| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkIntersections.h" |
| #include "SkOpContour.h" |
| #include "SkPathWriter.h" |
| #include "SkTSort.h" |
| |
| bool SkOpContour::addCoincident(int index, SkOpContour* other, int otherIndex, |
| const SkIntersections& ts, bool swap) { |
| SkPoint pt0 = ts.pt(0).asSkPoint(); |
| SkPoint pt1 = ts.pt(1).asSkPoint(); |
| if (pt0 == pt1 || ts[0][0] == ts[0][1] || ts[1][0] == ts[1][1]) { |
| // FIXME: one could imagine a case where it would be incorrect to ignore this |
| // suppose two self-intersecting cubics overlap to be coincident -- |
| // this needs to check that by some measure the t values are far enough apart |
| // or needs to check to see if the self-intersection bit was set on the cubic segment |
| return false; |
| } |
| SkCoincidence& coincidence = fCoincidences.push_back(); |
| coincidence.fOther = other; |
| coincidence.fSegments[0] = index; |
| coincidence.fSegments[1] = otherIndex; |
| coincidence.fTs[swap][0] = ts[0][0]; |
| coincidence.fTs[swap][1] = ts[0][1]; |
| coincidence.fTs[!swap][0] = ts[1][0]; |
| coincidence.fTs[!swap][1] = ts[1][1]; |
| coincidence.fPts[swap][0] = pt0; |
| coincidence.fPts[swap][1] = pt1; |
| bool nearStart = ts.nearlySame(0); |
| bool nearEnd = ts.nearlySame(1); |
| coincidence.fPts[!swap][0] = nearStart ? ts.pt2(0).asSkPoint() : pt0; |
| coincidence.fPts[!swap][1] = nearEnd ? ts.pt2(1).asSkPoint() : pt1; |
| coincidence.fNearly[0] = nearStart; |
| coincidence.fNearly[1] = nearEnd; |
| return true; |
| } |
| |
| SkOpSegment* SkOpContour::nonVerticalSegment(int* start, int* end) { |
| int segmentCount = fSortedSegments.count(); |
| SkASSERT(segmentCount > 0); |
| for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { |
| SkOpSegment* testSegment = fSortedSegments[sortedIndex]; |
| if (testSegment->done()) { |
| continue; |
| } |
| *start = *end = 0; |
| while (testSegment->nextCandidate(start, end)) { |
| if (!testSegment->isVertical(*start, *end)) { |
| return testSegment; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| // if one is very large the smaller may have collapsed to nothing |
| static void bump_out_close_span(double* startTPtr, double* endTPtr) { |
| double startT = *startTPtr; |
| double endT = *endTPtr; |
| if (approximately_negative(endT - startT)) { |
| if (endT <= 1 - FLT_EPSILON) { |
| *endTPtr += FLT_EPSILON; |
| SkASSERT(*endTPtr <= 1); |
| } else { |
| *startTPtr -= FLT_EPSILON; |
| SkASSERT(*startTPtr >= 0); |
| } |
| } |
| } |
| |
| // first pass, add missing T values |
| // second pass, determine winding values of overlaps |
| void SkOpContour::addCoincidentPoints() { |
| int count = fCoincidences.count(); |
| for (int index = 0; index < count; ++index) { |
| SkCoincidence& coincidence = fCoincidences[index]; |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpSegment& thisOne = fSegments[thisIndex]; |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
| // OPTIMIZATION: remove from array |
| continue; |
| } |
| #if DEBUG_CONCIDENT |
| thisOne.debugShowTs("-"); |
| other.debugShowTs("o"); |
| #endif |
| double startT = coincidence.fTs[0][0]; |
| double endT = coincidence.fTs[0][1]; |
| bool startSwapped, oStartSwapped, cancelers; |
| if ((cancelers = startSwapped = startT > endT)) { |
| SkTSwap(startT, endT); |
| } |
| bump_out_close_span(&startT, &endT); |
| SkASSERT(!approximately_negative(endT - startT)); |
| double oStartT = coincidence.fTs[1][0]; |
| double oEndT = coincidence.fTs[1][1]; |
| if ((oStartSwapped = oStartT > oEndT)) { |
| SkTSwap(oStartT, oEndT); |
| cancelers ^= true; |
| } |
| bump_out_close_span(&oStartT, &oEndT); |
| SkASSERT(!approximately_negative(oEndT - oStartT)); |
| const SkPoint& startPt = coincidence.fPts[0][startSwapped]; |
| if (cancelers) { |
| // make sure startT and endT have t entries |
| if (startT > 0 || oEndT < 1 |
| || thisOne.isMissing(startT, startPt) || other.isMissing(oEndT, startPt)) { |
| thisOne.addTPair(startT, &other, oEndT, true, startPt, |
| coincidence.fPts[1][startSwapped]); |
| } |
| const SkPoint& oStartPt = coincidence.fPts[1][oStartSwapped]; |
| if (oStartT > 0 || endT < 1 |
| || thisOne.isMissing(endT, oStartPt) || other.isMissing(oStartT, oStartPt)) { |
| other.addTPair(oStartT, &thisOne, endT, true, oStartPt, |
| coincidence.fPts[0][oStartSwapped]); |
| } |
| } else { |
| if (startT > 0 || oStartT > 0 |
| || thisOne.isMissing(startT, startPt) || other.isMissing(oStartT, startPt)) { |
| thisOne.addTPair(startT, &other, oStartT, true, startPt, |
| coincidence.fPts[1][startSwapped]); |
| } |
| const SkPoint& oEndPt = coincidence.fPts[1][!oStartSwapped]; |
| if (endT < 1 || oEndT < 1 |
| || thisOne.isMissing(endT, oEndPt) || other.isMissing(oEndT, oEndPt)) { |
| other.addTPair(oEndT, &thisOne, endT, true, oEndPt, |
| coincidence.fPts[0][!oStartSwapped]); |
| } |
| } |
| #if DEBUG_CONCIDENT |
| thisOne.debugShowTs("+"); |
| other.debugShowTs("o"); |
| #endif |
| } |
| // if there are multiple pairs of coincidence that share an edge, see if the opposite |
| // are also coincident |
| for (int index = 0; index < count - 1; ++index) { |
| const SkCoincidence& coincidence = fCoincidences[index]; |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| for (int idx2 = 1; idx2 < count; ++idx2) { |
| const SkCoincidence& innerCoin = fCoincidences[idx2]; |
| int innerThisIndex = innerCoin.fSegments[0]; |
| if (thisIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 1, innerCoin, 1, false); |
| } |
| if (this == otherContour && otherIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 0, innerCoin, 1, false); |
| } |
| SkOpContour* innerOtherContour = innerCoin.fOther; |
| innerThisIndex = innerCoin.fSegments[1]; |
| if (this == innerOtherContour && thisIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 1, innerCoin, 0, false); |
| } |
| if (otherContour == innerOtherContour && otherIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 0, innerCoin, 0, false); |
| } |
| } |
| } |
| } |
| |
| bool SkOpContour::addPartialCoincident(int index, SkOpContour* other, int otherIndex, |
| const SkIntersections& ts, int ptIndex, bool swap) { |
| SkPoint pt0 = ts.pt(ptIndex).asSkPoint(); |
| SkPoint pt1 = ts.pt(ptIndex + 1).asSkPoint(); |
| if (SkDPoint::ApproximatelyEqual(pt0, pt1)) { |
| // FIXME: one could imagine a case where it would be incorrect to ignore this |
| // suppose two self-intersecting cubics overlap to form a partial coincidence -- |
| // although it isn't clear why the regular coincidence could wouldn't pick this up |
| // this is exceptional enough to ignore for now |
| return false; |
| } |
| SkCoincidence& coincidence = fPartialCoincidences.push_back(); |
| coincidence.fOther = other; |
| coincidence.fSegments[0] = index; |
| coincidence.fSegments[1] = otherIndex; |
| coincidence.fTs[swap][0] = ts[0][ptIndex]; |
| coincidence.fTs[swap][1] = ts[0][ptIndex + 1]; |
| coincidence.fTs[!swap][0] = ts[1][ptIndex]; |
| coincidence.fTs[!swap][1] = ts[1][ptIndex + 1]; |
| coincidence.fPts[0][0] = coincidence.fPts[1][0] = pt0; |
| coincidence.fPts[0][1] = coincidence.fPts[1][1] = pt1; |
| coincidence.fNearly[0] = 0; |
| coincidence.fNearly[1] = 0; |
| return true; |
| } |
| |
| void SkOpContour::align(const SkOpSegment::AlignedSpan& aligned, bool swap, |
| SkCoincidence* coincidence) { |
| for (int idx2 = 0; idx2 < 2; ++idx2) { |
| if (coincidence->fPts[0][idx2] == aligned.fOldPt |
| && coincidence->fTs[swap][idx2] == aligned.fOldT) { |
| SkASSERT(SkDPoint::RoughlyEqual(coincidence->fPts[0][idx2], aligned.fPt)); |
| coincidence->fPts[0][idx2] = aligned.fPt; |
| SkASSERT(way_roughly_equal(coincidence->fTs[swap][idx2], aligned.fT)); |
| coincidence->fTs[swap][idx2] = aligned.fT; |
| } |
| } |
| } |
| |
| void SkOpContour::alignCoincidence(const SkOpSegment::AlignedSpan& aligned, |
| SkTArray<SkCoincidence, true>* coincidences) { |
| int count = coincidences->count(); |
| for (int index = 0; index < count; ++index) { |
| SkCoincidence& coincidence = (*coincidences)[index]; |
| int thisIndex = coincidence.fSegments[0]; |
| const SkOpSegment* thisOne = &fSegments[thisIndex]; |
| const SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| const SkOpSegment* other = &otherContour->fSegments[otherIndex]; |
| if (thisOne == aligned.fOther1 && other == aligned.fOther2) { |
| align(aligned, false, &coincidence); |
| } else if (thisOne == aligned.fOther2 && other == aligned.fOther1) { |
| align(aligned, true, &coincidence); |
| } |
| } |
| } |
| |
| void SkOpContour::alignTPt(int segmentIndex, const SkOpContour* other, int otherIndex, |
| bool swap, int tIndex, SkIntersections* ts, SkPoint* point) const { |
| int zeroPt; |
| if ((zeroPt = alignT(swap, tIndex, ts)) >= 0) { |
| alignPt(segmentIndex, point, zeroPt); |
| } |
| if ((zeroPt = other->alignT(!swap, tIndex, ts)) >= 0) { |
| other->alignPt(otherIndex, point, zeroPt); |
| } |
| } |
| |
| void SkOpContour::alignPt(int index, SkPoint* point, int zeroPt) const { |
| const SkOpSegment& segment = fSegments[index]; |
| if (0 == zeroPt) { |
| *point = segment.pts()[0]; |
| } else { |
| *point = segment.pts()[SkPathOpsVerbToPoints(segment.verb())]; |
| } |
| } |
| |
| int SkOpContour::alignT(bool swap, int tIndex, SkIntersections* ts) const { |
| double tVal = (*ts)[swap][tIndex]; |
| if (tVal != 0 && precisely_zero(tVal)) { |
| ts->set(swap, tIndex, 0); |
| return 0; |
| } |
| if (tVal != 1 && precisely_equal(tVal, 1)) { |
| ts->set(swap, tIndex, 1); |
| return 1; |
| } |
| return -1; |
| } |
| |
| bool SkOpContour::calcAngles() { |
| int segmentCount = fSegments.count(); |
| for (int test = 0; test < segmentCount; ++test) { |
| if (!fSegments[test].calcAngles()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SkOpContour::calcCoincidentWinding() { |
| int count = fCoincidences.count(); |
| #if DEBUG_CONCIDENT |
| if (count > 0) { |
| SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| } |
| #endif |
| for (int index = 0; index < count; ++index) { |
| SkCoincidence& coincidence = fCoincidences[index]; |
| if (!calcCommonCoincidentWinding(coincidence)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void SkOpContour::calcPartialCoincidentWinding() { |
| int count = fPartialCoincidences.count(); |
| #if DEBUG_CONCIDENT |
| if (count > 0) { |
| SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| } |
| #endif |
| for (int index = 0; index < count; ++index) { |
| SkCoincidence& coincidence = fPartialCoincidences[index]; |
| calcCommonCoincidentWinding(coincidence); |
| } |
| // if there are multiple pairs of partial coincidence that share an edge, see if the opposite |
| // are also coincident |
| for (int index = 0; index < count - 1; ++index) { |
| const SkCoincidence& coincidence = fPartialCoincidences[index]; |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| for (int idx2 = 1; idx2 < count; ++idx2) { |
| const SkCoincidence& innerCoin = fPartialCoincidences[idx2]; |
| int innerThisIndex = innerCoin.fSegments[0]; |
| if (thisIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 1, innerCoin, 1, true); |
| } |
| if (this == otherContour && otherIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 0, innerCoin, 1, true); |
| } |
| SkOpContour* innerOtherContour = innerCoin.fOther; |
| innerThisIndex = innerCoin.fSegments[1]; |
| if (this == innerOtherContour && thisIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 1, innerCoin, 0, true); |
| } |
| if (otherContour == innerOtherContour && otherIndex == innerThisIndex) { |
| checkCoincidentPair(coincidence, 0, innerCoin, 0, true); |
| } |
| } |
| } |
| } |
| |
| void SkOpContour::checkCoincidentPair(const SkCoincidence& oneCoin, int oneIdx, |
| const SkCoincidence& twoCoin, int twoIdx, bool partial) { |
| SkASSERT((oneIdx ? this : oneCoin.fOther) == (twoIdx ? this : twoCoin.fOther)); |
| SkASSERT(oneCoin.fSegments[!oneIdx] == twoCoin.fSegments[!twoIdx]); |
| // look for common overlap |
| double min = SK_ScalarMax; |
| double max = SK_ScalarMin; |
| double min1 = oneCoin.fTs[!oneIdx][0]; |
| double max1 = oneCoin.fTs[!oneIdx][1]; |
| double min2 = twoCoin.fTs[!twoIdx][0]; |
| double max2 = twoCoin.fTs[!twoIdx][1]; |
| bool cancelers = (min1 < max1) != (min2 < max2); |
| if (min1 > max1) { |
| SkTSwap(min1, max1); |
| } |
| if (min2 > max2) { |
| SkTSwap(min2, max2); |
| } |
| if (between(min1, min2, max1)) { |
| min = min2; |
| } |
| if (between(min1, max2, max1)) { |
| max = max2; |
| } |
| if (between(min2, min1, max2)) { |
| min = SkTMin(min, min1); |
| } |
| if (between(min2, max1, max2)) { |
| max = SkTMax(max, max1); |
| } |
| if (min >= max) { |
| return; // no overlap |
| } |
| // look to see if opposite are different segments |
| int seg1Index = oneCoin.fSegments[oneIdx]; |
| int seg2Index = twoCoin.fSegments[twoIdx]; |
| if (seg1Index == seg2Index) { |
| return; |
| } |
| SkOpContour* contour1 = oneIdx ? oneCoin.fOther : this; |
| SkOpContour* contour2 = twoIdx ? twoCoin.fOther : this; |
| SkOpSegment* segment1 = &contour1->fSegments[seg1Index]; |
| SkOpSegment* segment2 = &contour2->fSegments[seg2Index]; |
| // find opposite t value ranges corresponding to reference min/max range |
| const SkOpContour* refContour = oneIdx ? this : oneCoin.fOther; |
| const int refSegIndex = oneCoin.fSegments[!oneIdx]; |
| const SkOpSegment* refSegment = &refContour->fSegments[refSegIndex]; |
| int seg1Start = segment1->findOtherT(min, refSegment); |
| int seg1End = segment1->findOtherT(max, refSegment); |
| int seg2Start = segment2->findOtherT(min, refSegment); |
| int seg2End = segment2->findOtherT(max, refSegment); |
| // if the opposite pairs already contain min/max, we're done |
| if (seg1Start >= 0 && seg1End >= 0 && seg2Start >= 0 && seg2End >= 0) { |
| return; |
| } |
| double loEnd = SkTMin(min1, min2); |
| double hiEnd = SkTMax(max1, max2); |
| // insert the missing coincident point(s) |
| double missingT1 = -1; |
| double otherT1 = -1; |
| if (seg1Start < 0) { |
| if (seg2Start < 0) { |
| return; |
| } |
| missingT1 = segment1->calcMissingTStart(refSegment, loEnd, min, max, hiEnd, |
| segment2, seg1End); |
| if (missingT1 < 0) { |
| return; |
| } |
| const SkOpSpan* missingSpan = &segment2->span(seg2Start); |
| otherT1 = missingSpan->fT; |
| } else if (seg2Start < 0) { |
| SkASSERT(seg1Start >= 0); |
| missingT1 = segment2->calcMissingTStart(refSegment, loEnd, min, max, hiEnd, |
| segment1, seg2End); |
| if (missingT1 < 0) { |
| return; |
| } |
| const SkOpSpan* missingSpan = &segment1->span(seg1Start); |
| otherT1 = missingSpan->fT; |
| } |
| SkPoint missingPt1; |
| SkOpSegment* addTo1 = NULL; |
| SkOpSegment* addOther1 = seg1Start < 0 ? segment2 : segment1; |
| int minTIndex = refSegment->findExactT(min, addOther1); |
| SkASSERT(minTIndex >= 0); |
| if (missingT1 >= 0) { |
| missingPt1 = refSegment->span(minTIndex).fPt; |
| addTo1 = seg1Start < 0 ? segment1 : segment2; |
| } |
| double missingT2 = -1; |
| double otherT2 = -1; |
| if (seg1End < 0) { |
| if (seg2End < 0) { |
| return; |
| } |
| missingT2 = segment1->calcMissingTEnd(refSegment, loEnd, min, max, hiEnd, |
| segment2, seg1Start); |
| if (missingT2 < 0) { |
| return; |
| } |
| const SkOpSpan* missingSpan = &segment2->span(seg2End); |
| otherT2 = missingSpan->fT; |
| } else if (seg2End < 0) { |
| SkASSERT(seg1End >= 0); |
| missingT2 = segment2->calcMissingTEnd(refSegment, loEnd, min, max, hiEnd, |
| segment1, seg2Start); |
| if (missingT2 < 0) { |
| return; |
| } |
| const SkOpSpan* missingSpan = &segment1->span(seg1End); |
| otherT2 = missingSpan->fT; |
| } |
| SkPoint missingPt2; |
| SkOpSegment* addTo2 = NULL; |
| SkOpSegment* addOther2 = seg1End < 0 ? segment2 : segment1; |
| int maxTIndex = refSegment->findExactT(max, addOther2); |
| SkASSERT(maxTIndex >= 0); |
| if (missingT2 >= 0) { |
| missingPt2 = refSegment->span(maxTIndex).fPt; |
| addTo2 = seg1End < 0 ? segment1 : segment2; |
| } |
| if (missingT1 >= 0) { |
| addTo1->pinT(missingPt1, &missingT1); |
| addTo1->addTPair(missingT1, addOther1, otherT1, false, missingPt1); |
| } else { |
| SkASSERT(minTIndex >= 0); |
| missingPt1 = refSegment->span(minTIndex).fPt; |
| } |
| if (missingT2 >= 0) { |
| addTo2->pinT(missingPt2, &missingT2); |
| addTo2->addTPair(missingT2, addOther2, otherT2, false, missingPt2); |
| } else { |
| SkASSERT(minTIndex >= 0); |
| missingPt2 = refSegment->span(maxTIndex).fPt; |
| } |
| if (!partial) { |
| return; |
| } |
| if (cancelers) { |
| if (missingT1 >= 0) { |
| if (addTo1->reversePoints(missingPt1, missingPt2)) { |
| SkTSwap(missingPt1, missingPt2); |
| } |
| addTo1->addTCancel(missingPt1, missingPt2, addOther1); |
| } else { |
| if (addTo2->reversePoints(missingPt1, missingPt2)) { |
| SkTSwap(missingPt1, missingPt2); |
| } |
| addTo2->addTCancel(missingPt1, missingPt2, addOther2); |
| } |
| } else if (missingT1 >= 0) { |
| SkAssertResult(addTo1->addTCoincident(missingPt1, missingPt2, |
| addTo1 == addTo2 ? missingT2 : otherT2, addOther1)); |
| } else { |
| SkAssertResult(addTo2->addTCoincident(missingPt2, missingPt1, |
| addTo2 == addTo1 ? missingT1 : otherT1, addOther2)); |
| } |
| } |
| |
| void SkOpContour::joinCoincidence(const SkTArray<SkCoincidence, true>& coincidences, bool partial) { |
| int count = coincidences.count(); |
| #if DEBUG_CONCIDENT |
| if (count > 0) { |
| SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| } |
| #endif |
| // look for a lineup where the partial implies another adjoining coincidence |
| for (int index = 0; index < count; ++index) { |
| const SkCoincidence& coincidence = coincidences[index]; |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpSegment& thisOne = fSegments[thisIndex]; |
| if (thisOne.done()) { |
| continue; |
| } |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| if (other.done()) { |
| continue; |
| } |
| double startT = coincidence.fTs[0][0]; |
| double endT = coincidence.fTs[0][1]; |
| if (startT == endT) { // this can happen in very large compares |
| continue; |
| } |
| double oStartT = coincidence.fTs[1][0]; |
| double oEndT = coincidence.fTs[1][1]; |
| if (oStartT == oEndT) { |
| continue; |
| } |
| bool swapStart = startT > endT; |
| bool swapOther = oStartT > oEndT; |
| const SkPoint* startPt = &coincidence.fPts[0][0]; |
| const SkPoint* endPt = &coincidence.fPts[0][1]; |
| if (swapStart) { |
| SkTSwap(startT, endT); |
| SkTSwap(oStartT, oEndT); |
| SkTSwap(startPt, endPt); |
| } |
| bool cancel = swapOther != swapStart; |
| int step = swapStart ? -1 : 1; |
| int oStep = swapOther ? -1 : 1; |
| double oMatchStart = cancel ? oEndT : oStartT; |
| if (partial ? startT != 0 || oMatchStart != 0 : (startT == 0) != (oMatchStart == 0)) { |
| bool added = false; |
| if (oMatchStart != 0) { |
| const SkPoint& oMatchStartPt = cancel ? *endPt : *startPt; |
| added = thisOne.joinCoincidence(&other, oMatchStart, oMatchStartPt, oStep, cancel); |
| } |
| if (!cancel && startT != 0 && !added) { |
| (void) other.joinCoincidence(&thisOne, startT, *startPt, step, cancel); |
| } |
| } |
| double oMatchEnd = cancel ? oStartT : oEndT; |
| if (partial ? endT != 1 || oMatchEnd != 1 : (endT == 1) != (oMatchEnd == 1)) { |
| bool added = false; |
| if (cancel && endT != 1 && !added) { |
| (void) other.joinCoincidence(&thisOne, endT, *endPt, -step, cancel); |
| } |
| } |
| } |
| } |
| |
| bool SkOpContour::calcCommonCoincidentWinding(const SkCoincidence& coincidence) { |
| if (coincidence.fNearly[0] && coincidence.fNearly[1]) { |
| return true; |
| } |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpSegment& thisOne = fSegments[thisIndex]; |
| if (thisOne.done()) { |
| return true; |
| } |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| if (other.done()) { |
| return true; |
| } |
| double startT = coincidence.fTs[0][0]; |
| double endT = coincidence.fTs[0][1]; |
| const SkPoint* startPt = &coincidence.fPts[0][0]; |
| const SkPoint* endPt = &coincidence.fPts[0][1]; |
| bool cancelers; |
| if ((cancelers = startT > endT)) { |
| SkTSwap<double>(startT, endT); |
| SkTSwap<const SkPoint*>(startPt, endPt); |
| } |
| bump_out_close_span(&startT, &endT); |
| SkASSERT(!approximately_negative(endT - startT)); |
| double oStartT = coincidence.fTs[1][0]; |
| double oEndT = coincidence.fTs[1][1]; |
| if (oStartT > oEndT) { |
| SkTSwap<double>(oStartT, oEndT); |
| cancelers ^= true; |
| } |
| bump_out_close_span(&oStartT, &oEndT); |
| SkASSERT(!approximately_negative(oEndT - oStartT)); |
| bool success = true; |
| if (cancelers) { |
| thisOne.addTCancel(*startPt, *endPt, &other); |
| } else { |
| success = thisOne.addTCoincident(*startPt, *endPt, endT, &other); |
| } |
| #if DEBUG_CONCIDENT |
| thisOne.debugShowTs("p"); |
| other.debugShowTs("o"); |
| #endif |
| return success; |
| } |
| |
| void SkOpContour::resolveNearCoincidence() { |
| int count = fCoincidences.count(); |
| for (int index = 0; index < count; ++index) { |
| SkCoincidence& coincidence = fCoincidences[index]; |
| if (!coincidence.fNearly[0] || !coincidence.fNearly[1]) { |
| continue; |
| } |
| int thisIndex = coincidence.fSegments[0]; |
| SkOpSegment& thisOne = fSegments[thisIndex]; |
| SkOpContour* otherContour = coincidence.fOther; |
| int otherIndex = coincidence.fSegments[1]; |
| SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
| // OPTIMIZATION: remove from coincidence array |
| continue; |
| } |
| #if DEBUG_CONCIDENT |
| thisOne.debugShowTs("-"); |
| other.debugShowTs("o"); |
| #endif |
| double startT = coincidence.fTs[0][0]; |
| double endT = coincidence.fTs[0][1]; |
| bool cancelers; |
| if ((cancelers = startT > endT)) { |
| SkTSwap<double>(startT, endT); |
| } |
| if (startT == endT) { // if span is very large, the smaller may have collapsed to nothing |
| if (endT <= 1 - FLT_EPSILON) { |
| endT += FLT_EPSILON; |
| SkASSERT(endT <= 1); |
| } else { |
| startT -= FLT_EPSILON; |
| SkASSERT(startT >= 0); |
| } |
| } |
| SkASSERT(!approximately_negative(endT - startT)); |
| double oStartT = coincidence.fTs[1][0]; |
| double oEndT = coincidence.fTs[1][1]; |
| if (oStartT > oEndT) { |
| SkTSwap<double>(oStartT, oEndT); |
| cancelers ^= true; |
| } |
| SkASSERT(!approximately_negative(oEndT - oStartT)); |
| if (cancelers) { |
| thisOne.blindCancel(coincidence, &other); |
| } else { |
| thisOne.blindCoincident(coincidence, &other); |
| } |
| } |
| } |
| |
| void SkOpContour::sortAngles() { |
| int segmentCount = fSegments.count(); |
| for (int test = 0; test < segmentCount; ++test) { |
| fSegments[test].sortAngles(); |
| } |
| } |
| |
| void SkOpContour::sortSegments() { |
| int segmentCount = fSegments.count(); |
| fSortedSegments.push_back_n(segmentCount); |
| for (int test = 0; test < segmentCount; ++test) { |
| fSortedSegments[test] = &fSegments[test]; |
| } |
| SkTQSort<SkOpSegment>(fSortedSegments.begin(), fSortedSegments.end() - 1); |
| fFirstSorted = 0; |
| } |
| |
| void SkOpContour::toPath(SkPathWriter* path) const { |
| int segmentCount = fSegments.count(); |
| const SkPoint& pt = fSegments.front().pts()[0]; |
| path->deferredMove(pt); |
| for (int test = 0; test < segmentCount; ++test) { |
| fSegments[test].addCurveTo(0, 1, path, true); |
| } |
| path->close(); |
| } |
| |
| void SkOpContour::topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, |
| SkOpSegment** topStart) { |
| int segmentCount = fSortedSegments.count(); |
| SkASSERT(segmentCount > 0); |
| int sortedIndex = fFirstSorted; |
| fDone = true; // may be cleared below |
| for ( ; sortedIndex < segmentCount; ++sortedIndex) { |
| SkOpSegment* testSegment = fSortedSegments[sortedIndex]; |
| if (testSegment->done()) { |
| if (sortedIndex == fFirstSorted) { |
| ++fFirstSorted; |
| } |
| continue; |
| } |
| fDone = false; |
| SkPoint testXY = testSegment->activeLeftTop(NULL); |
| if (*topStart) { |
| if (testXY.fY < topLeft.fY) { |
| continue; |
| } |
| if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { |
| continue; |
| } |
| if (bestXY->fY < testXY.fY) { |
| continue; |
| } |
| if (bestXY->fY == testXY.fY && bestXY->fX < testXY.fX) { |
| continue; |
| } |
| } |
| *topStart = testSegment; |
| *bestXY = testXY; |
| } |
| } |
| |
| SkOpSegment* SkOpContour::undoneSegment(int* start, int* end) { |
| int segmentCount = fSegments.count(); |
| for (int test = 0; test < segmentCount; ++test) { |
| SkOpSegment* testSegment = &fSegments[test]; |
| if (testSegment->done()) { |
| continue; |
| } |
| testSegment->undoneSpan(start, end); |
| return testSegment; |
| } |
| return NULL; |
| } |
| |
| #if DEBUG_SHOW_WINDING |
| int SkOpContour::debugShowWindingValues(int totalSegments, int ofInterest) { |
| int count = fSegments.count(); |
| int sum = 0; |
| for (int index = 0; index < count; ++index) { |
| sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); |
| } |
| // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); |
| return sum; |
| } |
| |
| void SkOpContour::debugShowWindingValues(const SkTArray<SkOpContour*, true>& contourList) { |
| // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; |
| // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; |
| int ofInterest = 1 << 5 | 1 << 8; |
| int total = 0; |
| int index; |
| for (index = 0; index < contourList.count(); ++index) { |
| total += contourList[index]->segments().count(); |
| } |
| int sum = 0; |
| for (index = 0; index < contourList.count(); ++index) { |
| sum += contourList[index]->debugShowWindingValues(total, ofInterest); |
| } |
| // SkDebugf("%s total=%d\n", __FUNCTION__, sum); |
| } |
| #endif |
| |
| void SkOpContour::setBounds() { |
| int count = fSegments.count(); |
| if (count == 0) { |
| SkDebugf("%s empty contour\n", __FUNCTION__); |
| SkASSERT(0); |
| // FIXME: delete empty contour? |
| return; |
| } |
| fBounds = fSegments.front().bounds(); |
| for (int index = 1; index < count; ++index) { |
| fBounds.add(fSegments[index].bounds()); |
| } |
| } |