| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkTHash_DEFINED |
| #define SkTHash_DEFINED |
| |
| #include "SkChecksum.h" |
| #include "SkTypes.h" |
| #include "SkTemplates.h" |
| |
| // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you. |
| // They're easier to use, usually perform the same, and have fewer sharp edges. |
| |
| // T and K are treated as ordinary copyable C++ types. |
| // Traits must have: |
| // - static K GetKey(T) |
| // - static uint32_t Hash(K) |
| // If the key is large and stored inside T, you may want to make K a const&. |
| // Similarly, if T is large you might want it to be a pointer. |
| template <typename T, typename K, typename Traits = T> |
| class SkTHashTable : SkNoncopyable { |
| public: |
| SkTHashTable() : fCount(0), fRemoved(0), fCapacity(0) {} |
| |
| // Clear the table. |
| void reset() { |
| this->~SkTHashTable(); |
| new (this) SkTHashTable; |
| } |
| |
| // How many entries are in the table? |
| int count() const { return fCount; } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); } |
| |
| // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!! |
| // set(), find() and foreach() all allow mutable access to table entries. |
| // If you change an entry so that it no longer has the same key, all hell |
| // will break loose. Do not do that! |
| // |
| // Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger. |
| |
| // The pointers returned by set() and find() are valid only until the next call to set(). |
| // The pointers you receive in foreach() are only valid for its duration. |
| |
| // Copy val into the hash table, returning a pointer to the copy now in the table. |
| // If there already is an entry in the table with the same key, we overwrite it. |
| T* set(const T& val) { |
| if (4 * (fCount+fRemoved) >= 3 * fCapacity) { |
| this->resize(fCapacity > 0 ? fCapacity * 2 : 4); |
| } |
| return this->uncheckedSet(val); |
| } |
| |
| // If there is an entry in the table with this key, return a pointer to it. If not, NULL. |
| T* find(const K& key) const { |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| if (s.empty()) { |
| return NULL; |
| } |
| if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val)) { |
| return &s.val; |
| } |
| index = this->next(index, n); |
| } |
| SkASSERT(fCapacity == 0); |
| return NULL; |
| } |
| |
| // Remove the value with this key from the hash table. |
| void remove(const K& key) { |
| SkASSERT(this->find(key)); |
| |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| SkASSERT(!s.empty()); |
| if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val)) { |
| fRemoved++; |
| fCount--; |
| s.markRemoved(); |
| return; |
| } |
| index = this->next(index, n); |
| } |
| SkASSERT(fCapacity == 0); |
| } |
| |
| // Call fn on every entry in the table. You may mutate the entries, but be very careful. |
| template <typename Fn> // f(T*) |
| void foreach(Fn&& fn) { |
| for (int i = 0; i < fCapacity; i++) { |
| if (!fSlots[i].empty() && !fSlots[i].removed()) { |
| fn(&fSlots[i].val); |
| } |
| } |
| } |
| |
| // Call fn on every entry in the table. You may not mutate anything. |
| template <typename Fn> // f(T) or f(const T&) |
| void foreach(Fn&& fn) const { |
| for (int i = 0; i < fCapacity; i++) { |
| if (!fSlots[i].empty() && !fSlots[i].removed()) { |
| fn(fSlots[i].val); |
| } |
| } |
| } |
| |
| private: |
| T* uncheckedSet(const T& val) { |
| const K& key = Traits::GetKey(val); |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| if (s.empty() || s.removed()) { |
| // New entry. |
| if (s.removed()) { |
| fRemoved--; |
| } |
| s.val = val; |
| s.hash = hash; |
| fCount++; |
| return &s.val; |
| } |
| if (hash == s.hash && key == Traits::GetKey(s.val)) { |
| // Overwrite previous entry. |
| // Note: this triggers extra copies when adding the same value repeatedly. |
| s.val = val; |
| return &s.val; |
| } |
| index = this->next(index, n); |
| } |
| SkASSERT(false); |
| return NULL; |
| } |
| |
| void resize(int capacity) { |
| int oldCapacity = fCapacity; |
| SkDEBUGCODE(int oldCount = fCount); |
| |
| fCount = fRemoved = 0; |
| fCapacity = capacity; |
| SkAutoTArray<Slot> oldSlots(capacity); |
| oldSlots.swap(fSlots); |
| |
| for (int i = 0; i < oldCapacity; i++) { |
| const Slot& s = oldSlots[i]; |
| if (!s.empty() && !s.removed()) { |
| this->uncheckedSet(s.val); |
| } |
| } |
| SkASSERT(fCount == oldCount); |
| } |
| |
| int next(int index, int n) const { |
| // A valid strategy explores all slots in [0, fCapacity) as n walks from 0 to fCapacity-1. |
| // Both of these strategies are valid: |
| //return (index + 0 + 1) & (fCapacity-1); // Linear probing. |
| return (index + n + 1) & (fCapacity-1); // Quadratic probing. |
| } |
| |
| static uint32_t Hash(const K& key) { |
| uint32_t hash = Traits::Hash(key); |
| return hash < 2 ? hash+2 : hash; // We reserve hash 0 and 1 to mark empty or removed slots. |
| } |
| |
| struct Slot { |
| Slot() : hash(0) {} |
| bool empty() const { return this->hash == 0; } |
| bool removed() const { return this->hash == 1; } |
| |
| void markRemoved() { this->hash = 1; } |
| |
| T val; |
| uint32_t hash; |
| }; |
| |
| int fCount, fRemoved, fCapacity; |
| SkAutoTArray<Slot> fSlots; |
| }; |
| |
| // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases. |
| // K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two. |
| template <typename K, typename V, uint32_t(*HashK)(const K&) = &SkGoodHash> |
| class SkTHashMap : SkNoncopyable { |
| public: |
| SkTHashMap() {} |
| |
| // Clear the map. |
| void reset() { fTable.reset(); } |
| |
| // How many key/value pairs are in the table? |
| int count() const { return fTable.count(); } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } |
| |
| // N.B. The pointers returned by set() and find() are valid only until the next call to set(). |
| |
| // Set key to val in the table, replacing any previous value with the same key. |
| // We copy both key and val, and return a pointer to the value copy now in the table. |
| V* set(const K& key, const V& val) { |
| Pair in = { key, val }; |
| Pair* out = fTable.set(in); |
| return &out->val; |
| } |
| |
| // If there is key/value entry in the table with this key, return a pointer to the value. |
| // If not, return NULL. |
| V* find(const K& key) const { |
| if (Pair* p = fTable.find(key)) { |
| return &p->val; |
| } |
| return NULL; |
| } |
| |
| // Remove the key/value entry in the table with this key. |
| void remove(const K& key) { |
| SkASSERT(this->find(key)); |
| fTable.remove(key); |
| } |
| |
| // Call fn on every key/value pair in the table. You may mutate the value but not the key. |
| template <typename Fn> // f(K, V*) or f(const K&, V*) |
| void foreach(Fn&& fn) { |
| fTable.foreach([&fn](Pair* p){ fn(p->key, &p->val); }); |
| } |
| |
| // Call fn on every key/value pair in the table. You may not mutate anything. |
| template <typename Fn> // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&). |
| void foreach(Fn&& fn) const { |
| fTable.foreach([&fn](const Pair& p){ fn(p.key, p.val); }); |
| } |
| |
| private: |
| struct Pair { |
| K key; |
| V val; |
| static const K& GetKey(const Pair& p) { return p.key; } |
| static uint32_t Hash(const K& key) { return HashK(key); } |
| }; |
| |
| SkTHashTable<Pair, K> fTable; |
| }; |
| |
| // A set of T. T is treated as an ordiary copyable C++ type. |
| template <typename T, uint32_t(*HashT)(const T&) = &SkGoodHash> |
| class SkTHashSet : SkNoncopyable { |
| public: |
| SkTHashSet() {} |
| |
| // Clear the set. |
| void reset() { fTable.reset(); } |
| |
| // How many items are in the set? |
| int count() const { return fTable.count(); } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } |
| |
| // Copy an item into the set. |
| void add(const T& item) { fTable.set(item); } |
| |
| // Is this item in the set? |
| bool contains(const T& item) const { return SkToBool(this->find(item)); } |
| |
| // If an item equal to this is in the set, return a pointer to it, otherwise null. |
| // This pointer remains valid until the next call to add(). |
| const T* find(const T& item) const { return fTable.find(item); } |
| |
| // Remove the item in the set equal to this. |
| void remove(const T& item) { |
| SkASSERT(this->contains(item)); |
| fTable.remove(item); |
| } |
| |
| // Call fn on every item in the set. You may not mutate anything. |
| template <typename Fn> // f(T), f(const T&) |
| void foreach (Fn&& fn) const { |
| fTable.foreach(fn); |
| } |
| |
| private: |
| struct Traits { |
| static const T& GetKey(const T& item) { return item; } |
| static uint32_t Hash(const T& item) { return HashT(item); } |
| }; |
| SkTHashTable<T, T, Traits> fTable; |
| }; |
| |
| #endif//SkTHash_DEFINED |