| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkRasterPipeline_opts_DEFINED |
| #define SkRasterPipeline_opts_DEFINED |
| |
| #include "SkColorPriv.h" |
| #include "SkColorLookUpTable.h" |
| #include "SkColorSpaceXform_A2B.h" |
| #include "SkColorSpaceXformPriv.h" |
| #include "SkHalf.h" |
| #include "SkImageShaderContext.h" |
| #include "SkMSAN.h" |
| #include "SkPM4f.h" |
| #include "SkPM4fPriv.h" |
| #include "SkRasterPipeline.h" |
| #include "SkSRGB.h" |
| |
| namespace { |
| |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| static constexpr int N = 8; |
| #else |
| static constexpr int N = 4; |
| #endif |
| |
| using SkNf = SkNx<N, float>; |
| using SkNi = SkNx<N, int32_t>; |
| using SkNu = SkNx<N, uint32_t>; |
| using SkNh = SkNx<N, uint16_t>; |
| using SkNb = SkNx<N, uint8_t>; |
| |
| using Fn = void(SK_VECTORCALL *)(size_t x_tail, void** p, SkNf,SkNf,SkNf,SkNf, |
| SkNf,SkNf,SkNf,SkNf); |
| // x_tail encodes two values x and tail as x*N+tail, where 0 <= tail < N. |
| // x is the induction variable we're walking along, incrementing by N each step. |
| // tail == 0 means work with a full N pixels; otherwise use only the low tail pixels. |
| // |
| // p is our program, a sequence of Fn to call interlaced with any void* context pointers. E.g. |
| // &load_8888 |
| // (src ptr) |
| // &from_srgb |
| // &move_src_dst |
| // &load_f16 |
| // (dst ptr) |
| // &swap |
| // &srcover |
| // &store_f16 |
| // (dst ptr) |
| // &just_return |
| |
| } // namespace |
| |
| #define SI static inline |
| |
| // Basically, return *(*ptr)++, maybe faster than the compiler can do it. |
| SI void* load_and_increment(void*** ptr) { |
| // We do this often enough that it's worth hyper-optimizing. |
| // x86 can do this in one instruction if ptr is in rsi. |
| // (This is why p is the second argument to Fn: it's passed in rsi.) |
| #if defined(__GNUC__) && defined(__x86_64__) |
| void* rax; |
| __asm__("lodsq" : "=a"(rax), "+S"(*ptr)); |
| return rax; |
| #else |
| return *(*ptr)++; |
| #endif |
| } |
| |
| // Stages are logically a pipeline, and physically are contiguous in an array. |
| // To get to the next stage, we just increment our pointer to the next array element. |
| SI void SK_VECTORCALL next(size_t x_tail, void** p, SkNf r, SkNf g, SkNf b, SkNf a, |
| SkNf dr, SkNf dg, SkNf db, SkNf da) { |
| auto next = (Fn)load_and_increment(&p); |
| next(x_tail,p, r,g,b,a, dr,dg,db,da); |
| } |
| |
| // Stages defined below always call next. |
| // This is always the last stage, a backstop that actually returns to the caller when done. |
| SI void SK_VECTORCALL just_return(size_t, void**, SkNf, SkNf, SkNf, SkNf, |
| SkNf, SkNf, SkNf, SkNf) {} |
| |
| #define STAGE(name) \ |
| static SK_ALWAYS_INLINE void name##_kernel(size_t x, size_t tail, \ |
| SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ |
| SkNf& dr, SkNf& dg, SkNf& db, SkNf& da); \ |
| SI void SK_VECTORCALL name(size_t x_tail, void** p, \ |
| SkNf r, SkNf g, SkNf b, SkNf a, \ |
| SkNf dr, SkNf dg, SkNf db, SkNf da) { \ |
| name##_kernel(x_tail/N, x_tail%N, r,g,b,a, dr,dg,db,da); \ |
| next(x_tail,p, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| static SK_ALWAYS_INLINE void name##_kernel(size_t x, size_t tail, \ |
| SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ |
| SkNf& dr, SkNf& dg, SkNf& db, SkNf& da) |
| |
| #define STAGE_CTX(name, Ctx) \ |
| static SK_ALWAYS_INLINE void name##_kernel(Ctx ctx, size_t x, size_t tail, \ |
| SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ |
| SkNf& dr, SkNf& dg, SkNf& db, SkNf& da); \ |
| SI void SK_VECTORCALL name(size_t x_tail, void** p, \ |
| SkNf r, SkNf g, SkNf b, SkNf a, \ |
| SkNf dr, SkNf dg, SkNf db, SkNf da) { \ |
| auto ctx = (Ctx)load_and_increment(&p); \ |
| name##_kernel(ctx, x_tail/N, x_tail%N, r,g,b,a, dr,dg,db,da); \ |
| next(x_tail,p, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| static SK_ALWAYS_INLINE void name##_kernel(Ctx ctx, size_t x, size_t tail, \ |
| SkNf& r, SkNf& g, SkNf& b, SkNf& a, \ |
| SkNf& dr, SkNf& dg, SkNf& db, SkNf& da) |
| |
| // Many xfermodes apply the same logic to each channel. |
| #define RGBA_XFERMODE(name) \ |
| static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ |
| const SkNf& d, const SkNf& da); \ |
| SI void SK_VECTORCALL name(size_t x_tail, void** p, \ |
| SkNf r, SkNf g, SkNf b, SkNf a, \ |
| SkNf dr, SkNf dg, SkNf db, SkNf da) { \ |
| r = name##_kernel(r,a,dr,da); \ |
| g = name##_kernel(g,a,dg,da); \ |
| b = name##_kernel(b,a,db,da); \ |
| a = name##_kernel(a,a,da,da); \ |
| next(x_tail,p, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ |
| const SkNf& d, const SkNf& da) |
| |
| // Most of the rest apply the same logic to color channels and use srcover's alpha logic. |
| #define RGB_XFERMODE(name) \ |
| static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ |
| const SkNf& d, const SkNf& da); \ |
| SI void SK_VECTORCALL name(size_t x_tail, void** p, \ |
| SkNf r, SkNf g, SkNf b, SkNf a, \ |
| SkNf dr, SkNf dg, SkNf db, SkNf da) { \ |
| r = name##_kernel(r,a,dr,da); \ |
| g = name##_kernel(g,a,dg,da); \ |
| b = name##_kernel(b,a,db,da); \ |
| a = a + (da * (1.0f-a)); \ |
| next(x_tail,p, r,g,b,a, dr,dg,db,da); \ |
| } \ |
| static SK_ALWAYS_INLINE SkNf name##_kernel(const SkNf& s, const SkNf& sa, \ |
| const SkNf& d, const SkNf& da) |
| |
| template <typename T> |
| SI SkNx<N,T> load(size_t tail, const T* src) { |
| if (tail) { |
| T buf[8] = {0}; |
| switch (tail & (N-1)) { |
| case 7: buf[6] = src[6]; |
| case 6: buf[5] = src[5]; |
| case 5: buf[4] = src[4]; |
| case 4: buf[3] = src[3]; |
| case 3: buf[2] = src[2]; |
| case 2: buf[1] = src[1]; |
| } |
| buf[0] = src[0]; |
| return SkNx<N,T>::Load(buf); |
| } |
| return SkNx<N,T>::Load(src); |
| } |
| template <typename T> |
| SI SkNx<N,T> gather(size_t tail, const T* src, const SkNi& offset) { |
| if (tail) { |
| T buf[8] = {0}; |
| switch (tail & (N-1)) { |
| case 7: buf[6] = src[offset[6]]; |
| case 6: buf[5] = src[offset[5]]; |
| case 5: buf[4] = src[offset[4]]; |
| case 4: buf[3] = src[offset[3]]; |
| case 3: buf[2] = src[offset[2]]; |
| case 2: buf[1] = src[offset[1]]; |
| } |
| buf[0] = src[offset[0]]; |
| return SkNx<N,T>::Load(buf); |
| } |
| T buf[8]; |
| for (size_t i = 0; i < N; i++) { |
| buf[i] = src[offset[i]]; |
| } |
| return SkNx<N,T>::Load(buf); |
| } |
| template <typename T> |
| SI void store(size_t tail, const SkNx<N,T>& v, T* dst) { |
| if (tail) { |
| switch (tail & (N-1)) { |
| case 7: dst[6] = v[6]; |
| case 6: dst[5] = v[5]; |
| case 5: dst[4] = v[4]; |
| case 4: dst[3] = v[3]; |
| case 3: dst[2] = v[2]; |
| case 2: dst[1] = v[1]; |
| } |
| dst[0] = v[0]; |
| return; |
| } |
| v.store(dst); |
| } |
| |
| #if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
| SI __m256i mask(size_t tail) { |
| static const int masks[][8] = { |
| {~0,~0,~0,~0, ~0,~0,~0,~0 }, // remember, tail == 0 ~~> load all N |
| {~0, 0, 0, 0, 0, 0, 0, 0 }, |
| {~0,~0, 0, 0, 0, 0, 0, 0 }, |
| {~0,~0,~0, 0, 0, 0, 0, 0 }, |
| {~0,~0,~0,~0, 0, 0, 0, 0 }, |
| {~0,~0,~0,~0, ~0, 0, 0, 0 }, |
| {~0,~0,~0,~0, ~0,~0, 0, 0 }, |
| {~0,~0,~0,~0, ~0,~0,~0, 0 }, |
| }; |
| return SkNi::Load(masks + tail).fVec; |
| } |
| |
| SI SkNi load(size_t tail, const int32_t* src) { |
| return tail ? _mm256_maskload_epi32((const int*)src, mask(tail)) |
| : SkNi::Load(src); |
| } |
| SI SkNu load(size_t tail, const uint32_t* src) { |
| return tail ? _mm256_maskload_epi32((const int*)src, mask(tail)) |
| : SkNu::Load(src); |
| } |
| SI SkNf load(size_t tail, const float* src) { |
| return tail ? _mm256_maskload_ps((const float*)src, mask(tail)) |
| : SkNf::Load(src); |
| } |
| SI SkNi gather(size_t tail, const int32_t* src, const SkNi& offset) { |
| auto m = mask(tail); |
| return _mm256_mask_i32gather_epi32(SkNi(0).fVec, (const int*)src, offset.fVec, m, 4); |
| } |
| SI SkNu gather(size_t tail, const uint32_t* src, const SkNi& offset) { |
| auto m = mask(tail); |
| return _mm256_mask_i32gather_epi32(SkNi(0).fVec, (const int*)src, offset.fVec, m, 4); |
| } |
| SI SkNf gather(size_t tail, const float* src, const SkNi& offset) { |
| auto m = _mm256_castsi256_ps(mask(tail)); |
| return _mm256_mask_i32gather_ps(SkNf(0).fVec, (const float*)src, offset.fVec, m, 4); |
| } |
| |
| static const char* bug = "I don't think MSAN understands maskstore."; |
| |
| SI void store(size_t tail, const SkNi& v, int32_t* dst) { |
| if (tail) { |
| _mm256_maskstore_epi32((int*)dst, mask(tail), v.fVec); |
| return sk_msan_mark_initialized(dst, dst+tail, bug); |
| } |
| v.store(dst); |
| } |
| SI void store(size_t tail, const SkNu& v, uint32_t* dst) { |
| if (tail) { |
| _mm256_maskstore_epi32((int*)dst, mask(tail), v.fVec); |
| return sk_msan_mark_initialized(dst, dst+tail, bug); |
| } |
| v.store(dst); |
| } |
| SI void store(size_t tail, const SkNf& v, float* dst) { |
| if (tail) { |
| _mm256_maskstore_ps((float*)dst, mask(tail), v.fVec); |
| return sk_msan_mark_initialized(dst, dst+tail, bug); |
| } |
| v.store(dst); |
| } |
| #endif |
| |
| SI SkNf SkNf_fma(const SkNf& f, const SkNf& m, const SkNf& a) { return SkNx_fma(f,m,a); } |
| |
| SI SkNi SkNf_round(const SkNf& x, const SkNf& scale) { |
| // Every time I try, _mm_cvtps_epi32 benches as slower than using FMA and _mm_cvttps_epi32. :/ |
| return SkNx_cast<int>(SkNf_fma(x,scale, 0.5f)); |
| } |
| |
| SI SkNf SkNf_from_byte(const SkNi& x) { |
| // Same trick as in store_8888: 0x470000BB == 32768.0f + BB/256.0f for all bytes BB. |
| auto v = 0x47000000 | x; |
| // Read this as (pun_float(v) - 32768.0f) * (256/255.0f), redistributed to be an FMA. |
| return SkNf_fma(SkNf::Load(&v), 256/255.0f, -32768*256/255.0f); |
| } |
| SI SkNf SkNf_from_byte(const SkNu& x) { return SkNf_from_byte(SkNi::Load(&x)); } |
| SI SkNf SkNf_from_byte(const SkNb& x) { return SkNf_from_byte(SkNx_cast<int>(x)); } |
| |
| SI void from_8888(const SkNu& _8888, SkNf* r, SkNf* g, SkNf* b, SkNf* a) { |
| *r = SkNf_from_byte((_8888 ) & 0xff); |
| *g = SkNf_from_byte((_8888 >> 8) & 0xff); |
| *b = SkNf_from_byte((_8888 >> 16) & 0xff); |
| *a = SkNf_from_byte((_8888 >> 24) ); |
| } |
| SI void from_4444(const SkNh& _4444, SkNf* r, SkNf* g, SkNf* b, SkNf* a) { |
| auto _32_bit = SkNx_cast<int>(_4444); |
| |
| *r = SkNx_cast<float>(_32_bit & (0xF << SK_R4444_SHIFT)) * (1.0f / (0xF << SK_R4444_SHIFT)); |
| *g = SkNx_cast<float>(_32_bit & (0xF << SK_G4444_SHIFT)) * (1.0f / (0xF << SK_G4444_SHIFT)); |
| *b = SkNx_cast<float>(_32_bit & (0xF << SK_B4444_SHIFT)) * (1.0f / (0xF << SK_B4444_SHIFT)); |
| *a = SkNx_cast<float>(_32_bit & (0xF << SK_A4444_SHIFT)) * (1.0f / (0xF << SK_A4444_SHIFT)); |
| } |
| SI void from_565(const SkNh& _565, SkNf* r, SkNf* g, SkNf* b) { |
| auto _32_bit = SkNx_cast<int>(_565); |
| |
| *r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE); |
| *g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE); |
| *b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE); |
| } |
| SI void from_f16(const void* px, SkNf* r, SkNf* g, SkNf* b, SkNf* a) { |
| SkNh rh, gh, bh, ah; |
| SkNh::Load4(px, &rh, &gh, &bh, &ah); |
| |
| *r = SkHalfToFloat_finite_ftz(rh); |
| *g = SkHalfToFloat_finite_ftz(gh); |
| *b = SkHalfToFloat_finite_ftz(bh); |
| *a = SkHalfToFloat_finite_ftz(ah); |
| } |
| |
| STAGE_CTX(trace, const char*) { |
| SkDebugf("%s\n", ctx); |
| } |
| STAGE(registers) { |
| auto print = [](const char* name, const SkNf& v) { |
| SkDebugf("%s:", name); |
| for (int i = 0; i < N; i++) { |
| SkDebugf(" %g", v[i]); |
| } |
| SkDebugf("\n"); |
| }; |
| print(" r", r); |
| print(" g", g); |
| print(" b", b); |
| print(" a", a); |
| print("dr", dr); |
| print("dg", dg); |
| print("db", db); |
| print("da", da); |
| } |
| |
| STAGE(clamp_0) { |
| a = SkNf::Max(a, 0.0f); |
| r = SkNf::Max(r, 0.0f); |
| g = SkNf::Max(g, 0.0f); |
| b = SkNf::Max(b, 0.0f); |
| } |
| STAGE(clamp_1) { |
| a = SkNf::Min(a, 1.0f); |
| r = SkNf::Min(r, 1.0f); |
| g = SkNf::Min(g, 1.0f); |
| b = SkNf::Min(b, 1.0f); |
| } |
| STAGE(clamp_a) { |
| a = SkNf::Min(a, 1.0f); |
| r = SkNf::Min(r, a); |
| g = SkNf::Min(g, a); |
| b = SkNf::Min(b, a); |
| } |
| |
| STAGE(unpremul) { |
| auto scale = (a == 0.0f).thenElse(0.0f, 1.0f/a); |
| r *= scale; |
| g *= scale; |
| b *= scale; |
| } |
| STAGE(premul) { |
| r *= a; |
| g *= a; |
| b *= a; |
| } |
| |
| STAGE_CTX(set_rgb, const float*) { |
| r = ctx[0]; |
| g = ctx[1]; |
| b = ctx[2]; |
| } |
| STAGE(swap_rb) { SkTSwap(r,b); } |
| |
| STAGE(move_src_dst) { |
| dr = r; |
| dg = g; |
| db = b; |
| da = a; |
| } |
| STAGE(move_dst_src) { |
| r = dr; |
| g = dg; |
| b = db; |
| a = da; |
| } |
| STAGE(swap) { |
| SkTSwap(r,dr); |
| SkTSwap(g,dg); |
| SkTSwap(b,db); |
| SkTSwap(a,da); |
| } |
| |
| STAGE(from_srgb) { |
| r = sk_linear_from_srgb_math(r); |
| g = sk_linear_from_srgb_math(g); |
| b = sk_linear_from_srgb_math(b); |
| } |
| STAGE(to_srgb) { |
| r = sk_linear_to_srgb_needs_round(r); |
| g = sk_linear_to_srgb_needs_round(g); |
| b = sk_linear_to_srgb_needs_round(b); |
| } |
| |
| STAGE(from_2dot2) { |
| auto from_2dot2 = [](const SkNf& x) { |
| // x^(141/64) = x^(2.20312) is a great approximation of the true value, x^(2.2). |
| // (note: x^(35/16) = x^(2.1875) is an okay one as well and would be quicker) |
| auto x16 = x.rsqrt().rsqrt().rsqrt().rsqrt(); // x^(1/16) = x^(4/64); |
| auto x64 = x16.rsqrt().rsqrt(); // x^(1/64) |
| |
| // x^(141/64) = x^(128/64) * x^(12/64) * x^(1/64) |
| return SkNf::Max((x*x) * (x16*x16*x16) * (x64), 0.0f); |
| }; |
| |
| r = from_2dot2(r); |
| g = from_2dot2(g); |
| b = from_2dot2(b); |
| } |
| STAGE(to_2dot2) { |
| auto to_2dot2 = [](const SkNf& x) { |
| // x^(29/64) is a very good approximation of the true value, x^(1/2.2). |
| auto x2 = x.rsqrt(), // x^(-1/2) |
| x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) |
| x64 = x32.rsqrt(); // x^(+1/64) |
| |
| // 29 = 32 - 2 - 1 |
| return SkNf::Max(x2.invert() * x32 * x64.invert(), 0.0f); // Watch out for NaN. |
| }; |
| |
| r = to_2dot2(r); |
| g = to_2dot2(g); |
| b = to_2dot2(b); |
| } |
| |
| // The default shader produces a constant color (from the SkPaint). |
| STAGE_CTX(constant_color, const SkPM4f*) { |
| r = ctx->r(); |
| g = ctx->g(); |
| b = ctx->b(); |
| a = ctx->a(); |
| } |
| |
| // s' = sc for a scalar c. |
| STAGE_CTX(scale_1_float, const float*) { |
| SkNf c = *ctx; |
| |
| r *= c; |
| g *= c; |
| b *= c; |
| a *= c; |
| } |
| // s' = sc for 8-bit c. |
| STAGE_CTX(scale_u8, const uint8_t**) { |
| auto ptr = *ctx + x; |
| SkNf c = SkNf_from_byte(load(tail, ptr)); |
| |
| r = r*c; |
| g = g*c; |
| b = b*c; |
| a = a*c; |
| } |
| |
| SI SkNf lerp(const SkNf& from, const SkNf& to, const SkNf& cov) { |
| return SkNf_fma(to-from, cov, from); |
| } |
| |
| // s' = d(1-c) + sc, for a scalar c. |
| STAGE_CTX(lerp_1_float, const float*) { |
| SkNf c = *ctx; |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| |
| // s' = d(1-c) + sc for 8-bit c. |
| STAGE_CTX(lerp_u8, const uint8_t**) { |
| auto ptr = *ctx + x; |
| SkNf c = SkNf_from_byte(load(tail, ptr)); |
| |
| r = lerp(dr, r, c); |
| g = lerp(dg, g, c); |
| b = lerp(db, b, c); |
| a = lerp(da, a, c); |
| } |
| |
| // s' = d(1-c) + sc for 565 c. |
| STAGE_CTX(lerp_565, const uint16_t**) { |
| auto ptr = *ctx + x; |
| SkNf cr, cg, cb; |
| from_565(load(tail, ptr), &cr, &cg, &cb); |
| |
| r = lerp(dr, r, cr); |
| g = lerp(dg, g, cg); |
| b = lerp(db, b, cb); |
| a = 1.0f; |
| } |
| |
| STAGE_CTX(load_565, const uint16_t**) { |
| auto ptr = *ctx + x; |
| from_565(load(tail, ptr), &r,&g,&b); |
| a = 1.0f; |
| } |
| STAGE_CTX(store_565, uint16_t**) { |
| auto ptr = *ctx + x; |
| store(tail, SkNx_cast<uint16_t>( SkNf_round(r, SK_R16_MASK) << SK_R16_SHIFT |
| | SkNf_round(g, SK_G16_MASK) << SK_G16_SHIFT |
| | SkNf_round(b, SK_B16_MASK) << SK_B16_SHIFT), ptr); |
| } |
| |
| |
| STAGE_CTX(load_f16, const uint64_t**) { |
| auto ptr = *ctx + x; |
| |
| const void* src = ptr; |
| SkNx<N, uint64_t> px; |
| if (tail) { |
| px = load(tail, ptr); |
| src = &px; |
| } |
| from_f16(src, &r, &g, &b, &a); |
| } |
| STAGE_CTX(store_f16, uint64_t**) { |
| auto ptr = *ctx + x; |
| |
| SkNx<N, uint64_t> px; |
| SkNh::Store4(tail ? (void*)&px : (void*)ptr, SkFloatToHalf_finite_ftz(r), |
| SkFloatToHalf_finite_ftz(g), |
| SkFloatToHalf_finite_ftz(b), |
| SkFloatToHalf_finite_ftz(a)); |
| if (tail) { |
| store(tail, px, ptr); |
| } |
| } |
| |
| STAGE_CTX(store_f32, SkPM4f**) { |
| auto ptr = *ctx + x; |
| |
| SkNx<N, SkPM4f> px; |
| SkNf::Store4(tail ? (void*)&px : (void*)ptr, r,g,b,a); |
| if (tail) { |
| store(tail, px, ptr); |
| } |
| } |
| |
| |
| STAGE_CTX(load_8888, const uint32_t**) { |
| auto ptr = *ctx + x; |
| from_8888(load(tail, ptr), &r, &g, &b, &a); |
| } |
| STAGE_CTX(store_8888, uint32_t**) { |
| auto byte = [](const SkNf& x, int ix) { |
| // Here's a neat trick: 0x47000000 == 32768.0f, and 0x470000ff == 32768.0f + (255/256.0f). |
| auto v = SkNf_fma(255/256.0f, x, 32768.0f); |
| switch (ix) { |
| case 0: return SkNi::Load(&v) & 0xff; // R |
| case 3: return SkNi::Load(&v) << 24; // A |
| } |
| return (SkNi::Load(&v) & 0xff) << (8*ix); // B or G |
| }; |
| |
| auto ptr = *ctx + x; |
| store(tail, byte(r,0)|byte(g,1)|byte(b,2)|byte(a,3), (int*)ptr); |
| } |
| |
| STAGE_CTX(load_tables, const LoadTablesContext*) { |
| auto ptr = ctx->fSrc + x; |
| |
| SkNu rgba = load(tail, ptr); |
| auto to_int = [](const SkNu& v) { return SkNi::Load(&v); }; |
| r = gather(tail, ctx->fR, to_int((rgba >> 0) & 0xff)); |
| g = gather(tail, ctx->fG, to_int((rgba >> 8) & 0xff)); |
| b = gather(tail, ctx->fB, to_int((rgba >> 16) & 0xff)); |
| a = SkNf_from_byte(rgba >> 24); |
| } |
| |
| STAGE_CTX(store_tables, const StoreTablesContext*) { |
| auto ptr = ctx->fDst + x; |
| |
| float scale = ctx->fCount - 1; |
| SkNi ri = SkNf_round(scale, r); |
| SkNi gi = SkNf_round(scale, g); |
| SkNi bi = SkNf_round(scale, b); |
| |
| store(tail, ( SkNx_cast<int>(gather(tail, ctx->fR, ri)) << 0 |
| | SkNx_cast<int>(gather(tail, ctx->fG, gi)) << 8 |
| | SkNx_cast<int>(gather(tail, ctx->fB, bi)) << 16 |
| | SkNf_round(255.0f, a) << 24), (int*)ptr); |
| } |
| |
| SI SkNf inv(const SkNf& x) { return 1.0f - x; } |
| |
| RGBA_XFERMODE(clear) { return 0.0f; } |
| RGBA_XFERMODE(srcatop) { return s*da + d*inv(sa); } |
| RGBA_XFERMODE(srcin) { return s * da; } |
| RGBA_XFERMODE(srcout) { return s * inv(da); } |
| RGBA_XFERMODE(srcover) { return SkNf_fma(d, inv(sa), s); } |
| RGBA_XFERMODE(dstatop) { return srcatop_kernel(d,da,s,sa); } |
| RGBA_XFERMODE(dstin) { return srcin_kernel (d,da,s,sa); } |
| RGBA_XFERMODE(dstout) { return srcout_kernel (d,da,s,sa); } |
| RGBA_XFERMODE(dstover) { return srcover_kernel(d,da,s,sa); } |
| |
| RGBA_XFERMODE(modulate) { return s*d; } |
| RGBA_XFERMODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } |
| RGBA_XFERMODE(plus_) { return s + d; } |
| RGBA_XFERMODE(screen) { return s + d - s*d; } |
| RGBA_XFERMODE(xor_) { return s*inv(da) + d*inv(sa); } |
| |
| RGB_XFERMODE(colorburn) { |
| return (d == da ).thenElse(d + s*inv(da), |
| (s == 0.0f).thenElse(s + d*inv(sa), |
| sa*(da - SkNf::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa))); |
| } |
| RGB_XFERMODE(colordodge) { |
| return (d == 0.0f).thenElse(d + s*inv(da), |
| (s == sa ).thenElse(s + d*inv(sa), |
| sa*SkNf::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa))); |
| } |
| RGB_XFERMODE(darken) { return s + d - SkNf::Max(s*da, d*sa); } |
| RGB_XFERMODE(difference) { return s + d - 2.0f*SkNf::Min(s*da,d*sa); } |
| RGB_XFERMODE(exclusion) { return s + d - 2.0f*s*d; } |
| RGB_XFERMODE(hardlight) { |
| return s*inv(da) + d*inv(sa) |
| + (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s)); |
| } |
| RGB_XFERMODE(lighten) { return s + d - SkNf::Min(s*da, d*sa); } |
| RGB_XFERMODE(overlay) { return hardlight_kernel(d,da,s,sa); } |
| RGB_XFERMODE(softlight) { |
| SkNf m = (da > 0.0f).thenElse(d / da, 0.0f), |
| s2 = 2.0f*s, |
| m4 = 4.0f*m; |
| |
| // The logic forks three ways: |
| // 1. dark src? |
| // 2. light src, dark dst? |
| // 3. light src, light dst? |
| SkNf darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. |
| darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. |
| liteDst = m.rsqrt().invert() - m, // Used in case 3. |
| liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3? |
| return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)? |
| } |
| |
| STAGE(luminance_to_alpha) { |
| a = SK_LUM_COEFF_R*r + SK_LUM_COEFF_G*g + SK_LUM_COEFF_B*b; |
| r = g = b = 0; |
| } |
| |
| STAGE_CTX(matrix_2x3, const float*) { |
| auto m = ctx; |
| |
| auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[2], m[4])), |
| G = SkNf_fma(r,m[1], SkNf_fma(g,m[3], m[5])); |
| r = R; |
| g = G; |
| } |
| STAGE_CTX(matrix_3x4, const float*) { |
| auto m = ctx; |
| |
| auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[3], SkNf_fma(b,m[6], m[ 9]))), |
| G = SkNf_fma(r,m[1], SkNf_fma(g,m[4], SkNf_fma(b,m[7], m[10]))), |
| B = SkNf_fma(r,m[2], SkNf_fma(g,m[5], SkNf_fma(b,m[8], m[11]))); |
| r = R; |
| g = G; |
| b = B; |
| } |
| STAGE_CTX(matrix_4x5, const float*) { |
| auto m = ctx; |
| |
| auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[4], SkNf_fma(b,m[ 8], SkNf_fma(a,m[12], m[16])))), |
| G = SkNf_fma(r,m[1], SkNf_fma(g,m[5], SkNf_fma(b,m[ 9], SkNf_fma(a,m[13], m[17])))), |
| B = SkNf_fma(r,m[2], SkNf_fma(g,m[6], SkNf_fma(b,m[10], SkNf_fma(a,m[14], m[18])))), |
| A = SkNf_fma(r,m[3], SkNf_fma(g,m[7], SkNf_fma(b,m[11], SkNf_fma(a,m[15], m[19])))); |
| r = R; |
| g = G; |
| b = B; |
| a = A; |
| } |
| STAGE_CTX(matrix_perspective, const float*) { |
| // N.B. unlike the matrix_NxM stages, this takes a row-major matrix. |
| auto m = ctx; |
| |
| auto R = SkNf_fma(r,m[0], SkNf_fma(g,m[1], m[2])), |
| G = SkNf_fma(r,m[3], SkNf_fma(g,m[4], m[5])), |
| Z = SkNf_fma(r,m[6], SkNf_fma(g,m[7], m[8])); |
| r = R * Z.invert(); |
| g = G * Z.invert(); |
| } |
| |
| SI SkNf parametric(const SkNf& v, const SkColorSpaceTransferFn& p) { |
| float result[N]; // Unconstrained powf() doesn't vectorize well... |
| for (int i = 0; i < N; i++) { |
| float s = v[i]; |
| result[i] = (s <= p.fD) ? p.fC * s + p.fF |
| : powf(s * p.fA + p.fB, p.fG) + p.fE; |
| } |
| // Clamp the output to [0, 1]. |
| // Max(NaN, 0) = 0, but Max(0, NaN) = NaN, so we want this exact order to ensure NaN => 0 |
| return SkNf::Min(SkNf::Max(SkNf::Load(result), 0.0f), 1.0f); |
| } |
| STAGE_CTX(parametric_r, const SkColorSpaceTransferFn*) { r = parametric(r, *ctx); } |
| STAGE_CTX(parametric_g, const SkColorSpaceTransferFn*) { g = parametric(g, *ctx); } |
| STAGE_CTX(parametric_b, const SkColorSpaceTransferFn*) { b = parametric(b, *ctx); } |
| STAGE_CTX(parametric_a, const SkColorSpaceTransferFn*) { a = parametric(a, *ctx); } |
| |
| SI SkNf table(const SkNf& v, const SkTableTransferFn& table) { |
| float result[N]; |
| for (int i = 0; i < N; i++) { |
| result[i] = interp_lut(v[i], table.fData, table.fSize); |
| } |
| // no need to clamp - tables are by-design [0,1] -> [0,1] |
| return SkNf::Load(result); |
| } |
| STAGE_CTX(table_r, const SkTableTransferFn*) { r = table(r, *ctx); } |
| STAGE_CTX(table_g, const SkTableTransferFn*) { g = table(g, *ctx); } |
| STAGE_CTX(table_b, const SkTableTransferFn*) { b = table(b, *ctx); } |
| STAGE_CTX(table_a, const SkTableTransferFn*) { a = table(a, *ctx); } |
| |
| STAGE_CTX(color_lookup_table, const SkColorLookUpTable*) { |
| const SkColorLookUpTable* colorLUT = ctx; |
| SkASSERT(3 == colorLUT->inputChannels() || 4 == colorLUT->inputChannels()); |
| SkASSERT(3 == colorLUT->outputChannels()); |
| float result[3][N]; |
| for (int i = 0; i < N; ++i) { |
| const float in[4] = { r[i], g[i], b[i], a[i] }; |
| float out[3]; |
| colorLUT->interp(out, in); |
| for (int j = 0; j < colorLUT->outputChannels(); ++j) { |
| result[j][i] = out[j]; |
| } |
| } |
| r = SkNf::Load(result[0]); |
| g = SkNf::Load(result[1]); |
| b = SkNf::Load(result[2]); |
| if (4 == colorLUT->inputChannels()) { |
| // we must set the pixel to opaque, as the alpha channel was used |
| // as input before this. |
| a = 1.f; |
| } |
| } |
| |
| STAGE(lab_to_xyz) { |
| const auto lab_l = r * 100.0f; |
| const auto lab_a = g * 255.0f - 128.0f; |
| const auto lab_b = b * 255.0f - 128.0f; |
| auto Y = (lab_l + 16.0f) * (1/116.0f); |
| auto X = lab_a * (1/500.0f) + Y; |
| auto Z = Y - (lab_b * (1/200.0f)); |
| |
| const auto X3 = X*X*X; |
| X = (X3 > 0.008856f).thenElse(X3, (X - (16/116.0f)) * (1/7.787f)); |
| const auto Y3 = Y*Y*Y; |
| Y = (Y3 > 0.008856f).thenElse(Y3, (Y - (16/116.0f)) * (1/7.787f)); |
| const auto Z3 = Z*Z*Z; |
| Z = (Z3 > 0.008856f).thenElse(Z3, (Z - (16/116.0f)) * (1/7.787f)); |
| |
| // adjust to D50 illuminant |
| X *= 0.96422f; |
| Y *= 1.00000f; |
| Z *= 0.82521f; |
| |
| r = X; |
| g = Y; |
| b = Z; |
| } |
| |
| SI SkNf assert_in_tile(const SkNf& v, float limit) { |
| for (int i = 0; i < N; i++) { |
| SkASSERT(0 <= v[i] && v[i] < limit); |
| } |
| return v; |
| } |
| |
| SI SkNf clamp(const SkNf& v, float limit) { |
| SkNf result = SkNf::Max(0, SkNf::Min(v, limit - 0.5f)); |
| return assert_in_tile(result, limit); |
| } |
| SI SkNf repeat(const SkNf& v, float limit) { |
| SkNf result = v - (v/limit).floor()*limit; |
| // For small negative v, (v/limit).floor()*limit can dominate v in the subtraction, |
| // which leaves result == limit. We want result < limit, so clamp it one ULP. |
| result = SkNf::Min(result, nextafterf(limit, 0)); |
| return assert_in_tile(result, limit); |
| } |
| SI SkNf mirror(const SkNf& v, float l/*imit*/) { |
| SkNf result = ((v - l) - ((v - l) / (2*l)).floor()*(2*l) - l).abs(); |
| // Same deal as repeat. |
| result = SkNf::Min(result, nextafterf(l, 0)); |
| return assert_in_tile(result, l); |
| } |
| STAGE_CTX( clamp_x, const float*) { r = clamp (r, *ctx); } |
| STAGE_CTX(repeat_x, const float*) { r = repeat(r, *ctx); } |
| STAGE_CTX(mirror_x, const float*) { r = mirror(r, *ctx); } |
| STAGE_CTX( clamp_y, const float*) { g = clamp (g, *ctx); } |
| STAGE_CTX(repeat_y, const float*) { g = repeat(g, *ctx); } |
| STAGE_CTX(mirror_y, const float*) { g = mirror(g, *ctx); } |
| |
| STAGE_CTX(save_xy, SkImageShaderContext*) { |
| r.store(ctx->x); |
| g.store(ctx->y); |
| |
| // Whether bilinear or bicubic, all sample points have the same fractional offset (fx,fy). |
| // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid |
| // surrounding (x,y), all (0.5,0.5) off-center. |
| auto fract = [](const SkNf& v) { return v - v.floor(); }; |
| fract(r + 0.5f).store(ctx->fx); |
| fract(g + 0.5f).store(ctx->fy); |
| } |
| |
| STAGE_CTX(accumulate, const SkImageShaderContext*) { |
| // Bilinear and bicubic filtering are both separable, so we'll end up with independent |
| // scale contributions in x and y that we multiply together to get each pixel's scale factor. |
| auto scale = SkNf::Load(ctx->scalex) * SkNf::Load(ctx->scaley); |
| dr = SkNf_fma(scale, r, dr); |
| dg = SkNf_fma(scale, g, dg); |
| db = SkNf_fma(scale, b, db); |
| da = SkNf_fma(scale, a, da); |
| } |
| |
| // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center |
| // are combined in direct proportion to their area overlapping that logical query pixel. |
| // At positive offsets, the x-axis contribution to that rectangular area is fx; (1-fx) |
| // at negative x offsets. The y-axis is treated symmetrically. |
| template <int Scale> |
| SI void bilinear_x(SkImageShaderContext* ctx, SkNf* x) { |
| *x = SkNf::Load(ctx->x) + Scale*0.5f; |
| auto fx = SkNf::Load(ctx->fx); |
| (Scale > 0 ? fx : (1.0f - fx)).store(ctx->scalex); |
| } |
| template <int Scale> |
| SI void bilinear_y(SkImageShaderContext* ctx, SkNf* y) { |
| *y = SkNf::Load(ctx->y) + Scale*0.5f; |
| auto fy = SkNf::Load(ctx->fy); |
| (Scale > 0 ? fy : (1.0f - fy)).store(ctx->scaley); |
| } |
| STAGE_CTX(bilinear_nx, SkImageShaderContext*) { bilinear_x<-1>(ctx, &r); } |
| STAGE_CTX(bilinear_px, SkImageShaderContext*) { bilinear_x<+1>(ctx, &r); } |
| STAGE_CTX(bilinear_ny, SkImageShaderContext*) { bilinear_y<-1>(ctx, &g); } |
| STAGE_CTX(bilinear_py, SkImageShaderContext*) { bilinear_y<+1>(ctx, &g); } |
| |
| |
| // In bilinear interpolation, the 16 pixels at +/- 0.5 and +/- 1.5 offsets from the sample |
| // pixel center are combined with a non-uniform cubic filter, with high filter values near |
| // the center and lower values farther away. |
| // |
| // We break this filter function into two parts, one for near +/- 0.5 offsets, |
| // and one for far +/- 1.5 offsets. |
| // |
| // See GrBicubicEffect for details about this particular Mitchell-Netravali filter. |
| SI SkNf bicubic_near(const SkNf& t) { |
| // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18 |
| return SkNf_fma(t, SkNf_fma(t, SkNf_fma(-21/18.0f, t, 27/18.0f), 9/18.0f), 1/18.0f); |
| } |
| SI SkNf bicubic_far(const SkNf& t) { |
| // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18) |
| return (t*t)*SkNf_fma(7/18.0f, t, -6/18.0f); |
| } |
| |
| template <int Scale> |
| SI void bicubic_x(SkImageShaderContext* ctx, SkNf* x) { |
| *x = SkNf::Load(ctx->x) + Scale*0.5f; |
| auto fx = SkNf::Load(ctx->fx); |
| if (Scale == -3) { return bicubic_far (1.0f - fx).store(ctx->scalex); } |
| if (Scale == -1) { return bicubic_near(1.0f - fx).store(ctx->scalex); } |
| if (Scale == +1) { return bicubic_near( fx).store(ctx->scalex); } |
| if (Scale == +3) { return bicubic_far ( fx).store(ctx->scalex); } |
| SkDEBUGFAIL("unreachable"); |
| } |
| template <int Scale> |
| SI void bicubic_y(SkImageShaderContext* ctx, SkNf* y) { |
| *y = SkNf::Load(ctx->y) + Scale*0.5f; |
| auto fy = SkNf::Load(ctx->fy); |
| if (Scale == -3) { return bicubic_far (1.0f - fy).store(ctx->scaley); } |
| if (Scale == -1) { return bicubic_near(1.0f - fy).store(ctx->scaley); } |
| if (Scale == +1) { return bicubic_near( fy).store(ctx->scaley); } |
| if (Scale == +3) { return bicubic_far ( fy).store(ctx->scaley); } |
| SkDEBUGFAIL("unreachable"); |
| } |
| STAGE_CTX(bicubic_n3x, SkImageShaderContext*) { bicubic_x<-3>(ctx, &r); } |
| STAGE_CTX(bicubic_n1x, SkImageShaderContext*) { bicubic_x<-1>(ctx, &r); } |
| STAGE_CTX(bicubic_p1x, SkImageShaderContext*) { bicubic_x<+1>(ctx, &r); } |
| STAGE_CTX(bicubic_p3x, SkImageShaderContext*) { bicubic_x<+3>(ctx, &r); } |
| |
| STAGE_CTX(bicubic_n3y, SkImageShaderContext*) { bicubic_y<-3>(ctx, &g); } |
| STAGE_CTX(bicubic_n1y, SkImageShaderContext*) { bicubic_y<-1>(ctx, &g); } |
| STAGE_CTX(bicubic_p1y, SkImageShaderContext*) { bicubic_y<+1>(ctx, &g); } |
| STAGE_CTX(bicubic_p3y, SkImageShaderContext*) { bicubic_y<+3>(ctx, &g); } |
| |
| |
| template <typename T> |
| SI SkNi offset_and_ptr(T** ptr, const SkImageShaderContext* ctx, const SkNf& x, const SkNf& y) { |
| SkNi ix = SkNx_cast<int>(x), |
| iy = SkNx_cast<int>(y); |
| SkNi offset = iy*ctx->stride + ix; |
| |
| *ptr = (const T*)ctx->pixels; |
| return offset; |
| } |
| |
| STAGE_CTX(gather_a8, const SkImageShaderContext*) { |
| const uint8_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| r = g = b = 0.0f; |
| a = SkNf_from_byte(gather(tail, p, offset)); |
| } |
| STAGE_CTX(gather_i8, const SkImageShaderContext*) { |
| const uint8_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| SkNi ix = SkNx_cast<int>(gather(tail, p, offset)); |
| from_8888(gather(tail, ctx->ctable->readColors(), ix), &r, &g, &b, &a); |
| } |
| STAGE_CTX(gather_g8, const SkImageShaderContext*) { |
| const uint8_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| r = g = b = SkNf_from_byte(gather(tail, p, offset)); |
| a = 1.0f; |
| } |
| STAGE_CTX(gather_565, const SkImageShaderContext*) { |
| const uint16_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| from_565(gather(tail, p, offset), &r, &g, &b); |
| a = 1.0f; |
| } |
| STAGE_CTX(gather_4444, const SkImageShaderContext*) { |
| const uint16_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| from_4444(gather(tail, p, offset), &r, &g, &b, &a); |
| } |
| STAGE_CTX(gather_8888, const SkImageShaderContext*) { |
| const uint32_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| from_8888(gather(tail, p, offset), &r, &g, &b, &a); |
| } |
| STAGE_CTX(gather_f16, const SkImageShaderContext*) { |
| const uint64_t* p; |
| SkNi offset = offset_and_ptr(&p, ctx, r, g); |
| |
| auto px = gather(tail, p, offset); |
| from_f16(&px, &r, &g, &b, &a); |
| } |
| |
| |
| SI Fn enum_to_Fn(SkRasterPipeline::StockStage st) { |
| switch (st) { |
| #define M(stage) case SkRasterPipeline::stage: return stage; |
| SK_RASTER_PIPELINE_STAGES(M) |
| #undef M |
| } |
| SkASSERT(false); |
| return just_return; |
| } |
| |
| namespace { |
| |
| static void build_program(void** program, const SkRasterPipeline::Stage* stages, int nstages) { |
| for (int i = 0; i < nstages; i++) { |
| *program++ = (void*)enum_to_Fn(stages[i].stage); |
| if (stages[i].ctx) { |
| *program++ = stages[i].ctx; |
| } |
| } |
| *program++ = (void*)just_return; |
| } |
| |
| static void run_program(void** program, size_t x, size_t y, size_t n) { |
| float dx[] = { 0,1,2,3,4,5,6,7 }; |
| SkNf X = SkNf(x) + SkNf::Load(dx) + 0.5f, |
| Y = SkNf(y) + 0.5f, |
| _0 = SkNf(0), |
| _1 = SkNf(1); |
| |
| auto start = (Fn)load_and_increment(&program); |
| while (n >= N) { |
| start(x*N, program, X,Y,_1,_0, _0,_0,_0,_0); |
| X += (float)N; |
| x += N; |
| n -= N; |
| } |
| if (n) { |
| start(x*N+n, program, X,Y,_1,_0, _0,_0,_0,_0); |
| } |
| } |
| |
| // Compiled manages its memory manually because it's not safe to use |
| // std::vector, SkTDArray, etc without setting us up for big ODR violations. |
| struct Compiled { |
| Compiled(const SkRasterPipeline::Stage* stages, int nstages) { |
| int slots = nstages + 1; // One extra for just_return. |
| for (int i = 0; i < nstages; i++) { |
| if (stages[i].ctx) { |
| slots++; |
| } |
| } |
| fProgram = (void**)sk_malloc_throw(slots * sizeof(void*)); |
| build_program(fProgram, stages, nstages); |
| } |
| ~Compiled() { sk_free(fProgram); } |
| |
| Compiled(const Compiled& o) { |
| int slots = 0; |
| while (o.fProgram[slots++] != (void*)just_return); |
| |
| fProgram = (void**)sk_malloc_throw(slots * sizeof(void*)); |
| memcpy(fProgram, o.fProgram, slots * sizeof(void*)); |
| } |
| |
| void operator()(size_t x, size_t y, size_t n) { |
| run_program(fProgram, x, y, n); |
| } |
| |
| void** fProgram; |
| }; |
| } |
| |
| namespace SK_OPTS_NS { |
| |
| SI std::function<void(size_t, size_t, size_t)> |
| compile_pipeline(const SkRasterPipeline::Stage* stages, int nstages) { |
| return Compiled{stages,nstages}; |
| } |
| |
| SI void run_pipeline(size_t x, size_t y, size_t n, |
| const SkRasterPipeline::Stage* stages, int nstages) { |
| static const int kStackMax = 256; |
| // Worst case is nstages stages with nstages context pointers, and just_return. |
| if (2*nstages+1 <= kStackMax) { |
| void* program[kStackMax]; |
| build_program(program, stages, nstages); |
| run_program(program, x,y,n); |
| } else { |
| Compiled{stages,nstages}(x,y,n); |
| } |
| } |
| |
| } // namespace SK_OPTS_NS |
| |
| #undef SI |
| #undef STAGE |
| #undef STAGE_CTX |
| #undef RGBA_XFERMODE |
| #undef RGB_XFERMODE |
| |
| #endif//SkRasterPipeline_opts_DEFINED |