blob: fdb15b421ee20a2e4154bf5ff14f1829f5b24b62 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "SkHalf.h"
#include "SkPM4f.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
using Kernel_Sk4f = void(void*, size_t, size_t, Sk4f&, Sk4f&, Sk4f&, Sk4f&,
Sk4f&, Sk4f&, Sk4f&, Sk4f&);
// These are always static, and we _really_ want them to inline.
// If you find yourself wanting a non-inline stage, write a SkRasterPipeline::Fn directly.
#define KERNEL_Sk4f(name) \
static SK_ALWAYS_INLINE void name(void* ctx, size_t x, size_t tail, \
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, \
Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da)
template <Kernel_Sk4f kernel, bool kCallNext>
static inline void SK_VECTORCALL stage_4(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
// Passing 0 lets the optimizer completely drop any "if (tail) {...}" code in kernel.
kernel(st->ctx<void*>(), x,0, r,g,b,a, dr,dg,db,da);
if (kCallNext) {
st->next(x,tail, r,g,b,a, dr,dg,db,da); // It's faster to pass t here than 0.
}
}
template <Kernel_Sk4f kernel, bool kCallNext>
static inline void SK_VECTORCALL stage_1_3(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
#if defined(__clang__)
__builtin_assume(tail > 0); // This flourish lets Clang compile away any tail==0 code.
#endif
kernel(st->ctx<void*>(), x,tail, r,g,b,a, dr,dg,db,da);
if (kCallNext) {
st->next(x,tail, r,g,b,a, dr,dg,db,da);
}
}
// Many xfermodes apply the same logic to each channel.
#define RGBA_XFERMODE_Sk4f(name) \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da); \
static void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, size_t tail, \
Sk4f r, Sk4f g, Sk4f b, Sk4f a, \
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = name##_kernel(a,a,da,da); \
st->next(x,tail, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da)
// Most of the rest apply the same logic to color channels and use srcover's alpha logic.
#define RGB_XFERMODE_Sk4f(name) \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da); \
static void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, size_t tail, \
Sk4f r, Sk4f g, Sk4f b, Sk4f a, \
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = a + (da * (1.0f-a)); \
st->next(x,tail, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da)
namespace SK_OPTS_NS {
// Clamp colors into [0,1] premul (e.g. just before storing back to memory).
static void clamp_01_premul(Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a) {
a = Sk4f::Max(a, 0.0f);
r = Sk4f::Max(r, 0.0f);
g = Sk4f::Max(g, 0.0f);
b = Sk4f::Max(b, 0.0f);
a = Sk4f::Min(a, 1.0f);
r = Sk4f::Min(r, a);
g = Sk4f::Min(g, a);
b = Sk4f::Min(b, a);
}
static Sk4f inv(const Sk4f& x) { return 1.0f - x; }
static Sk4f lerp(const Sk4f& from, const Sk4f& to, const Sk4f& cov) {
return from + (to-from)*cov;
}
template <typename T>
static SkNx<4,T> load_tail(size_t tail, const T* src) {
if (tail) {
return SkNx<4,T>(src[0], (tail>1 ? src[1] : 0), (tail>2 ? src[2] : 0), 0);
}
return SkNx<4,T>::Load(src);
}
template <typename T>
static void store_tail(size_t tail, const SkNx<4,T>& v, T* dst) {
switch(tail) {
case 0: return v.store(dst);
case 3: dst[2] = v[2];
case 2: dst[1] = v[1];
case 1: dst[0] = v[0];
}
}
static void from_565(const Sk4h& _565, Sk4f* r, Sk4f* g, Sk4f* b) {
Sk4i _32_bit = SkNx_cast<int>(_565);
*r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE);
*g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE);
*b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE);
}
static Sk4h to_565(const Sk4f& r, const Sk4f& g, const Sk4f& b) {
return SkNx_cast<uint16_t>( Sk4f_round(r * SK_R16_MASK) << SK_R16_SHIFT
| Sk4f_round(g * SK_G16_MASK) << SK_G16_SHIFT
| Sk4f_round(b * SK_B16_MASK) << SK_B16_SHIFT);
}
// The default shader produces a constant color (from the SkPaint).
KERNEL_Sk4f(constant_color) {
auto color = (const SkPM4f*)ctx;
r = color->r();
g = color->g();
b = color->b();
a = color->a();
}
// s' = d(1-c) + sc, for a constant c.
KERNEL_Sk4f(lerp_constant_float) {
Sk4f c = *(const float*)ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = sc for 8-bit c.
KERNEL_Sk4f(scale_u8) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = SkNx_cast<float>(load_tail(tail, ptr)) * (1/255.0f);
r = r*c;
g = g*c;
b = b*c;
a = a*c;
}
// s' = d(1-c) + sc for 8-bit c.
KERNEL_Sk4f(lerp_u8) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = SkNx_cast<float>(load_tail(tail, ptr)) * (1/255.0f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = d(1-c) + sc for 565 c.
KERNEL_Sk4f(lerp_565) {
auto ptr = (const uint16_t*)ctx + x;
Sk4f cr, cg, cb;
from_565(load_tail(tail, ptr), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0f;
}
KERNEL_Sk4f(load_d_565) {
auto ptr = (const uint16_t*)ctx + x;
from_565(load_tail(tail, ptr), &dr,&dg,&db);
da = 1.0f;
}
KERNEL_Sk4f(load_s_565) {
auto ptr = (const uint16_t*)ctx + x;
from_565(load_tail(tail, ptr), &r,&g,&b);
a = 1.0f;
}
KERNEL_Sk4f(store_565) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint16_t*)ctx + x;
store_tail(tail, to_565(r,g,b), ptr);
}
KERNEL_Sk4f(load_d_f16) {
auto ptr = (const uint64_t*)ctx + x;
if (tail) {
auto p0 = SkHalfToFloat_finite_ftz(ptr[0]) ,
p1 = tail>1 ? SkHalfToFloat_finite_ftz(ptr[1]) : Sk4f{0},
p2 = tail>2 ? SkHalfToFloat_finite_ftz(ptr[2]) : Sk4f{0};
dr = { p0[0],p1[0],p2[0],0 };
dg = { p0[1],p1[1],p2[1],0 };
db = { p0[2],p1[2],p2[2],0 };
da = { p0[3],p1[3],p2[3],0 };
return;
}
Sk4h rh, gh, bh, ah;
Sk4h_load4(ptr, &rh, &gh, &bh, &ah);
dr = SkHalfToFloat_finite_ftz(rh);
dg = SkHalfToFloat_finite_ftz(gh);
db = SkHalfToFloat_finite_ftz(bh);
da = SkHalfToFloat_finite_ftz(ah);
}
KERNEL_Sk4f(load_s_f16) {
auto ptr = (const uint64_t*)ctx + x;
if (tail) {
auto p0 = SkHalfToFloat_finite_ftz(ptr[0]) ,
p1 = tail>1 ? SkHalfToFloat_finite_ftz(ptr[1]) : Sk4f{0},
p2 = tail>2 ? SkHalfToFloat_finite_ftz(ptr[2]) : Sk4f{0};
r = { p0[0],p1[0],p2[0],0 };
g = { p0[1],p1[1],p2[1],0 };
b = { p0[2],p1[2],p2[2],0 };
a = { p0[3],p1[3],p2[3],0 };
return;
}
Sk4h rh, gh, bh, ah;
Sk4h_load4(ptr, &rh, &gh, &bh, &ah);
r = SkHalfToFloat_finite_ftz(rh);
g = SkHalfToFloat_finite_ftz(gh);
b = SkHalfToFloat_finite_ftz(bh);
a = SkHalfToFloat_finite_ftz(ah);
}
KERNEL_Sk4f(store_f16) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint64_t*)ctx + x;
switch (tail) {
case 0: return Sk4h_store4(ptr, SkFloatToHalf_finite_ftz(r),
SkFloatToHalf_finite_ftz(g),
SkFloatToHalf_finite_ftz(b),
SkFloatToHalf_finite_ftz(a));
case 3: SkFloatToHalf_finite_ftz({r[2], g[2], b[2], a[2]}).store(ptr+2);
case 2: SkFloatToHalf_finite_ftz({r[1], g[1], b[1], a[1]}).store(ptr+1);
case 1: SkFloatToHalf_finite_ftz({r[0], g[0], b[0], a[0]}).store(ptr+0);
}
}
// Load 8-bit SkPMColor-order sRGB.
KERNEL_Sk4f(load_d_srgb) {
auto ptr = (const uint32_t*)ctx + x;
auto px = load_tail(tail, (const int*)ptr);
dr = sk_linear_from_srgb_math((px >> SK_R32_SHIFT) & 0xff);
dg = sk_linear_from_srgb_math((px >> SK_G32_SHIFT) & 0xff);
db = sk_linear_from_srgb_math((px >> SK_B32_SHIFT) & 0xff);
da = (1/255.0f)*SkNx_cast<float>((px >> SK_A32_SHIFT) & 0xff);
}
KERNEL_Sk4f(load_s_srgb) {
auto ptr = (const uint32_t*)ctx + x;
auto px = load_tail(tail, (const int*)ptr);
r = sk_linear_from_srgb_math((px >> SK_R32_SHIFT) & 0xff);
g = sk_linear_from_srgb_math((px >> SK_G32_SHIFT) & 0xff);
b = sk_linear_from_srgb_math((px >> SK_B32_SHIFT) & 0xff);
a = (1/255.0f)*SkNx_cast<float>((px >> SK_A32_SHIFT) & 0xff);
}
KERNEL_Sk4f(store_srgb) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint32_t*)ctx + x;
store_tail(tail, ( sk_linear_to_srgb_noclamp(r) << SK_R32_SHIFT
| sk_linear_to_srgb_noclamp(g) << SK_G32_SHIFT
| sk_linear_to_srgb_noclamp(b) << SK_B32_SHIFT
| Sk4f_round(255.0f * a) << SK_A32_SHIFT), (int*)ptr);
}
RGBA_XFERMODE_Sk4f(clear) { return 0.0f; }
//RGBA_XFERMODE_Sk4f(src) { return s; } // This would be a no-op stage, so we just omit it.
RGBA_XFERMODE_Sk4f(dst) { return d; }
RGBA_XFERMODE_Sk4f(srcatop) { return s*da + d*inv(sa); }
RGBA_XFERMODE_Sk4f(srcin) { return s * da; }
RGBA_XFERMODE_Sk4f(srcout) { return s * inv(da); }
RGBA_XFERMODE_Sk4f(srcover) { return s + inv(sa)*d; }
RGBA_XFERMODE_Sk4f(dstatop) { return srcatop_kernel(d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstin) { return srcin_kernel (d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstout) { return srcout_kernel (d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstover) { return srcover_kernel(d,da,s,sa); }
RGBA_XFERMODE_Sk4f(modulate) { return s*d; }
RGBA_XFERMODE_Sk4f(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
RGBA_XFERMODE_Sk4f(plus_) { return s + d; }
RGBA_XFERMODE_Sk4f(screen) { return s + d - s*d; }
RGBA_XFERMODE_Sk4f(xor_) { return s*inv(da) + d*inv(sa); }
RGB_XFERMODE_Sk4f(colorburn) {
return (d == da ).thenElse(d + s*inv(da),
(s == 0.0f).thenElse(s + d*inv(sa),
sa*(da - Sk4f::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE_Sk4f(colordodge) {
return (d == 0.0f).thenElse(d + s*inv(da),
(s == sa ).thenElse(s + d*inv(sa),
sa*Sk4f::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE_Sk4f(darken) { return s + d - Sk4f::Max(s*da, d*sa); }
RGB_XFERMODE_Sk4f(difference) { return s + d - 2.0f*Sk4f::Min(s*da,d*sa); }
RGB_XFERMODE_Sk4f(exclusion) { return s + d - 2.0f*s*d; }
RGB_XFERMODE_Sk4f(hardlight) {
return s*inv(da) + d*inv(sa)
+ (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s));
}
RGB_XFERMODE_Sk4f(lighten) { return s + d - Sk4f::Min(s*da, d*sa); }
RGB_XFERMODE_Sk4f(overlay) { return hardlight_kernel(d,da,s,sa); }
RGB_XFERMODE_Sk4f(softlight) {
Sk4f m = (da > 0.0f).thenElse(d / da, 0.0f),
s2 = 2.0f*s,
m4 = 4.0f*m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
Sk4f darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = m.rsqrt().invert() - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)?
}
}
#undef KERNEL_Sk4f
#undef RGB_XFERMODE_Sk4f
#undef RGB_XFERMODE_Sk4f
#endif//SkRasterPipeline_opts_DEFINED