| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * The following code is based on the description in RFC 3174. |
| * http://www.ietf.org/rfc/rfc3174.txt |
| */ |
| |
| #include "SkTypes.h" |
| #include "SkSHA1.h" |
| #include <string.h> |
| |
| /** SHA1 basic transformation. Transforms state based on block. */ |
| static void transform(uint32_t state[5], const uint8_t block[64]); |
| |
| /** Encodes input into output (5 big endian 32 bit values). */ |
| static void encode(uint8_t output[20], const uint32_t input[5]); |
| |
| /** Encodes input into output (big endian 64 bit value). */ |
| static void encode(uint8_t output[8], const uint64_t input); |
| |
| SkSHA1::SkSHA1() : byteCount(0) { |
| // These are magic numbers from the specification. The first four are the same as MD5. |
| this->state[0] = 0x67452301; |
| this->state[1] = 0xefcdab89; |
| this->state[2] = 0x98badcfe; |
| this->state[3] = 0x10325476; |
| this->state[4] = 0xc3d2e1f0; |
| } |
| |
| void SkSHA1::update(const uint8_t* input, size_t inputLength) { |
| unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
| unsigned int bufferAvailable = 64 - bufferIndex; |
| |
| unsigned int inputIndex; |
| if (inputLength >= bufferAvailable) { |
| if (bufferIndex) { |
| memcpy(&this->buffer[bufferIndex], input, bufferAvailable); |
| transform(this->state, this->buffer); |
| inputIndex = bufferAvailable; |
| } else { |
| inputIndex = 0; |
| } |
| |
| for (; inputIndex + 63 < inputLength; inputIndex += 64) { |
| transform(this->state, &input[inputIndex]); |
| } |
| |
| bufferIndex = 0; |
| } else { |
| inputIndex = 0; |
| } |
| |
| memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); |
| |
| this->byteCount += inputLength; |
| } |
| |
| void SkSHA1::finish(Digest& digest) { |
| // Get the number of bits before padding. |
| uint8_t bits[8]; |
| encode(bits, this->byteCount << 3); |
| |
| // Pad out to 56 mod 64. |
| unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); |
| unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); |
| static uint8_t PADDING[64] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| }; |
| this->update(PADDING, paddingLength); |
| |
| // Append length (length before padding, will cause final update). |
| this->update(bits, 8); |
| |
| // Write out digest. |
| encode(digest.data, this->state); |
| |
| #if defined(SK_SHA1_CLEAR_DATA) |
| // Clear state. |
| memset(this, 0, sizeof(*this)); |
| #endif |
| } |
| |
| struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { |
| return (B & C) | ((~B) & D); |
| //return D ^ (B & (C ^ D)); |
| //return (B & C) ^ ((~B) & D); |
| //return (B & C) + ((~B) & D); |
| //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2 |
| //return vec_sel(D, C, B); //PPC |
| }}; |
| |
| struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { |
| return B ^ C ^ D; |
| }}; |
| |
| struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { |
| return (B & C) | (B & D) | (C & D); |
| //return (B & C) | (D & (B | C)); |
| //return (B & C) | (D & (B ^ C)); |
| //return (B & C) + (D & (B ^ C)); |
| //return (B & C) ^ (B & D) ^ (C & D); |
| }}; |
| |
| /** Rotates x left n bits. */ |
| static inline uint32_t rotate_left(uint32_t x, uint8_t n) { |
| return (x << n) | (x >> (32 - n)); |
| } |
| |
| template <typename T> |
| static inline void operation(T operation, |
| uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, |
| uint32_t w, uint32_t k) { |
| E += rotate_left(A, 5) + operation(B, C, D) + w + k; |
| B = rotate_left(B, 30); |
| } |
| |
| static void transform(uint32_t state[5], const uint8_t block[64]) { |
| uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4]; |
| |
| // Round constants defined in SHA-1. |
| static const uint32_t K[] = { |
| 0x5A827999, //sqrt(2) * 2^30 |
| 0x6ED9EBA1, //sqrt(3) * 2^30 |
| 0x8F1BBCDC, //sqrt(5) * 2^30 |
| 0xCA62C1D6, //sqrt(10) * 2^30 |
| }; |
| |
| uint32_t W[80]; |
| |
| // Initialize the array W. |
| size_t i = 0; |
| for (size_t j = 0; i < 16; ++i, j += 4) { |
| W[i] = (((uint32_t)block[j ]) << 24) | |
| (((uint32_t)block[j+1]) << 16) | |
| (((uint32_t)block[j+2]) << 8) | |
| (((uint32_t)block[j+3]) ); |
| } |
| for (; i < 80; ++i) { |
| W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); |
| //The following is equivelent and speeds up SSE implementations, but slows non-SSE. |
| //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2); |
| } |
| |
| // Round 1 |
| operation(F1(), A, B, C, D, E, W[ 0], K[0]); |
| operation(F1(), E, A, B, C, D, W[ 1], K[0]); |
| operation(F1(), D, E, A, B, C, W[ 2], K[0]); |
| operation(F1(), C, D, E, A, B, W[ 3], K[0]); |
| operation(F1(), B, C, D, E, A, W[ 4], K[0]); |
| operation(F1(), A, B, C, D, E, W[ 5], K[0]); |
| operation(F1(), E, A, B, C, D, W[ 6], K[0]); |
| operation(F1(), D, E, A, B, C, W[ 7], K[0]); |
| operation(F1(), C, D, E, A, B, W[ 8], K[0]); |
| operation(F1(), B, C, D, E, A, W[ 9], K[0]); |
| operation(F1(), A, B, C, D, E, W[10], K[0]); |
| operation(F1(), E, A, B, C, D, W[11], K[0]); |
| operation(F1(), D, E, A, B, C, W[12], K[0]); |
| operation(F1(), C, D, E, A, B, W[13], K[0]); |
| operation(F1(), B, C, D, E, A, W[14], K[0]); |
| operation(F1(), A, B, C, D, E, W[15], K[0]); |
| operation(F1(), E, A, B, C, D, W[16], K[0]); |
| operation(F1(), D, E, A, B, C, W[17], K[0]); |
| operation(F1(), C, D, E, A, B, W[18], K[0]); |
| operation(F1(), B, C, D, E, A, W[19], K[0]); |
| |
| // Round 2 |
| operation(F2(), A, B, C, D, E, W[20], K[1]); |
| operation(F2(), E, A, B, C, D, W[21], K[1]); |
| operation(F2(), D, E, A, B, C, W[22], K[1]); |
| operation(F2(), C, D, E, A, B, W[23], K[1]); |
| operation(F2(), B, C, D, E, A, W[24], K[1]); |
| operation(F2(), A, B, C, D, E, W[25], K[1]); |
| operation(F2(), E, A, B, C, D, W[26], K[1]); |
| operation(F2(), D, E, A, B, C, W[27], K[1]); |
| operation(F2(), C, D, E, A, B, W[28], K[1]); |
| operation(F2(), B, C, D, E, A, W[29], K[1]); |
| operation(F2(), A, B, C, D, E, W[30], K[1]); |
| operation(F2(), E, A, B, C, D, W[31], K[1]); |
| operation(F2(), D, E, A, B, C, W[32], K[1]); |
| operation(F2(), C, D, E, A, B, W[33], K[1]); |
| operation(F2(), B, C, D, E, A, W[34], K[1]); |
| operation(F2(), A, B, C, D, E, W[35], K[1]); |
| operation(F2(), E, A, B, C, D, W[36], K[1]); |
| operation(F2(), D, E, A, B, C, W[37], K[1]); |
| operation(F2(), C, D, E, A, B, W[38], K[1]); |
| operation(F2(), B, C, D, E, A, W[39], K[1]); |
| |
| // Round 3 |
| operation(F3(), A, B, C, D, E, W[40], K[2]); |
| operation(F3(), E, A, B, C, D, W[41], K[2]); |
| operation(F3(), D, E, A, B, C, W[42], K[2]); |
| operation(F3(), C, D, E, A, B, W[43], K[2]); |
| operation(F3(), B, C, D, E, A, W[44], K[2]); |
| operation(F3(), A, B, C, D, E, W[45], K[2]); |
| operation(F3(), E, A, B, C, D, W[46], K[2]); |
| operation(F3(), D, E, A, B, C, W[47], K[2]); |
| operation(F3(), C, D, E, A, B, W[48], K[2]); |
| operation(F3(), B, C, D, E, A, W[49], K[2]); |
| operation(F3(), A, B, C, D, E, W[50], K[2]); |
| operation(F3(), E, A, B, C, D, W[51], K[2]); |
| operation(F3(), D, E, A, B, C, W[52], K[2]); |
| operation(F3(), C, D, E, A, B, W[53], K[2]); |
| operation(F3(), B, C, D, E, A, W[54], K[2]); |
| operation(F3(), A, B, C, D, E, W[55], K[2]); |
| operation(F3(), E, A, B, C, D, W[56], K[2]); |
| operation(F3(), D, E, A, B, C, W[57], K[2]); |
| operation(F3(), C, D, E, A, B, W[58], K[2]); |
| operation(F3(), B, C, D, E, A, W[59], K[2]); |
| |
| // Round 4 |
| operation(F2(), A, B, C, D, E, W[60], K[3]); |
| operation(F2(), E, A, B, C, D, W[61], K[3]); |
| operation(F2(), D, E, A, B, C, W[62], K[3]); |
| operation(F2(), C, D, E, A, B, W[63], K[3]); |
| operation(F2(), B, C, D, E, A, W[64], K[3]); |
| operation(F2(), A, B, C, D, E, W[65], K[3]); |
| operation(F2(), E, A, B, C, D, W[66], K[3]); |
| operation(F2(), D, E, A, B, C, W[67], K[3]); |
| operation(F2(), C, D, E, A, B, W[68], K[3]); |
| operation(F2(), B, C, D, E, A, W[69], K[3]); |
| operation(F2(), A, B, C, D, E, W[70], K[3]); |
| operation(F2(), E, A, B, C, D, W[71], K[3]); |
| operation(F2(), D, E, A, B, C, W[72], K[3]); |
| operation(F2(), C, D, E, A, B, W[73], K[3]); |
| operation(F2(), B, C, D, E, A, W[74], K[3]); |
| operation(F2(), A, B, C, D, E, W[75], K[3]); |
| operation(F2(), E, A, B, C, D, W[76], K[3]); |
| operation(F2(), D, E, A, B, C, W[77], K[3]); |
| operation(F2(), C, D, E, A, B, W[78], K[3]); |
| operation(F2(), B, C, D, E, A, W[79], K[3]); |
| |
| state[0] += A; |
| state[1] += B; |
| state[2] += C; |
| state[3] += D; |
| state[4] += E; |
| |
| #if defined(SK_SHA1_CLEAR_DATA) |
| // Clear sensitive information. |
| memset(W, 0, sizeof(W)); |
| #endif |
| } |
| |
| static void encode(uint8_t output[20], const uint32_t input[5]) { |
| for (size_t i = 0, j = 0; i < 5; i++, j += 4) { |
| output[j ] = (uint8_t)((input[i] >> 24) & 0xff); |
| output[j+1] = (uint8_t)((input[i] >> 16) & 0xff); |
| output[j+2] = (uint8_t)((input[i] >> 8) & 0xff); |
| output[j+3] = (uint8_t)((input[i] ) & 0xff); |
| } |
| } |
| |
| static void encode(uint8_t output[8], const uint64_t input) { |
| output[0] = (uint8_t)((input >> 56) & 0xff); |
| output[1] = (uint8_t)((input >> 48) & 0xff); |
| output[2] = (uint8_t)((input >> 40) & 0xff); |
| output[3] = (uint8_t)((input >> 32) & 0xff); |
| output[4] = (uint8_t)((input >> 24) & 0xff); |
| output[5] = (uint8_t)((input >> 16) & 0xff); |
| output[6] = (uint8_t)((input >> 8) & 0xff); |
| output[7] = (uint8_t)((input ) & 0xff); |
| } |