be cool to not wait until all the tiles are drawn to begin |
| // drawing to the GPU and composing to the final surface |
| for (int i = 0; i < tileData.count(); ++i) { |
| tileData[i].draw(); |
| } |
| |
| // Finally, compose the drawn tiles into the result |
| // Note: the separation between the tiles and the final composition better |
| // matches Chrome but costs us a copy |
| for (int i = 0; i < tileData.count(); ++i) { |
| tileData[i].compose(canvas); |
| } |
| |
| // All promise images need to be fulfilled before leaving this method since we |
| // are about to delete their backing GrBackendTextures |
| // DDL TODO: remove the cleanUpVRAM method and use the release & done |
| // callbacks. |
| GrGpu* gpu = context->contextPriv().getGpu(); |
| context->flush(); |
| gpu->testingOnly_flushGpuAndSync(); |
| |
| helper.cleanUpVRAM(context); |
| return ""; |
| }); |
| } |
| |
| #else |
| |
| ViaDDL::ViaDDL(int numDivisions, Sink* sink) : Via(sink) { } |
| |
| Error ViaDDL::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| return "ViaDDL is GPU only"; |
| } |
| |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| Error err = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| SkPictureRecorder recorder; |
| sk_sp<SkPicture> pic; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| pic = recorder.finishRecordingAsPicture(); |
| canvas->drawPicture(pic); |
| return err; |
| }); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| Error err = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| SkDynamicMemoryWStream tmpStream; |
| Error err = src.draw(SkPipeSerializer().beginWrite(SkRect::Make(size), &tmpStream)); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| sk_sp<SkData> data = tmpStream.detachAsData(); |
| SkPipeDeserializer().playback(data->data(), data->size(), canvas); |
| return err; |
| }); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| #ifdef TEST_VIA_SVG |
| #include "SkXMLWriter.h" |
| #include "SkSVGCanvas.h" |
| #include "SkSVGDOM.h" |
| |
| Error ViaSVG::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { |
| SkDynamicMemoryWStream wstream; |
| SkXMLStreamWriter writer(&wstream); |
| Error err = src.draw(SkSVGCanvas::Make(SkRect::Make(size), &writer).get()); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| std::unique_ptr<SkStream> rstream(wstream.detachAsStream()); |
| auto dom = SkSVGDOM::MakeFromStream(*rstream); |
| if (dom) { |
| dom->setContainerSize(SkSize::Make(size)); |
| dom->render(canvas); |
| } |
| return ""; |
| }); |
| } |
| #endif |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaLite::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| SkIRect bounds = {0,0, size.width(), size.height()}; |
| Error err = draw_to_canvas(fSink.get(), bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| SkLiteDL dl; |
| SkLiteRecorder rec; |
| rec.reset(&dl, bounds); |
| |
| Error err = src.draw(&rec); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| dl.draw(canvas); |
| return err; |
| }); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| return check_against_reference(bitmap, src, fSink.get()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ViaCSXform::ViaCSXform(Sink* sink, sk_sp<SkColorSpace> cs, bool colorSpin) |
| : Via(sink) |
| , fCS(std::move(cs)) |
| , fColorSpin(colorSpin) {} |
| |
| Error ViaCSXform::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| return draw_to_canvas(fSink.get(), bitmap, stream, log, src.size(), |
| [&](SkCanvas* canvas) -> Error { |
| { |
| SkAutoCanvasRestore acr(canvas, true); |
| auto proxy = SkCreateColorSpaceXformCanvas(canvas, fCS); |
| Error err = src.draw(proxy.get()); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| } |
| |
| // Undo the color spin, so we can look at the pixels in Gold. |
| if (fColorSpin) { |
| SkBitmap pixels; |
| pixels.allocPixels(canvas->imageInfo()); |
| canvas->readPixels(pixels, 0, 0); |
| |
| SkPaint rotateColors; |
| SkScalar matrix[20] = { 0, 0, 1, 0, 0, // B -> R |
| 1, 0, 0, 0, 0, // R -> G |
| 0, 1, 0, 0, 0, // G -> B |
| 0, 0, 0, 1, 0 }; |
| rotateColors.setBlendMode(SkBlendMode::kSrc); |
| rotateColors.setColorFilter(SkColorFilter::MakeMatrixFilterRowMajor255(matrix)); |
| canvas->drawBitmap(pixels, 0, 0, &rotateColors); |
| } |
| |
| return ""; |
| }); |
| } |
| |
| } // namespace DM |